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Abstract 
Nitric oxide is an endogenously formed gas that acts as a signaling 
molecule in the human body. The signaling functions of nitric oxide 
are accomplished through two primer mechanisms: cGMP-mediated 
phosphorylation and the formation of S-nitrosocysteine on proteins. 
This review presents and discusses previous and more recent findings 
documenting that nitric oxide signaling regulates metabolic activity. 
These discussions primarily focus on endothelial nitric oxide synthase 
(eNOS) as the source of nitric oxide.
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Biological synthesis of nitric oxide
Nitric oxide (NO) is an endogenously formed gas that is  
synthesized in nearly all cell types, tissues, and organs in the  
human body. NO is synthesized by the three isoforms of NO 
synthases (NOS), namely neuronal (nNOS or NOS1), inducible  
(iNOS or NOS2), and endothelial (eNOS or NOS3)1–13. These 
isoforms display cell type- and tissue-specific expression  
patterns. nNOS is expressed in cells of the central and  
peripheral nervous system as well as in epithelial cells of  
various organs, in pancreatic islet cells, and in vascular smooth  
muscle14,15. iNOS expression is, for the most part, stimulus  
evoked, although constitutive expression of the enzyme has 
been reported in monocytes and macrophages. Initially,  
the enzyme had been identified in macrophages; however, it 
has been demonstrated that iNOS expression can be induced 
in any cell type when the appropriate stimulus has been  
identified14,16,17. Finally, eNOS is primarily expressed in  
endothelial cells; however, the protein has been identified in  
cardiomyocytes, platelets, human placenta, and kidney  
epithelial cells14,16,18. All three isoforms utilize L-arginine as  
substrate and molecular oxygen and reduced nicotinamide- 
adenine-dinucleotide phosphate (NADPH) as co-substrates. 
All three isoforms utilize flavin adenine dinucleotide (FAD), 
flavin mononucleotide (FMN), and (6R)5,6,7,8-tetrahydro- 
L-biopterin (BH4) as cofactors. In the first step, L-arginine 
is hydroxylated followed by the oxidation of the hydroxy-
lated intermediate, leading to the generation of NO and  
L-citrulline18–20. Multiple factors regulate the enzymatic activity 
of NOS, including substrate and cofactor bioavailability, 
calcium levels, protein levels, and dimerization as well as  
post-translational modifications. The molecular regulation of  
NOS is beyond the scope of this work, so readers are 
referred to excellent reviews18,21–29. The concept of a mito-
chondrial NOS (mtNOS) emerged in the 90s. Initial reports  
ascribed mtNOS as a variant of eNOS followed by claims about 
a variant of iNOS, nNOS, or a completely unrelated enzyme. 
However, subsequent studies failed to document the existence 
of mtNOS. Nitrite (NO

2
–) represents a potential source of 

NO in the mitochondria, although the main sources of NO 
generation through nitrite are the red blood cells and the  
blood vessels30–32. Heme-containing enzymes can adopt a nitrite  
reductase activity to generate NO. under hypoxic conditions.  
These concepts are reviewed in 33.

Molecular mechanisms facilitating the biological 
action of NO
In chemical terms, NO is a free radical, having an unpaired  
electron on the nitrogen atom. In contrast with other free radi-
cals that are generated in biological systems, NO has relatively  
low chemical reactivity towards biomolecules and thus its 
half-life is longer34,35. This property facilitates the biological  
versatility and selectivity of NO. NO reacts with a number 
of enzymes and proteins. The most important physiological  
functions of NO are the activation of the soluble guanylate  
cyclase (sGC) and the post-translational modification of  
cysteine residues, a process known as S-nitrosation. Hydrogen 
sulfide (H

2
S) has emerged as an additional co-player of NO  

signaling. Evidence suggests that H
2
S and its metabolites influence 

NO formation and signaling through mechanisms that involve  
the regulation of eNOS expression and activity, the reaction 
with cyclic GMP (cGMP), and the activation of downstream  
kinases such as PGK-Ia. For recent advances in the field of H

2
S 

biology and its coordinated action with NO, readers are referred 
to 36,37.

In the next two paragraphs, we discuss briefly cGMP and  
protein S-nitrosation formation as mediators of NO signaling.  
Subsequently, we focus on the regulation of metabolism via  
eNOS-derived NO signaling and protein S-nitrosation.

cGMP-mediated signaling
The Nobel Prize in Physiology and Medicine in 1998 was  
awarded jointly to Drs Robert F. Furchgott, Louis J. Ignarro, 
and Ferid Murad for the discovery of NO in the cardiovascular  
system38. Their studies revealed the molecular pathway by  
which endothelium-derived NO stimulates sGC in smooth  
muscle cells and the synthesis of cGMP. The intracellular  
elevation of cGMP levels is followed by a cascade of phos-
phorylation events leading to the dilation of blood vessels and  
the regulation of blood flow.

This signaling pathway, which is known as the “canoni-
cal signaling pathway of NO”, is regulated at several steps. 
NO is enzymatically synthesized and phosphodiesterases 
and phosphatases accomplish cGMP degradation and protein  
de-phosphorylation, respectively. In addition, another layer 
of regulation may exist at the level of NO transport from the  
endothelial to smooth muscle cells. Originally, it was pro-
posed that upon its formation NO diffuses across the cellular  
membranes, reaching the smooth muscle cells39. However, 
more recent studies propose a different model which initially  
requires the biotransformation of NO to S-nitrosothiol followed 
by the transport to smooth muscle cells and the activation  
of sGC (40 and references therein). Indeed, S-nitrosothiols have 
longer half-lives than NO and are strong activators of sGC41.

Because of the central role of cGMP in the vasodilatory  
effects of NO, several drugs have been designed to enhance 
or attenuate cGMP-mediated signaling. Nitroglycerine and 
organic nitrates, a class of compounds that induce vasodila-
tion, have been extensively used for the treatment of coronary 
artery disease42,43. On the other hand, inhibitors of phosphodi-
esterase 5 are successfully used for the treatment of erectile  
dysfunction44.

Signaling through protein S-nitrosylation
The addition or transfer of a NO equivalent to a reduced thiol 
is chemically defined as S-nitrosation. On the other hand, the  
existing nomenclature in the field of post-translational modi-
fications uses the suffix “-ylation” to describe the biological  
function of these modifications. Conventionally, we opt to use 
the term S-nitrosylation throughout in order to be consistent with 
the existing nomenclature. The biological chemistries leading 
to S-nitrosylation in vivo remain unclear. Oxidation of cysteine 
thiol, metal-catalyzed transfer of NO, and exchange with small  
molecular weight (SMW) thiols represent three of the mechanisms 
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that have been proposed to mediate protein S-nitrosylation in  
biological systems45,46. S-nitrosoglutathione (GSNO) is an endog-
enously formed S-nitrosothiol. The biological significance 
of GSNO as a mediator of protein S-nitrosylation in vivo is high-
lighted by the existence of GSNO reductase (GSNOR), an enzyme 
that regulates the intracellular levels of GSNO and indirectly 
protein S-nitrosylation47,48. In addition, protein-assisted transn-
itrosation has been proposed as a mechanism for S-nitrosyla-
tion in vivo. This mechanism has been elegantly described 
for the S-nitrosylation of caspase-3 by S-nitrosothioredoxin  
(Trx-SNO)49,50. In addition, thioredoxin has been reported to 
mediate the removal of nitroso group from proteins, a process 
called de-nitrosylation. Protein-mediated transnitrosation and 
de-nitrosation imply regulated processes which, for the most 
part, involve specific structural elements on the NO-donor and  
NO-acceptor proteins51.

Comprehensive reviews on the chemistry of S-nitrosocysteine 
formation have been recently published46,52,53. It is very well 
documented that endogenous protein S-nitrosylation regulates  
protein function and biological responses54–59. However, a 
recent study argues against the notion that stable S-nitrosylation  
directly regulates protein function60. The identification of the  
mammalian S-nitroso-CoA reductase system as a transducer 
of eNOS activity in reprogramming intermediary metabolism  
expands the functional components of NO signaling and  
represents a novel mechanism by which protein S-nitrosylation 
may regulate metabolic activity61.

eNOS-derived NO and metabolic activity
It is well recognized that eNOS-derived NO serves important  
biological functions, including the regulation of blood flow and 
vascular tone, the suppression of proliferation and migration  
of smooth muscle cells, and the interaction of leukocytes with 
endothelium18. In addition to these functions, recent evidence  
indicates that eNOS-derived NO regulates metabolic activity62–64.

Endothelial dysfunction is a common feature in humans with  
cardiovascular risk factors and metabolic syndrome. Clinical 
studies in humans have shown that polymorphisms on the  
eNOS gene predispose for hypertension, insulin resistance, 
and type 2 diabetes, three of the major clinical features of  
metabolic syndrome65–69. In addition, studies in obese humans 
and animal models suggest that NO availability is decreased  
in adipose tissue and skeletal muscle owing to the diminished 
expression of eNOS protein70–74. The NO-generating capacity 
of eNOS is impacted by nutrient excess through mechanisms 
that involve the upregulated expression of negative regulators  
of eNOS activity such as caveolin-175,76. Moreover, studies in 
mice have shown that nutrient excess and obesity negatively  
regulate eNOS activity through the disruption of Akt-mediated  
signaling and thus the diminished phosphorylation of  
eNOS77–80. eNOS is a phosphoprotein. Serine 1177 in human 
sequence (S1176 in mouse sequence and S1179 in bovine  
sequence) represents the most abundant phosphoserine site80. 
The protein kinase Akt phosphorylates eNOS at serine 1177  
in vivo, whereas other kinases such as members of the family  
AGC (protein kinase A, protein kinase G, protein kinase C) as  

well as AMP-activated kinase (AMPK) can phosphorylate 
eNOS at the same site in vitro and perhaps in vivo81. A  
proposed mechanism for the activation of eNOS through Akt 
involves the phosphorylation of Akt by the phosphatidylinositol  
3-kinase (PI3K)82,83.

The aforementioned studies65–74 provide evidence that eNOS-
derived NO acts as a signal that regulates metabolic activity. 
However, they do not provide mechanistic details in terms of 
which are the downstream effectors of NO signaling and which 
metabolic pathways are impacted. In this regard, studies in ani-
mal models with reduced or even the lack of endothelium-derived  
NO could be highly informative. Moreover, these models 
could serve as disease-mimicking models to test therapeutic 
approaches that will replenish the bioactive NO and will restore  
NO-mediated signaling.

Mice lacking eNOS have been generated and characterized.  
They are hypertensive, hyperlipidemic, insulin resistant, 
and display age-dependent increase of adiposity and body  
weight84–87. They also display lower energy expenditure and  
oxygen consumption as compared to wild-type counterparts70,88. 
eNOS null (eNOS–/–) mice fed a high-fat diet demonstrate  
exacerbated non-alcoholic fatty liver disease (NAFLD) patho-
genesis as compared to wild-type mice89,90. Moreover, the  
genetic deletion of eNOS in diabetic mice (db/db) worsens renal 
diabetes pathology, indicating that the impact of the absence  
of eNOS in the setting of diabetes is not limited to the aorta  
but also extends to the renal vasculature89,91. Genetic deletion of  
eNOS in mice induces anatomical alterations and impacts the  
metabolic activity and energetic profile of oxidative skeletal 
muscle. The soleus muscle displays decreased respiratory  
capacity in eNOS–/– as compared to wild-type mice91. Studies 
by Kashiwagi et al. implicate AMPK–eNOS phosphorylation- 
activated formation of NO as a signal that impacts metabolic 
activity92. Mice with an S1176A mutation on eNOS are unable 
to increase the biosynthesis of NO via AMPK-dependent  
phosphorylation. These mice develop insulin resistance and  
hypolipidemia and display increased body weight upon high-
fat diet. On the contrary, mice harboring the S1176D mutation 
on eNOS, which mimics the effect of phosphorylation and thus 
results in a constitutively active enzyme, have normal levels 
of insulin and do not gain weight when they are fed a high-fat  
diet92. Also, it has been shown that overexpression of the  
eNOS gene diminishes the sensitivity to diet-induced obesity 
and hyperinsulinemia via metabolic changes that occur at the  
adipose tissue93. Collectively, mice with “diminished capacity 
to generate eNOS-derived NO” exhibit systemic and organ-
specific metabolic derangements, including several features of  
metabolic syndrome. Therefore, studies in these mice are  
directly relevant to human disease and facilitate mechanistic  
insights and therapeutic interventions. At this point, we want to  
provide more information regarding the source of eNOS–/– mice  
that have been used in the aforementioned studies. Four  
different groups have generated mice with targeted deletion of 
the eNOS gene. The most consistent phenotype among these  
strains is hypertension. In the majority of the studies reported  
here, mice purchased from Jackson Laboratories were used85–91,94. 
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Studies by Huang’s group were performed in mice generated at 
Harvard University92,94.

The question that remains open is this: what are the mechanism(s) 
by which NO impacts metabolic activity? Published studies 
from others and our laboratory have provided insights into 
these mechanisms. Using mass spectrometry-based approaches, 
we precisely mapped the endogenous S-nitrosoproteomes in  
several organs of wild-type and eNOS–/– mice. Importantly, a  
clear dependency of endogenous S-nitrosylation from eNOS-
derived NO was documented in all organs54. Functional  
interrogation revealed clustering of S-nitrosylated proteins in 
several anabolic and catabolic processes, implicating cysteine  
S-nitrosylation as a global regulator of energy homeostasis. Of 
particular interest was the finding that nearly all the enzymes  
and transporters participating in the fatty acid oxidation  
pathway were targeted by S-nitrosylation in an eNOS-derived  
NO manner54.

Fatty acid oxidation is the primary metabolic process for the  
generation of ATP in the heart, in the skeletal muscle during  
exercise, and in the liver under conditions of glucose scarcity95.  
Our published work as well as work by others document  
that eNOS–/– mice have a reduced capacity to oxidize long-
chain fatty acids in the heart, liver, and skeletal muscle54,91,94. 
These observations prompt us to investigate the impact of 
NO signaling on the metabolic adaptations that occur during  
fasting. Our data document that young eNOS–/– mice have a  
normal response to fasting despite their inability to increase the 
fatty acid oxidation rate in the liver as compared to wild-type  
mice94. Aged eNOS–/– mice exhibited metabolic derangements 
resulting in reduced utilization of fat to generate energy, lower  
resting metabolic activity, and diminished physical activity.  
These data suggest that eNOS–NO signaling is not essential 
for the metabolic adaptation to fasting; however, it is critical for  
regulating systemic metabolic homeostasis in aging94.

In an attempt to understand better how NO signaling impacts  
protein function, we focused on very long-chain acyl-CoA  
dehydrogenase (VLCAD), the first enzyme of the long-chain 
fatty acid oxidation pathway. Data in mouse cells and tissue  
homogenates document the reversible S-nitrosylation of VLCAD 
on a single cysteine residue54,96. Kinetic studies document a  
29-fold increase of catalytic efficiency of S-nitrosylated VLCAD 
as compared to the unmodified enzyme54. Placing the kinetic  
findings into a biological context, we can infer that almost  
exclusively the S-nitrosylated molecules execute the dehydro-
genation of long-chain fatty acids in vivo with very minimal,  
if any, contribution from the unmodified molecules. Recent 
data document that metabolic enzymes are post-translationally  
modified and the levels of modifications dynamically change 
in response to metabolic demands54,97–106. Despite these sound  
data, their biological implications remain unclear. Specific  
questions regarding the impact of each modification on protein 

function, the prioritization of one modification over the  
other(s), and the impact on metabolic and energy homeosta-
sis, organ specifically and systemically, are still open and further  
investigation is required.

The replenishment of bioactive NO has been used as a strategy  
to restore NO signaling and biological function. Currently, 
several clinical trials are testing the efficacy of bioactive 
NO (nitrite or nitrate) to improve cardiovascular function,  
improve physiological function in the elderly, and restore  
metabolic activity (NCT01681810, NCT02393742). Carlstrom  
and co-workers have shown that chronic nitrate treatment  
reduced visceral fat accumulation and circulating levels of 
triglycerides and improved glucose tolerance in eNOS–/–  
mice107–109. Recently, Lai et al. reported a beneficial effect of  
nitrite treatment in a rodent model of pulmonary hypertension 
associated with heart failure with preserved ejection fraction  
(HFpEF). The authors proposed that nitrite activates AMPK  
signaling and sirtuin 3 (SIRT3) through a mechanism that is  
independent from the formation of NO109. Furthermore, studies 
from our group document that the chronic replenishment of  
bioavailable NO prevented age-dependent biochemical,  
metabolic, and phenotypic decline in eNOS–/– mice, indicating 
the critical influence of eNOS–NO signaling in maintaining  
metabolic homeostasis110.

Collectively, preclinical findings in animal models support the 
notion that long-term replenishment of NO may be a suitable 
approach to correct metabolic diseases such as hypertension  
and metabolic syndrome.

Future perspectives
This review focuses on the regulation of metabolic activity 
by NO signaling. In most responses that are indispensable 
for life, biological redundancy or co-regulation secures safe  
transitions that maintain biological functions. Thus, it is logical 
to infer that NO signaling via protein S-nitrosylation and other  
post-translational modifications is fully integrated in the meta-
bolic cellular responses to allow for coordinated regulation of 
metabolism. Therefore, the investigation of this coordinated  
regulation represents an exciting research area. Delineating 
the physiological mechanisms that control metabolic activity 
and energy homeostasis will allow us to identify potential  
therapeutic targets in an attempt to improve the quality of life of 
individuals with metabolic disorders.

Abbreviations
AMPK, AMP-activated kinase: cGMP, cyclic GMP; eNOS,  
endothelial nitric oxide synthase; eNOS–/–, eNOS null; GSNO, 
glutathione S-nitrosothiol; H

2
S, hydrogen sulfide; iNOS,  

inducible nitric oxide synthase; mtNOS, mitochondrial nitric 
oxide synthase; NO, nitric oxide; NOS, nitric oxide synthase;  
nNOS, neuronal nitric oxide synthase; sGC, soluble guanylate 
cyclase; VLCAD, very long-chain acyl-CoA dehydrogenase.
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