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The descending pain modulatory system is thought to undergo plastic changes following peripheral tissue injury and exerts
bidirectional (facilitatory and inhibitory) influence on spinal nociceptive transmission. The mitogen-activated protein kinases
(MAPKs) superfamily consists of four main members: the extracellular signal-regulated protein kinase1/2 (ERK1/2), the c-Jun
N-terminal kinases (JNKs), the p38 MAPKs, and the ERK5. MAPKs not only regulate cell proliferation and survival but also play
important roles in synaptic plasticity and memory formation. Recently, many studies have demonstrated that noxious stimuli
activate MAPKs in several brain regions that are components of descending pain modulatory system. They are involved in pain
perception and pain-related emotional responses. In addition, psychophysical stress also activates MAPKs in these brain structures.
Greater appreciation of the convergence of mechanisms between noxious stimuli- and psychological stress-induced neuroplasticity
is likely to lead to the identification of novel targets for a variety of pain syndromes.

1. Introduction

In human brain, there is a neural network that modulates
the transmission of nociceptive messages, which is termed
descending pain modulatory system. The cerebral cortex and
amygdala project directly and indirectly via the hypothala-
mus to the periaqueductal grey (PAG). The PAG in turn con-
trols spinal nociceptive neurons through relays in the rostral
ventromedial medulla (RVM) and the dorsolateral pontine
tegmentum (DLPT). The RVM consists of the nucleus raphe
magnus (NRM), nucleus reticularis gigantocellularis pars
alpha (GiA), and the ventral nucleus reticularis gigantocellu-
laris (Gi) and is a major source of serotonergic projections to
the spinal dorsal horn. The DLPT includes the noradrenergic
neurons, such as the locus coeruleus (LC), A5 and A7, which
are major sources of noradrenergic projections to the dorsal
horn. These descending inputs especially from the RVM
exert bidirectional (facilitatory and inhibitory) influence on
nociceptive transmission in the spinal dorsal horn [1–3].
In earlier studies, attention has been mainly focused on

the descending inhibitory influence. However, recently, it
has also been known that the descending input from the
RVM facilitates neuronal responses in the spinal dorsal horn
and contributes to persistent pain and hyperalgesia [2–4].
Descending modulation is not a static process but exhibits
dynamic changes in response to persistent noxious input
following peripheral inflammation and nerve injury [5–7].

The mitogen-activated protein kinases (MAPKs) are a
superfamily of intracellular signal transduction molecules
that are evolutionally conserved [8, 9]. The MAPKs super-
family is made up of four main and distinct signaling
pathways: the extracellular signal-regulated protein kinase1/2
(ERK1/2), the c-Jun N-terminal kinases or stress-activated
protein kinases (JNK/SAPKs), the p38 MAPKs, and the
ERK5. Each of MAPKs signaling pathways involves a con-
secutive activation of four levels of signaling molecules:
small GTPases (Ras or Rac), MAPK kinase kinases (Raf
or MAPKKKs), MAPK kinases (MEKs or MAPKKs), and
MAPKs. The initial Ras and Rac localize to the inner surface
of plasma membrane and transmit extracellular signals to
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downstream components of MAPKs cascades (MAPKKKs).
MAPKKKs activate MAPKKs, which are dual-specific kinases
that phosphorylate at both Ser/Thr and Tyr sites, targeting
a Thr-X-Tyr motif on the MAPKs (where X is glutamate
(ERK1/2, ERK5), proline (JNK), or glycine (p38 MAPK)).
The MAPKs, serine/threonine kinases, are activated by
MAPKKs. Phosphorylation of the MAPKs results in a
conformational change and a > 1000-fold increase in specific
activity [10–12]. At the end of these signaling pathways,
active MAPKs phosphorylate their target molecules, many
of which are transcription factors, leading to facilitation of
target gene expression. Thus, it is well established that neural
MAPKs cascades play important roles in synaptic plasticity
and remodeling during induction of long-term potentiation
(LTP), learning, and memory consolidation [13, 14].

In the last 10 years, a number of studies have demon-
strated that acute noxious stimuli, peripheral inflammation,
and nerve injury activate MAPKs in several brain regions
that are components of descending pain modulatory system
[15–26]. These MAPKs activations play an important role
in induction and maintenance of neural plasticity, which is
thought to be essential for understanding the mechanism
underlying dynamic changes in descending pain modulatory
systems following peripheral tissue injury [5–7, 27]. To
explore the role of each MAPK signaling pathway, the
specific inhibitors such as ERK1/2 inhibitor (MEK inhibitor
PD98059, U0126), p38 MAPK inhibitor (SB203580), and
JNK inhibitor (SP600125) have been used in these studies
[28]. The administrations of these inhibitors to descending
pain modulatory systems alleviated hyperalgesia and allody-
nia in peripheral inflammatory pain models. [18, 21, 29].
In this paper, first, we introduce which MAPK is activated
by such noxious stimuli and where those activations occur
in descending pain modulatory system. Pain is a complex
experience that involves not only the transduction of noxious
environmental stimuli, but also cognitive and emotional
processing in the brain [30]. Second, we discuss which
of pain perception, pain-related emotional responses, and
pain-related memory is the activation of MAPKs in these
components related with it.

Stress affects brain activity and promotes long-term
changes in multiple neural systems. A variety of environmen-
tal and/or stressful stimuli have been shown to induce not
only pain suppression but also an increase in pain sensitiv-
ity. These phenomena are termed stress-induced analgesia
(SIA) and stress-induced hyperalgesia (SIH), respectively
[31]. Stress has also been found to exacerbate and could
contribute to the etiology of chronic painful disorders,
such as, fibromyalgia [32], irritable bowel syndrome [33],
rheumatoid arthritis [34], and headache [35]. Psychophysical
stress also activates MAPKs in brain structures related to
descending pain modulatory system. MAPKs-induced neural
plasticity in some of these structures might be associated
with “limbically augmented pain syndrome” [36]. In this
theory, stress and emotionally traumatic events lead to a sen-
sitization of corticolimbic structures, which subserve both
nociceptive processing and affective regulation. Therefore,
we also discuss stress-induced activations of MAPKs in these
structures.

2. Activation of Mitogen-Activated
Protein Kinase in Descending Pain
Modulatory System

2.1. Rostral Ventromedial Medulla (RVM). Peripheral in-
flammation induced by CFA injection into the hindpaw
activated ERK1/2 and p38 MAPK in the RVM. The
activation of ERK1/2 exhibited two characteristic phases.
The first phase was a transient small increase at 30 minutes
after CFA injection. The second phase was more persistent
and pronounced increase from 3 hours to 24 hours, with a
peak at 7 hours [15]. On the other hand, the activation of
p38 MAPK was more short lived. It peaked at 30 minutes and
lasted for 1 hour [16] (Figure 1). Phosphorylated ERK1/2
and p38 MAPK (p-ERK1/2 and p-p38 MAPK) were present
predominantly in RVM neurons after CFA injection. About
60% of p-ERK1/2 neurons and 40% of p-p38 MAPK neurons
in the RVM were serotonergic neurons [15, 16]. Microglial
p-p38 MAPK in the RVM has also been reported to increase
following carrageenan-induced inflammation [18].

Microinjection of U0126, an MEK inhibitor, into the
RVM partially restored a decrease of paw withdrawal latency
to noxious heat stimulus into the inflamed hindpaw [29].
ERK1/2 is involved in both transcription-independent and
transcription-dependent forms of central sensitization. The
former is early onset process, such as phosphorylation of
receptors and trafficking of receptors to the synapse, and
the latter is late onset, such as an increase in the expression
of late-response genes [27, 37]. Since the microinjection
of U0126 into the RVM significantly attenuated thermal
hyperalgesia at 24 hours, but not at 7 hours after CFA
injection [29], activation of ERK1/2 in the RVM might
be involved in transcription-dependent plasticity. It has
been demonstrated that the phosphorylation of ERK1/2
activates the transcription of tryptophan hydroxylase (TPH),
the rate-limiting enzyme in serotonin biosynthesis, in the
serotonergic neuron-like cell line [38]. Thus, activation
of ERK1/2 in RVM serotonergic neurons is assumed to
increase serotonin biosynthesis. 5-hydroxytryptamine (5HT)
released from the descending bulbospinal neurons seems
to exert dual (inhibitory and facilitatory) effects on spinal
nociceptive processing [2, 3]. Oyama et al. [39] reported
that the inhibitory and facilitatory effects were mediated
by 5HT1A and 5HT3 receptors, respectively. Nearly one-
half of DRG neurons projecting to the superficial dorsal
horn express 5HT3 receptor [40], and activation of 5HT3
receptor localized on central terminals of DRG neurons
seems to enhance the release of neuropeptides [41]. Recently,
by depleting endogenous 5HT in the RVM serotonergic
neurons, it has been demonstrated that the RVM 5HT
system participates in descending pain facilitation but not
descending inhibition, which is necessary for maintenance
of hyperalgesia and allodynia after peripheral inflammation
and nerve injury [42]. Thus, it is possible that ERK activation
induced by inflammation increases the transcription of TPH
and serotonin biosynthesis, leading to the enhancement of
hyperalgesia via descending serotonergic pathways.

Microinjection of SB203580, a p38 MAPK inhibitor,
into the RVM attenuated carrageenan-induced thermal
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Figure 1: (a) Time courses of p-ERK1/2 and p-p38 MAPK in the
RVM after CFA injection into the hindpaw. (b) Photomicrographs
showing p-ERK1/2- and p-p38 MAPK-immunoreactive neurons in
the RVM (bregma −11.00 mm) following hindpaw inflammation.
Scale bar = 100μm.

hyperalgesia and tactile allodynia [18]. The activation of
p38 MAPK is involved in tumor necrosis factor-α and
interleukin-1 production [43]. Since these cytokines phos-
phorylate NMDA receptor in the RVM neurons and cause
allodynia [44], glial p38 MAPK may contribute to descending
pain facilitation via cytokine production. In CA1 pyramidal

neurons, a small amount of Ca2+ ion influx via NMDA
receptor activates the Rap-p38 MAPK signaling pathway,
which drives the removal of synaptic AMPA receptors [45].
The activation of neuronal p38 MAPK in the RVM may
contribute to a decrease in RVM excitability via the removal
of synaptic AMPA receptors. AMPA receptor sensitivity
in the RVM was reduced at 3 hours after the hindpaw
inflammation, [46, 47]. Phosphorylation of p38 MAPK has
also been shown to activate the transcription of TPH [38].
The activation of p38 MAPK in RVM serotonergic neurons
may also contribute to serotonin biosynthesis. Thus, it is
possible that p38 MAPK activation induced by inflammation
increases glial cytokines and neuronal TPH production,
leading to the enhancement of hyperalgesia and allodynia.

Chronic restraint stress (6 h daily for 3 weeks) induced
thermal hyperalgesia and significant increase in activation of
ERK1/2 in the RVM [48]. This stress-induced ERK1/2 acti-
vation in the RVM serotonergic neurons may also contribute
to serotonin biosynthesis. The level of TPH in the RVM
was significantly increased in the rats with chronic restraint
stress [48]. Meanwhile, many studies have reported that
chronic stresses decrease growth-associated and cytoskeletal
proteins and induce neuronal atrophy in the hippocampus
[49–51]. Since the sustained activation of ERK1/2 has been
shown to be involved in neuronal degeneration [52], the
stress-induced activation of ERK1/2 may be associated with
neuronal atrophy and dendritic reorganization in the RVM.

2.2. Locus Coeruleus (LC). Acute noxious stimulation
induced by formalin injection into the hindpaw activated
ERK1/2 in the LC for 1 hour after the injection. How-
ever, CFA-evoked chronic inflammation did not induce a
prolonged activation of ERK1/2 in the LC. After formalin
injection, p-ERK1/2 was almost exclusively (more than 90%)
located in the tyrosine hydroxylase- (TH-) positive neurons
of the LC [17].

TH is the rate-limiting enzyme in NA biosynthesis.
Short-term regulation of TH is accomplished by changes in
the phosphorylation of this enzyme. ERK1/2 phosphorylates
Ser31 in TH [53, 54]. The phosphorylation of Ser31 poten-
tiates TH activity [55]. The activation of ERK1/2 in the LC
after formalin injection might contribute to phosphorylation
of TH and potentiation of TH activity. Furthermore, it has
been shown that p-ERK1/2 activates c-fos, Fra-2, and CREB
[56, 57]. The first two and the last interact with the AP-
1 and CRE sites of the TH gene promoter, respectively
[58]. Therefore, it has been speculated that activation of
ERK1/2 in the LC increases TH gene transcription through
the activation of several transcription factors [59, 60]. The
activation of ERK1/2 in the LC might increase TH gene
transcription and NA biosynthesis.

Several studies have demonstrated that acute restraint
stress increases p-ERK1/2 in the LC [17, 59–61]. On the other
hand, chronic restraint stress (repeat 2–6 times) induced
further marked activation of ERK1/2, JNK, and p38 MAPK
in the LC [59]. Other study has reported that chronic
restraint stress for 3 weeks decreases p-ERK1/2 in the LC
[48]. The disparity among those experimental results may
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Figure 2: Schematic drawing of noxious stimuli-induced MAPKs activations in the descending pain modulatory system. Boxes indicate
noxious stimulation, activated MAPK, and function that is related to MAPK activation. PFC, prefrontal cortex; ACC, anterior cingulate
cortex; AMY, amygdala; HPT, hypothalamus; PAG, periaqueductal gray; LC, locus coeruleus; RVM, rostral ventromedial medulla; DLF,
dorsolateral funiculus; SDH, spinal dorsal horn; PAF, primary afferent fiber; POMC, proopiomelanocortin. Upward and downward
arrowheads indicate increase and decrease, respectively.

be due to the differences in duration of restraint stress
and experimental protocol. Short-term anaesthesia has been
shown to induce ERK1/2 phosphorylation in the brainstem
[62]. LC neurons in waking animals are very responsive
to nonnoxious auditory, visual, and somatosensory stimuli
in the environment [63–66]. Thus, we must take careful
note of anesthesia, handling of animals, and experimental
environment to evaluate an activation of MAPK in the
LC.

2.3. Periaqueductal Grey (PAG). There are few studies that
investigate activation of MAPK in the PAG. Some studies
have reported the activation of ERK1/2 in the PAG after
visceral noxious stimulation [19, 20]. Intraperitoneal injec-
tion of acetic acid significantly activated ERK1/2 in the PAG
[19, 20]. The PAG has a longitudinal columnar organization,
and each PAG column coordinates a distinct pattern of
behavioral and physiological reactions critical for survival.
The lateral and ventrolateral cell columns contain many
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Figure 3: Schematic drawing of stress-induced MAPKs activations in the descending pain modulatory system. Boxes indicate psychophysical
stress, activated MAPK, and function that is related to MAPK activation. For abbreviations see Figure 2.

neurons that project to the RVM [67]. Many p-ERK1/2
neurons were found in the lateral, ventrolateral, and dorsal
columns. However, the densities of p-ERK1/2 neurons in
these columns were not significantly different [20]. These
results indicate that ERK1/2 is activated in several PAG
neurons related to the different functional activity such as
fear, anxiety, defensive reactions, and autonomic regulation
in response to nociceptive stimuli.

2.4. Amygdala. The amygdala is now recognized as an
important player in the emotional-affective dimension of
pain [68, 69]. It has also been demonstrated that this

structure modulates nociceptive behavior by affecting the
activity of RVM [70, 71]. Peripheral inflammation activated
ERK1/2 in the amygdala at 3 h after formalin injection into
the hindpaw. Formalin-induced p-ERK1/2 neurons were
almost exclusively located in the laterocapsular division of
the central nucleus of the amygdala (CeLC) [21]. It is
noteworthy that ERK1/2 activation was seen in the right
CeLC, independent of the side of peripheral inflamma-
tion. Inhibition of ERK1/2 activation in the amygdala by
U0126 significantly decreased mechanical but not thermal
hypersensitivity. Pharmacological activation of ERK1/2 in
the amygdala induced mechanical hypersensitivity in the
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absence of inflammation. These results have clearly shown
that ERK1/2 activation in the amygdala plays a pivotal
role in inflammation-induced mechanical hypersensitivity.
ERK1/2 activation mediates plasticity in various brain
regions. ERK1/2 activation in the CeLC neuron also con-
tributes to synaptic facilitation by increasing NMDA receptor
function after peripheral inflammation [72]. Furthermore,
it has been demonstrated that ERK1/2 activation in the
CeLC is downstream of metabotropic glutamate receptor 5
(mGluR5) [73]. The level of mGluR5 in the right amygdala
was higher than that in the left amygdala. This seems to be
one of the mechanisms for hemispheric lateralization of pain
processing in the amygdala.

About the stress-induced activation of MAPKs, forced
swim stress activated JNK, but not ERK1/2 and p38 MAPK,
in the amygdala [74, 75]. The JNK signaling pathway is a
major regulator for activation and expression of the AP-1
transcriptional factors such as c-Jun, c-Fos, and ATF. The
activation of JNK may participate in stress-induced plastic
change of the amygdaloid neurons. Maternal deprivation
in early life increased immobility time in forced swim test
and activation of ERK1/2 in the amygdala. Microinjection
of PD98059 into the amygdala suppressed the immobility
time. Thus, ERK1/2 activation in the amygdala seems to be
implicated in the formation of depressive-like behavior [76].

2.5. Cerebral Cortex. The cerebral cortices including the
anterior cingulate (ACC) and prefrontal cortices (PFCs)
are believed to play important roles in emotion, learning,
memory, and persistent pain in the adult brain [77–79].
The electrical stimulation of the ACC produces facilitation
of tail-flick reflex induced by noxious heating via the
RVM [80]. Formalin injection into the hindpaw activated
ERK1/2 in rostral ACC (rACC) bilaterally [22]. A significant
increase of ERK1/2 activation in the rACC occurred at
3 min, peaked at 10–30 min, and declined at 2 h but still
remained after 24 h. Inhibition of ERK1/2 activation in
the rACC by microinjection of PD98059 did not affect
formalin-induced nociceptive behavior. However, PD98059
inhibited acquisition of formalin-induced conditioned place
avoidance (F-CPA), which is believed to reflect pain-related
negative emotion. ERK1/2 activation in the rACC required
NMDA receptor, and it mediated CREB phosphorylation.
However, the target genes regulated by CREB in the rACC
remain to be elucidated. The activation of MAPKs including
ERK1/2, JNK, and p38 MAPK has been shown to be critical
for induction of LTP in the ACC [81]. The results have
demonstrated that ERK1/2 activation in the rACC is critical
for the development of affective pain (pain-related emotional
response) but not nociceptive pain [22]. Peripheral nerve
injury, such as digit amputation, also activated ERK1/2 in
the ACC at 2 weeks after amputation [23]. Nonnoxious
mechanical stimulation by brushing the hindpaw with
amputated digit increased further the number of p-ERK1/2
neurons in the ACC and p-ERK1/2 in the dendrite and
synaptic sites. The activation of ERK1/2 at the synaptic sites
is thought to be involved in rapid synaptic potentiation and
regulation of neuronal excitability [81, 82].

Acute stress such as restraint and forced swim activates
ERK1/2 and JNK in the PFC and cingulate cortex [74,
83]. On the other hand, the effects of chronic stress
on MAPKs activation in the PFC are inconsistent across
the previous studies. Chronic restraint and forced swim
stresses decreased ERK1/2, JNK, and p38 MAPK activations
in the PFC [83–85]. In contrast, chronic stress induced
by inescapable footshock increased ERK1/2 activation in
the PFC [86, 87]. What is the functional role of stress-
induced alteration of MAPK activity in the PFC? Single-
prolonged stress (SPS) consists of restrain for 2 h, forced
swim for 20 min and ether anesthesia, and exposure to
SPS activated ERK1/2 in the mPFC. Inhibition of ERK1/2
activation in the mPFC ameliorated stress-induced anxiety-
like behavior, learning, and spatial memory impairment
[88]. Antidepressant reversed stress-induced reduction of
ERK1/2 activation in the PFC [85]. ERK1/2 activity in the
PFC may be critical to depressive-like behavior and memory
impairment. The rats subjected to prenatal stress showed a
decrease of p38 MAPK activation in the PFC [89]. In these
stressed rats, protein phosphatase-2A that dephosphorylates
all MAPKs has been found to increase in the PFC. It has
also been reported that p38 MAPK activation is involved in
LTD at excitatory synapses of PFC pyramidal neurons [90].
These stress-induced reductions of MAPKs activation may
impair synaptic plasticity. On the other hand, since sustained
activation of MAPK induces neuronal degeneration [52], it
is speculated that chronic stress-induced ERK1/2 activation
may cause neuronal atrophy and reorganization [86, 87].

2.6. Hypothalamus. Electrical stimulation or opioid
microinjection in the hypothalamus produces analgesia,
which has been considered to play an important role in
the modulation of pain. Beta-endorphin neurons in the
hypothalamic arcuate nucleus (Arc) project to the PAG and
activate descending projection neurons to the RVM in the
PAG by inhibiting inhibitory GABA-ergic interneurons.
This neural circuit has been implicated in the production of
stimulation-produced and stress-induced analgesia [1, 2, 91].
Formalin injection into the hindpaw activated ERK1/2 in the
hypothalamus [24]. ERK1/2 activation markedly increased
at 30 min and remained higher than baseline after 24 h.
p-ERK1/2 was colocalized with beta-endorphin in the Arc
neurons. Proopiomelanocortin (POMC) is a precursor to
several active peptides, including beta-endorphin. The i.c.v.
injection of PD98059 attenuated formalin-induced increase
of POMC mRNA expression in the hypothalamus. These
results indicate that ERK1/2 activation in the hypothalamus
may contribute to neuroendocrine regulation [24]. ERK1/2
activation in the hypothalamic paraventricular nucleus
(PVN) has also been reported after intraplantar formalin or
i.t. SP injections [25, 26]. The i.c.v. injection of PD98059
attenuated the second phase of formalin-induced nociceptive
behavior [26]. Therefore, ERK1/2 activation in the PVN may
be involved in acute nociceptive behavior.

Acute restraint stress activated ERK1/2 in the Arc and
the PVN [60, 92]. Acute swim stress also activates JNK in
the hypothalamus [75]. However, chronic restraint stress did
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not activate ERK1/2 in the Arc and the PVN [60]. These
activations might be involved in autonomic and endocrine
responses to the stress. Those functions remain elusive,
however.

3. Conclusions and Perspectives

The noxious stimuli induced activations of MAPKs in
the components of descending pain modulatory sys-
tem. The activations in these components were asso-
ciated with pain perception and pain-related emotional
responses (Figure 2). In addition, psychophysical stress
also activated MAPKs in these structures. They seem to
be mainly related to depressive-like behavior (Figure 3).
MAPKs are involved in both transcription-independent
and transcription-dependent forms of central sensitization.
Stress-induced neural plasticity in these structures via acti-
vations of MAPKs might affect nociceptive processing. In
turn, the noxious stimuli-induced neural plasticity might
potentiate depressive-like behavior in response to psycholog-
ical stress. Clinical studies have demonstrated a reciprocal
interaction between emotionality and pain perception in
chronic pain conditions [93]. Elucidation of their physiolog-
ical functions might contribute to a better understanding of
chronic pain and lead to the development of new treatment
to a variety of pain syndromes.

Recently, several studies have demonstrated that activa-
tion of ERK5 in the dorsal root ganglion and the spinal
dorsal horn is related to hyperalgesia and allodynia following
peripheral tissue injury [94–96]. Although there is no study
that has examined the noxious stimuli-induced ERK5 acti-
vation in the supraspinal structures such as descending pain
modulation system, one study has reported a reduction of
ERK5 activity in the frontal cortex following psychophysical
stress [97]. More importantly, PD98059 and U0126, specific
inhibitors of MEK1/2-ERK1/2, also inhibit MEK5-ERK5
pathway [98]. Therefore, further studies are needed to
examine whether the noxious stimuli induce ERK5 activation
in descending pain modulation system and, if so, to explore
what kinds of functions that activation is related to.
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