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Abstract

Background: Mendelian randomization (MR) has developed into an established method

for strengthening causal inference and estimating causal effects, largely due to the prolif-

eration of genome-wide association studies. However, genetic instruments remain con-

troversial, as horizontal pleiotropic effects can introduce bias into causal estimates.

Recent work has highlighted the potential of gene–environment interactions in detecting

and correcting for pleiotropic bias in MR analyses.

Methods: We introduce MR using Gene-by-Environment interactions (MRGxE) as a

framework capable of identifying and correcting for pleiotropic bias. If an instrument–co-

variate interaction induces variation in the association between a genetic instrument and

exposure, it is possible to identify and correct for pleiotropic effects. The interpretation of

MRGxE is similar to conventional summary MR approaches, with a particular advantage

of MRGxE being the ability to assess the validity of an individual instrument.

Results: We investigate the effect of adiposity, measured using body mass index (BMI),

upon systolic blood pressure (SBP) using data from the UK Biobank and a single weighted al-

lelic score informed by data from the GIANT consortium. We find MRGxE produces findings

in agreement with two-sample summary MR approaches. Further, we perform simulations

highlighting the utility of the approach even when the MRGxE assumptions are violated.

Conclusions: By utilizing instrument–covariate interactions in MR analyses implemented

within a linear-regression framework, it is possible to identify and correct for horizontal

pleiotropic bias, provided the average magnitude of pleiotropy is constant across

interaction-covariate subgroups.
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Introduction

Mendelian randomization (MR) has developed into a mul-

tifaceted approach to assessing causal relationships in epi-

demiology.1,2 In many cases, MR analyses employ genetic

variants as instrumental variables (IVs), allowing consis-

tent estimation of causal effects in the presence of unmeas-

ured confounding. This requires candidate variants to be

associated with the exposure of interest (IV1), to be inde-

pendent of confounders of the exposure and outcome (IV2)

and to be independent of the outcome outside of the medi-

ating effects of the exposure (IV3).3 An instrument satisfy-

ing these assumptions is considered valid, although IV2

and IV3 cannot directly tested.

Pleiotropy plays a central role in MR analyses and can

be subcategorized into vertical and horizontal forms.

Vertical pleiotropy exists in cases where a single genetic

variant influences a phenotype, which in turn influences

another.4 This is the primary mechanism underpinning the

utility of MR in causal-effect estimation. However, a par-

ticular concern when applying MR is horizontal pleiot-

ropy—occurring when a genetic variant is associated with

a study outcome through biological pathways additional to

the exposure of interest.2,5 This violates assumption IV3,

introducing bias into effect estimates in the direction of the

horizontal pleiotropic (henceforth, pleiotropic) effect.5,6

Where multiple instruments are available, one strategy is

to combine causal estimates using each individual variant

in turn within a meta-analysis framework. Provided the ge-

netic variants are uncorrelated, an inverse-variance-

weighted (IVW) estimate will be equivalent to two-stage

least-squares (TSLS) regression and, where pleiotropy is

suspected, MR-Egger, median and modal regression can be

adopted as sensitivity analyses.4,5,7,8

In the single instrument setting, Slichter regression has

emerged from the econometrics literature as a method for

evaluating instrument validity within a potential outcomes

framework.9,10 This involves observing or extrapolating to

a population subgroup for which the instrument and expo-

sure are independent (defined as a no-relevance group) and

measuring the corresponding association between the in-

strument and outcome. The instrument–outcome associa-

tion for a no-relevance group provides an estimate of

pleiotropic effect and allows bias correction within a statis-

tical model. Slichter regression builds upon several key

developments in econometrics, in particular the identifica-

tion and estimation of local average treatment effects put

forward by Imbens and Angrist,10 and the works of

Card,11 Conley et al.12 and Small.13

In this paper, we introduce Slichter regression within

the context of epidemiology, formalizing the increasing use

of gene–environment interactions in assessing instrument

validity.14–20 We present MR using Gene-by-Environment

interactions (MRGxE) as a statistical framework and sensi-

tivity analysis to identify and correct for pleiotropic bias

in MR studies using gene–covariate interactions.

Importantly, MRGxE can assess the validity of a single in-

strument, in contrast to methods examining heterogeneity

across a set of MR estimates using many instruments, and

is not reliant upon the existence of an observed no-rele-

vance group. This represents an improvement upon similar

methods such as Pleiotropy Robust Mendelian

Randomization (PRMR) that, while sharing a similar intui-

tive framework, are reliant upon the existence of an actual

no-relevance group being observed within the data, se-

verely limiting the applicability of the approach.21

Two features differentiate MRGxE from analogous

methods in the econometrics literature. First, MRGxE

adopts a linear-regression framework as opposed to utiliz-

ing local linear regression, improving the ease with which

MRGxE can be implemented. Additionally, MRGxE can

be applied using both individual- and summary-level data.

Such data could be obtained from previously published

studies where subgroup-specific estimates are provided or

alternatively requested from consortia.

To illustrate the utility of MRGxE, we present an applied

example examining the effect of body mass index (BMI) upon

systolic blood pressure (SBP), utilizing data from the GIANT

consortium and the full release of the UK Biobank (July

Key Messages

• Instrument–covariate interactions can be used to identify bias due to horizontal pleiotropy in Mendelian randomization

(MR) analyses, provided they induce sufficient variation in the association between the genetic instrument and exposure.

• By regressing the gene–outcome association upon the gene-exposure association across interaction-covariate sub-

groups, MR using Gene-by-Environment interactions (MRGxE) returns estimates of the average pleiotropic effect and

the pleiotropy adjusted causal effect.

• The interpretation of MRGxE is analogous to that of MR-Egger regression.

• The approach serves as a test for pleiotropy and can inform instrument selection.
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2017), respectively.22 We find evidence suggesting a positive

association between BMI and SBP, and substantial agreement

between MRGxE and two-sample summary MR estimates.

Finally, we conduct a simulation study demonstrating the ef-

fectiveness of the approach under varying conditions.

Methods

Non-technical intuition

Consider a situation in which the instrument–exposure as-

sociation is found to vary between subgroups of the target

population. We follow Slichter in defining an observed

subgroup for which the instrument does not predict the ex-

posure of interest as a no-relevance group.9 As a valid IV

can only be associated with the outcome of interest

through the exposure, it follows that the IV would be inde-

pendent of the outcome for the no-relevance group. An ob-

served non-zero association for the no-relevance group

therefore serves as evidence of pleiotropy.

This intuitive approach has been considered in several

epidemiological studies. For example, Chen et al.19 consid-

ered differences in drinking behaviour by gender in East

Asian populations within a fixed-effects meta-analysis of

the ALDH2 genetic variant and blood pressure. This inter-

action has received further attention in work such as

Taylor et al.23 and Cho et al.14 Previous applications also

extend beyond simple gender differences. For example,

Tyrrell et al. identified genetically predicted BMI as a

weaker instrument for participants experiencing lower lev-

els of socio-economic deprivation, utilizing negative con-

trols to examine residual confounding.16

In presenting MRGxE, we highlight similarities to the ap-

proach of Cho et al.,14 in which a gender–ALDH2 interac-

tion term was incorporated within a TSLS model to estimate

the effect of alcohol consumption. We clarify how it works

when individual-level data are available and crucially demon-

strate how MRGxE extends this approach to summary data.

The MRGxE framework

Consider an MR study consisting of N participants

(indexed by i ¼ 1; . . . ;N). For each participant, we record

observations of a genetic instrument Gi, an exposure Xi,

an outcome Yi and a further covariate Zi, which induces

variation in the association between Gi and Xi through an

interaction GZi. The relationship between each variable is

illustrated in Figure 1, with U representing a set of all

unmeasured variables confounding X and Y, and IGZ rep-

resenting the interaction term.

The exposure X is a linear function of G; Z; GZ; U

and an independent error term, �X, whilst the outcome Y

is a linear function of G; Z;GZ; U;X and an independent

error term, �Y . Using c and b to denote regression coeffi-

cients for the first- and second-stage models, respectively, a

two-stage model can be defined as:

Xi ¼ c0 þ c1Gi þ c2Zi þ c3GZi þUi þ �Xi; (1)

Yi ¼ b0 þ b1Xi þ b2Gi þ b3Zi þ b4GZi þUi þ �Yi: (2)

The causal effect of X on Y is denoted by b1 and the

pleiotropic effect of the instrument is b2. Note that

regressing Y upon X would be prone to confounding bias

and applying TSLS would give biased estimates

when b2 6¼ 0. This is demonstrated in the Supplementary

Material, available as Supplementary data at IJE online.

MRGxE adopts a gene–covariate interaction as an in-

strument, subsequently placing restrictions on the interac-

tion analogous to the IV assumptions. A suitable

interaction GZ is therefore:

GxE1: Associated to the exposure of interest (c3 6¼ 0).

GxE2: Not associated with confounders of the exposure

and outcome (GZ?U).

GxE3: Not associated with the outcome outside of the

exposure of interest (b4 ¼ 0).

The first assumption is assessed by directly fitting the

first-stage model. For the second assumption, it is impor-

tant to stress that it pertains to the independence of the in-

teraction with respect to confounders, and not G and Z

individually. The third assumption requires pleiotropic

effects remain constant across the population. Variation in

pleiotropic effects can be driven by violations of the second

assumption, as outlined in the following section.

A value of Z defining a no-relevance group (observed or

hypothetical) can be derived as the covariate value Z ¼ zX

at which G and X are independent, calculating the partial

effect of G upon X and rearranging such that:

Figure 1. A directed acyclic graph (DAG) showing the assumed relation-

ship between each variable in MRGxE.
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dX

dG
¼ c1 þ c3Zi ¼ 0: (3)

This yields the trivial solution

zX ¼ �
c1

c3

� �
: (4)

Where zX is observed in the population, regressing Y

upon G for the subset of participants with Z ¼ zX pro-

vides a pleiotropy estimate (that is for b2Þ as the coefficient

of G. Unfortunately, this is difficult to implement in prac-

tice, either because the value zX is not observed or the sub-

set of participants is too small to provide sufficient power.

Consequently, it is often appropriate to estimate pleiotropy

at a theoretical (or extrapolated) no-relevance group, using

differences in instrument–exposure associations across Z.

To illustrate how this is possible, a reduced-form IV

model is constructed—that is, models for X given G,

and Y given G by rewriting Model (1) as

Xi ¼ c0 þ c1 þ c3Zið ÞGi þ c2Zi þUi þ �Xi (5)

and Model (2) as

Yi ¼ b0 þ b1ðc1 þ c3ZiÞ þ b2 þ b4Zi þUi þ �Xi½ �Gi þ b3Zi

þUi þ �Yi:

(6)

The change in G�X and G� Y associations for a

given change in Z can be identified as the coefficient of

G in Models (5) and (6), respectively (with b4 set to 0), as

G�X association : ðc1 þ c3ZiÞ;
G� Y association : ½b1ðc1 þ c3ZiÞ þ b2�:

The Wald ratio24 estimand for the causal effect of X

on Y would then be equal to:

b1 c1 þ c3Zið Þ þ b2

c1 þ c3Zi
¼ b1 þ

b2

c1 þ c3Zi
: (7)

This gives the causal effect, b1, plus a non-zero bias

term whenever b2 is non-zero. In the Cho et al.14 analysis,

an estimate for b1 was obtained by performing TSLS re-

gression using the interaction as the instrument; fitting

Models (8) and (9) below:

Xi ¼ c1 þ c3Zið ÞGi þ c2Zi þ �Xi; (8)

Yi ¼ b0 þ b1X̂i þ b2Gi þ b3Zi þ �Yi; (9)

where X̂i is the fitted value from Model (8). In this case,

the coefficient b2 represents the degree of pleiotropy for

the genetic instrument G.

Whilst this approach does not require an observed

no-relevance group, it has two limitations. First, as a

consequence of utilizing TSLS, it is restricted to individ-

ual-level data. Second, it assumes an underlying linear

model, which may not hold in practice. For example, if

considering adiposity as an exposure, individuals at ex-

treme values could be at greater risk, implying a curved

relationship.

MRGxE overcomes these limitations by reframing the

model within a two-sample summary MR context, and ex-

ecuting the following three-step procedure:

1. Estimate G�X and G� Y associations at a range of

values of Z.

2. Regress the G� Y associations on the G�X associa-

tions within a linear regression.

3. Estimate the causal effect b1 as the slope of the regres-

sion, and the mean pleiotropic effect as the intercept of

the regression.

Let Zj denote the jth subgroup of Z (j ¼ 1; . . . ; JÞ. For

each group Zj, we estimate the instrument–exposure asso-

ciation and standard error (Step 1) using the following re-

gression model:

Xi ¼ cj0 þ cj1Gi þ �jXi: (10)

Note that we include a subscript j to distinguish the re-

gression parameters from the first-stage Model (1). The co-

efficient cj1 is therefore interpreted as the G�X

association for group Zj. Next, we fit the corresponding

instrument–outcome regression model (Step 2):

Yi ¼ d0j þ dj1Gi þ �jYi: (11)

We use dj1 to denote the G� Y association coefficient

for group Zj, distinguishing Model (11) from Model (6).

Thus, from Models (10) and (11), we obtain sets of G�X

associations ðĉJ1Þ and G� Y associations ðd̂J1Þ across ZJ

subgroups. Finally, we regress the set of d̂J1 estimates upon

the set of ĉJ1 estimates (Step 3):

d̂J1 ¼ bGxE0 þ bGxE1ĉJ1 þ �JGxE: (12)

In Model (12), bGxE0 is the pleiotropy estimate ðb2Þ,
whilst bGxE1 is the effect of X upon Y correcting for plei-

otropy (b1). To illustrate, recall that b2 represents a con-

stant pleiotropic effect across Z. Model (12) is an average

of the ratio estimates across ZJ, with the bias parameter b2

estimated as the intercept. A diagram illustrating these fea-

tures is given in the Supplementary Material, available as

Supplementary data at IJE online, accompanied by a dem-

onstration of how the functional form of the interaction
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can be inferred from the distribution of the subgroup

estimates.

To show how the intercept estimates b2, consider the

reduced-form Model (6) evaluated for the no-relevance

group Z ¼ zX. From Equation (4), zX ¼ � c1

c3

� �
. Then, by

substitution:

b1c1 þ b1c3

�c1

c3

� �
þ b2 ¼ b1c1 � b1c1 þ b2 ¼ b2: (13)

Where the intercept is zero, the MRGxE causal-effect

estimate is identical to an IVW estimate using the subgroup

ratio estimates. This mirrors the equivalence of IVW and

MR-Egger regression in the multiple instrument setting

with balanced pleiotropy. R code for implementing

MRGxE is provided in the Supplementary Material, avail-

able as Supplementary data at IJE online.

Before continuing, it is important to highlight several

important factors to consider when implementing

MRGxE. Initially, it is important to define an appropriate

number of Z subgroups so as to accurately characterize the

underlying gene–covariate interaction. Second, it is impor-

tant to not transform effects to be positive, as performed

for MR-Egger regression. This mischaracterizes the inter-

action term, attenuating causal-effect estimates. Finally,

where instrument–exposure associations are present for all

groups in the same direction, the accuracy in extrapolating

the regression line towards a theoretical no-relevance

group will be a function of the distance from the minimum

Zj instrument–exposure association and variation in the

set of Zj instrument–exposure associations. Further guid-

ance and illustrations of these features of MRGxE are

presented in the Supplementary Material, available as

Supplementary data at IJE online.

The constant-pleiotropy assumption

As a single (constant) parameter, b2 equates to the ‘cor-

rect’ intercept for MRGxE—that is, the intercept that must

be estimated in order to identify the correct causal effect

b1: Consistent estimates for both b1 and b2 are produced

in cases where the pleiotropic effect remains constant

across all values of Z ( b4 ¼ 0). If b4 6¼ 0, then the con-

stant-pleiotropy assumption is violated, leading to the true

pleiotropic effect b2 being equated to b2 � b4c1

c3
and bias in

the causal estimand for b1 such that:

b̂1 ¼ b1 þ
b4

c3

: (14)

The derivation of this result is provided in the

Supplementary Material, available as Supplementary data

at IJE online. From Equation (14), it is clearly possible to

mitigate such bias when the instrument–covariate inter-

action ðc3Þ is large relative to the variation in the pleiotro-

pic effect b4, with the bias tending towards zero

as c3 increases. However, as it is not possible to directly es-

timate b4, justifying the relative effect sizes of the first- and

second-stage interactions requires a priori knowledge.

Violations of the constant-pleiotropy assumption can

result from specific confounding structures in the underly-

ing true model. Specifically, there must be no downstream

pathway from G to Z via the confounders U, no pathway

from Z to G through U, and U cannot be a joint determi-

nant of G and Z. Figure 2 shows four possible scenarios in

which G and Z are associated with U:

In Figure 2, Scenarios (a), (b) and (d) introduce bias in

MRGxE estimates, whilst Scenario (c) and individual associa-

tions between either Z and G with U do not. Further details

on the underlying mechanisms behind such bias are presented

in the Supplementary Material, available as Supplementary

data at IJE online. As a consequence, the range of interaction

covariates suitable for use within MRGxE is not as restrictive

as one might naively assume. In an MR context, there are

limited cases in which a confounder will be a determinant of

a genetic instrument, and this is only problematic where the

confounder is simultaneously associated with the interaction

covariate. It seems that MRGxE estimates will be most sus-

ceptible to bias where the instrument is a determinant of one

or more confounders, which in turn are determinants of the

interaction covariate. We recommend care be taken in exam-

ining such pathways and suggest MRGxE be implemented as

one component of a series of sensitivity analyses, as with

other such approaches.4

MRGxE as a sensitivity analysis

In cases where the constant-pleiotropy assumption is as-

sumed to be violated, MRGxE can still be applied in sensi-

tivity analyses to select a subset of valid instruments. To

demonstrate, consider that an invalid instrument can be

detected, in principle whenever b2 � b4c1

c3
6¼ 0, due to

either b2 6¼ 0, b4 6¼ 0 or both. Consequently, MRGxE can

be used to assess the validity of individual instruments,

informing instrument selection and evaluating the appro-

priateness of their incorporation in allelic scores. There

are, however, two important considerations when applying

this approach. First, it is not possible to distinguish the av-

erage pleiotropic effect across interaction-covariate sub-

groups (b2) from the change in pleiotropic effect between

instrument–covariate subgroups b4ð Þ. It is therefore a test

of invalidity due to either factor and cannot be used to cor-

rect MRGxE estimates directly. Second, MRGxE will
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incorrectly fail to detect invalid instruments (a Type II er-

ror) in the special case where b2 is close to � b4c1

c3

� �
.

Causal effect of BMI upon SBP

Previous observational,25 randomized control trials26 and

MR27–29 studies have reported evidence of a positive asso-

ciation between BMI and SBP. However, the magnitude of

this association differs markedly between such studies,

with observational studies often recording greater effect

sizes than those using MR.

As an applied example, we perform two-sample sum-

mary MR and MRGxE analyses examining the effect of

BMI upon SBP using variants identified from the GIANT

consortium22 and two non-overlapping random samples of

UK Biobank. The decision to use two subsamples of the

UK Biobank, as opposed to summary estimates from the

GIANT consortium, is motivated by potential differences

in the standardization of BMI between each sample. As

MRGxE utilizes BMI values from the UK Biobank,

selecting two subsamples for which BMI has been identi-

cally standardized allows a more effective comparison of

the approaches.

The purpose of performing both two-sample summary

and MRGxE analyses is to highlight the extent to which

pleiotropic effect estimates obtained using MRGxE with

a single instrument agree with conventional MR

approaches. Initially, the UK Biobank sample contained a

total of 502 614 individuals. From this sample, we ex-

cluded participants who failed to meet quality control,

specifically in cases where genetic and reported sex con-

flicted, where sex chromosome karyotypes were puta-

tively different from XX and XY, and individuals who

were outliers with respect to heterozygosity and missing

rates. Further, we removed participants of non-European

ancestry and related individuals by preferentially remov-

ing individuals related to the greatest number of individu-

als until no related pairs remained. This resulted in

a total of 358 928 participants being included in the

analyses.

(a) (b)

(c) (d)

Figure 2. A set of DAGs illustrating interaction-covariate confounding structures indicated by dashed lines. Scenarios (a), (b) and (d) induce bias in

MRGxE estimates. However, this is not the case for Scenario (c) or when the confounder is associated with either G or Z individually.
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In conducting a two-sample summary analysis, effect

estimates and standard errors for 96 genetic variants iden-

tified by the GIANT consortium as being robustly associ-

ated with BMI ðp ¼ 5� 10�8Þ were obtained from a 50%

random sample of the UK Biobank.22 Corresponding esti-

mates for each genetic variant with respect to SBP were

obtained using the remaining UK Biobank sample. In con-

trast, MRGxE was implemented by constructing a

weighted allelic score informed using estimates from the

GIANT consortium. The MRGxE analysis can be viewed

as analogous to two-sample summary MR, using instru-

ment–exposure estimates for BMI as external weights and

individual data from a separate sample to inform instru-

ment–outcome association estimates. In each analysis,

BMI, SBP and the weighted allelic score were standardized

using a z-score transformation.

Two-sample summary analyses

We implement several two-sample summary MR methods

utilizing the mrrobust software package30 in Stata SE

14.0.31 IVW provides estimates with greater precision than

alternative summary approaches; however, as such esti-

mates can exhibit bias in the presence of pleiotropy, MR-

Egger regression, weighted median and weighted modal

approaches are implemented as sensitivity analyses.

A range of methods are adopted in sensitivity analyses,

as each method relies upon differing assumptions with re-

spect to the underlying distribution of pleiotropic effects.

MR-Egger regression requires the effect of genetic variants

on the exposure to be independent of their pleiotropic

effects on the outcome (InSIDE).5 The weighted median

requires more than 50% of the variants to be valid instru-

ments accounting for weighting,7 whilst the modal estima-

tor assumes that the most frequent value of the pleiotropic

bias across the set of genetic variants is zero (ZEMPA).32

MRGxE analyses using Townsend Deprivation

Index

In implementing MRGxE, Townsend Deprivation Index

(TDI) was selected as a continuous covariate for which in-

strument strength varies, based on findings from previous

studies.16,33 TDI is a common derived measure of socio-

economic deprivation, using many variables such as car

ownership, occupation type and educational attainment.34

It is measured at an area level (electoral wards), with par-

ticipants assigned a score based upon the area in which

they lived.34 Missing values were removed prior to per-

forming the analysis, with observational and TSLS esti-

mates presented in the Supplementary Material, available

as Supplementary data at IJE online.

Simulation overview

To illustrate the effectiveness of MRGxE, and further con-

sider the importance of the constant-pleiotropy assumption

with respect to causal-effect estimation, we performed a

simulation study within a two-sample MR framework.

Considering a realistic case, two sets of simulations were

performed, the first using a null causal effect ðb1 ¼ 0) and

indexed as A, and the second a positive causal

effect ðb1 ¼ 0:05) indexed as B. Individual-level data are

generated, from which the necessary summary-data esti-

mates are extracted. In each case, a total of 5 population

subgroups are used from a sample size of 50 000, with fur-

ther details provided in the Supplementary Material, avail-

able as Supplementary data at IJE online.

Four distinct cases were considered:

Case 1: No pleiotropy and the constant-pleiotropy as-

sumption satisfied

Case 2: Directional pleiotropy and the constant-pleiot-

ropy assumption satisfied

Case 3: No pleiotropy and the constant-pleiotropy as-

sumption violated

Case 4: Directional pleiotropy and the constant-pleiot-

ropy assumption violated

The results for each case represent the mean values for

10 000 simulated datasets.

Results

Analysis I: two-sample summary analysis

Estimates obtained from implementing each two-sample

summary MR approach are presented in Table 1. All of the

methods performed with the exception of SIMEX-

corrected MR-Egger show evidence of a positive associa-

tion between BMI and SBP. There also appears limited

evidence of a pleiotropic effect, with the IVW estimate ly-

ing within the confidence intervals of both the weighted

median and weighted modal estimates.

Analysis II: MRGxE using TDI

To perform MRGxE, we divided the sample using quan-

tiles of TDI into 5, 10, 20 and 50 population subgroups,

after which IVW and MRGxE estimates were produced.

The results of each analysis are presented in Table 2, with

IVW referring to an inverse-variance-weighted estimate us-

ing interaction-covariate subgroups.

The estimates in Table 2 largely agree with the two-

sample summary MR estimates in several aspects, with the

direction of effect remaining consistent across each of the

methods applied. This again implies a positive effect of

BMI upon SBP. Considering the MR-Egger and MRGxE
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intercept estimates, there also appears to be little

evidence of substantial pleiotropic bias. Constraining the

MRGxE model to the intercept yields an estimate

equivalent to the two-sample summary IVW estimate pre-

sented in Table 1.

Notably, whilst the MR-Egger estimates are consistent

with the MRGxE estimates, the effects are markedly differ-

ent, with MRGxE returning a positive point estimate

greater in magnitude than the IVW estimate. The differ-

ence in these estimates can be attributed to the differing in-

tercept estimates that, while close to zero in both cases, are

different in terms of direction. As the MR-Egger and

MRGxE intercept estimates lie within their overlapping

confidence intervals, we would highlight this as a case

where the discrepancy may be due to a lack of precision. In

this case, it could be argued to be appropriate to conclude

that there is a lack of robustly identified directional pleio-

tropic effect and adopt the IVW estimate.

Figure 3 displays both the IVW and MRGxE estimates

for the five-group case, whilst corresponding plots for

other groups are presented in the Supplementary Material,

available as Supplementary data at IJE online.

Considering Figure 3, the ordering of the TDI groups

supports the assumption that the instrument–exposure as-

sociation varies across levels of TDI. In particular, the least

deprived groups (Group 1 and Group 2) have the weakest

association, suggesting that genetically predicted BMI is a

weaker predictor of BMI for participants experiencing

lower levels of deprivation. A further observation is that

the positioning of each estimate provides some evidence of

a linear interaction, with instrument strength increasing

monotonically as subgroup TDI increases. However, the

close proximity of Groups 1 and 2, as well as Groups 3

and 4, could be indicative of non-linearity, as they could

represent inflection points in the underlying distribution of

the interaction (see the Supplementary Material, available

as Supplementary data at IJE online, for inference

guidelines).

One important consideration in performing MR analyses

is that causal-effect estimates are often uncertain, due to

Table 1. Two-sample summary MR estimates for the effect of body mass index (BMI) upon systolic blood pressure (SBP). A

smoothing parameter (/ ¼ 1) was selected in implementing the modal estimator and a value I2
GX ¼ 0:89 using MR-Egger is in-

dicative of regression dilution of approximately 11% towards the null

Method Estimate SE 95% CI p-value

IVW 0.101 0.031 (0.04, 0.16) 0.001

MR-Egger (intercept)

MR-Egger (effect)a
0.002

0.027

0.001

0.062

(–0.001, 0.005)

(–0.09, 0.15)

0.173

0.658

SIMEX-corrected MR-Egger (intercept)

SIMEX-corrected MR-Egger (effect)

0.003

–0.020

0.003

0.154

(–0.003, 0.01)

(–0.32, 0.28)

0.898

0.325

Weighted median 0.147 0.032 (0.08, 0.21) <0.001

Modal estimatorb 0.102 0.031 (0.04, 0.16) 0.001

aI2
GX ¼ 0:90

bSmoothing parameter / ¼ 1.

Table 2. Inverse-variance-weighted (IVW) and MRGxE estimates for different numbers of Townsend Deprivation Index (TDI)

quantile groupings. The IVW estimate represents an inverse weighted estimate using each of the TDI subgroups, providing an

estimate equivalent to two-stage least-squares estimates using the weighted allelic score

Number of groups Method Estimate SE 95% CI p-value

MRGxE (intercept) –0.007 0.007 (–0.03, 0.02) 0.383

5 MRGxE (effect) 0.161 0.054 (–0.01, 0.33) 0.059

IVW 0.106 0.008 (0.08, 0.13) 0.0002

MRGxE (intercept) –0.009 0.009 (–0.03, 0.01) 0.347

10 MRGxE (effect) 0.169 0.064 (0.02, 0.32) 0.030

IVW 0.106 0.010 (0.08, 0.13) <0.0001

MRGxE (intercept) –0.005 0.012 (–0.03, 0.02) 0.669

20 MRGxE (effect) 0.144 0.088 (–0.04, 0.33) 0.121

IVW 0.106 0.013 (0.08, 0.13) <0.0001

MRGxE (intercept) –0.007 0.011 (–0.03, 0.01) 0.517

50 MRGxE (effect) 0.157 0.078 (0.000, 0.31) 0.049

IVW 0.107 0.013 (0.08, 0.13) <0.0001
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either a lack of precision or doubts regarding the assumptions

of the approach. One response put forward by VanderWeele

et al.35 has been to shift the emphasis from identifying the

magnitude of causal effects to identifying the presence of

causal effects. Under such a paradigm, estimation using in-

strument–covariate interactions, such as through MRGxE,

can be insightful in identifying broad effects or associations.

Adopting this rationale, MRGxE can be used as a broad test

of instrument validity in cases where the underlying assump-

tions of the approach are likely violated, focusing on effect di-

rection as opposed to effect magnitude.

Simulations

Results of the simulation analyses are presented in Table 3.

The mean F statistic remains the same for each case, with

substantial variation in the F statistic between interaction-

covariate groups. This is essential, as the variation in

instrument strength is representative of variation in instru-

ment relevance across population subgroups. Estimates us-

ing IVW and MRGxE, as well as significance values, were

taken directly from each regression output without using

regression weights, as the variant–outcome associations

have the same standard errors.

In the valid instrument case, both IVW and MRGxE

provide unbiased effect estimates, though the IVW esti-

mate is more accurate. This is similar to comparisons be-

tween IVW and MR-Egger regression, supporting use of

IVW in cases where pleiotropy is absent. Type I error rates

remained at approximately 5% for both IVW and

MRGxE. In the second case, IVW exhibits bias, whilst

MRGxE continues to produce unbiased estimates.

In the third case, the instrument is not valid, but pleiotro-

pic effects change across population subgroups. Here, both

IVW and MRGxE produce biased causal-effect estimates,

with the MRGxE effect estimates showing a greater degree

of bias than the IVW estimates. This increases the Type I er-

ror rate relative to IVW. In this situation, the MRGxE test

for pleiotropy is particularly powerful, though this seeming

increase in power can be attributed to violation of the con-

stant-pleiotropy assumption b4 6¼ 0ð Þ leading to over-esti-

mation of the magnitude of the pleiotropic effects. In the

final case, both IVW and MRGxE produce estimates with

similar bias and precision. Here, the MRGxE test for pleiot-

ropy is suggestive of a null pleiotropic effect, remaining at

5%. This represents a situation in which b2 ¼ b4, invalidat-

ing the use of MRGxE as a sensitivity analysis.

Discussion

In this paper, we present MRGxE as a simple and intuitive

method to identify and correct for pleiotropic bias in MR

studies using instrument–covariate interactions. MRGxE

enables the pleiotropic effect of individual instruments (or

single allele scores) to be assessed and, when such pleiot-

ropy exists and satisfies the constant-pleiotropy assump-

tion, MRGxE provides improved causal estimation

compared with IVW. In the absence of such pleiotropy, the

IVW approach is more accurate and should be preferred.

In cases where the constant-pleiotropy assumption is vi-

olated, a sensible approach would be to prune invalid var-

iants using pleiotropy estimates from MRGxE and then

implement IVW using valid variants. In this sense, MRGxE

can be viewed very much as a tool for sensitivity analysis.

Two-sample summary MRGxE

Whilst this paper has focused on the application of

MRGxE to individual-level data (albeit by extracting and

then meta-analysing summary statistics obtained from it),

it clearly applies where interaction–subgroup-specific sum-

mary data on instrument–exposure and instrument–out-

come associations are available. An alternative approach

would be to meta-analyse summary statistics obtained

from many separate studies under the assumption that

study-specific estimates relate to a study-specific character-

istic. For example, the work of Robinson et al.36 highlights

the interaction between age and adult BMI heritability as

one potential candidate, given that age is likely to vary nat-

urally across contributing studies.

Figure 3. A scatterplot showing the MRGxE estimate indicated as a

dashed line. Each point represents ascending quintiles of the Townsend

Deprivation Index, in this case showing the strength of the instrument–

exposure association to increase with increasing socio-economic

deprivation.
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Limitations of MRGxE

A number of factors must be considered before implement-

ing MRGxE. First, the constant-pleiotropy assumption is

essential for causal estimate correction. If there is reason to

believe that pleiotropic effects differ between population

subgroups, then the approach will give misleading effect

estimates. One useful aspect to this problem, however, is

that, provided the first-stage interaction is sufficiently

strong, bias from changes in pleiotropic effect may be suffi-

ciently small as to be negligible in analyses. This may well

be the case in situations such as the Cho et al.14 study,

where the difference in instrument effect between gender

groups is very strong in comparison to potential variation

in pleiotropic effect. In our analyses, the use of an allele

score as a single (strong) instrument meant that it was nat-

urally much more robust to bias than any individual com-

ponent SNP. One strategy to overcome this limitation

would be to carry out several analyses using differing inter-

action covariates. Provided that the instrument–covariate

interaction of sufficient strength, it would be expected that

resulting estimates would be in agreement. In cases where

substantial disagreement is observed, such disagreement

could be indicative of violation of the constant-pleiotropy

assumption or characteristics of the underlying confound-

ing structure. The work of Emdin et al.15 and Krishna

et al.37 follows this reasoning. Further work will consider

the implications of interaction-covariate selection and the

role of confounding within the context of MRGxE.

A second limitation is that, owing to the limited avail-

ability of summary-data estimates for particular covariate

groups, it may be difficult to implement in a summary-data

setting. At present, researchers may be limited to common

groupings such as gender.

Finally, it is important to consider results from MR

gene–environment interaction approaches within the

context of existing evidence using alternate estimation

approaches, within the triangulation framework38,39 in

which differences in estimates across a range of approaches

can be indicative of sources of bias potentially unique to

each research design. Identifying disagreement in estimated

effects across studies of differing design can therefore

prove valuable in identifying avenues for further research,

whilst substantial agreement strengthens confidence in the

resulting findings and subsequent inference.

Supplementary data

Supplementary data are available at IJE online.
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