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Abstract: Background: Sleep and epilepsy are mutually related in a complex, bidirectional man-
ner. However, our understanding of this relationship remains unclear. 

Results: The literatures of the neurobiological basis of the interactions between sleep and epilepsy 
indicate that non rapid eye movement sleep and idiopathic generalized epilepsy share the same 
thalamocortical networks. Most of neurotransmitters and neuromodulators such as adenosine, mela-
tonin, prostaglandin D2, serotonin, and histamine are found to regulate the sleep-wake behavior and 
also considered to have antiepilepsy effects; antiepileptic drugs, in turn, also have effects on sleep. 
Furthermore, many drugs that regulate the sleep-wake cycle can also serve as potential antiseizure 
agents. The nonpharmacological management of epilepsy including ketogenic diet, epilepsy  
surgery, neurostimulation can also influence sleep.	  

Conclusion: In this paper, we address the issues involved in these phenomena and also discuss the 
various therapies used to modify them.	  
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1. INTRODUCTION	  

 Epilepsy is a phenomenon of recurring seizures that af-
fect many people around the world. It is a common neurolo-
gical disorder characterized by the abnormal synchronization 
of neurons. This abnormality leads to seizures, the hallmarks 
of which are neuronal hyperexcitability and hypersynchrony 
of neuronal networks. One third of epileptic patients have 
seizures during sleep [1]. On the other hand, sleep disorders 
include insomnia, hypersomnias, circadian rhythm disorders, 
obstructive sleep apnea (OSA), and other sleep-related  
disorders. All of these are more common among epileptic 
patients, with prevalence estimates ranging from 24% to 
55%. For example, insomnia is a common and important 
comorbidity in epilepsy; its severity adversely interacts with 
seizure control, and it has negative associations with quality 
of life [2]. Meanwhile, epilepsy affects sleep architecture, 
with qualitative and quantitative changes identified on poly-
somnographic studies in people with epilepsy [3, 4]. 
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 The intimate relationship between epilepsy and sleep has 
long been recognized, but many aspects remain obscure. 
Therefore further studies are needed to clarify this relation-
ship. In pursuit of this goal, we reviewed the neurobiological 
basis of the relationship between sleep and epilepsy as well 
as the relevant treatments.	  

2. THE NEUROBIOLOGICAL BASIS OF SLEEP AND 
EPILEPSY	  

2.1. Mechanisms Responsible for Sleep-Wake Regulation	  

 Sleep, often described as the normal loss of conscious-
ness, is a stage that reversibly disconnected with the envi-
ronment, which means perceptual disengagement from and 
unresponsiveness to the sleeper’s surroundings. Seemingly 
integrated, sleep in humans can be categorized into rapid eye 
movement (REM) and non-REM (NREM) sleep. Judging by 
the electroencephalogram (EEG), NREM sleep can be fur-
ther divided into 3 stages: stage 1 (N1), stage 2 (N2), and 
stage 3 (N3) [5, 6]. REM sleep is defined by REM, the total 
absence of muscle tone, and the ability to dream vividly. 
Studies have shown that the generalized synchronous activ-
ity in NREM sleep can affect muscle tone and therefore fa-
cilitate the stereotypic movements that characterize the ma-
jority of epileptic seizures. Conversely, REM sleep during 
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which the motor neurons are inhibited may block the move-
ments associated with seizures. 

 Since seizures tend to occur during NREM sleep, the 
following discussion is mainly about the mechanisms under-
lying NREM sleep. It is now known that there are two oppo-
site systems regulating vigilance states that is, the arousal 
system, which maintains arousal, and the sleep-promoting 
system, which initiates and maintains sleep. Although most 
neurons in the brain are less active during sleep than during 
wakefulness, the ventrolateral preoptic area (VLPO), located 
in the hypothalamus, remains active throughout the entire 
NREM sleep period [7]. A study conducted by Sherin et al. 
[8] using immunohistochemistry to determine the expression 
of c-Fos showed that the VLPO was specifically activated 
during sleep. Later, the same group [9], using both retro-
grade and anterograde tracing combined with immunohisto-
chemistry, demonstrated that the VLPO sent gamma-
aminobutyric acid (GABA)-ergic and galaninergic signals to 
all of the major nuclei that promote wakefulness, such as the 
tuberomammillary nucleus (TMN), dorsal and median raphe 
nuclei, and locus ceruleus (LC) [10, 11]. In addition, further 
studies revealed that the VLPO can also be inhibited by the 
arousal system [12, 13], pointing to the reciprocal relation-
ship between the VLPO and sleep-wake regulation [11]. 
Likewise, the median preoptic nucleus (MnPO) also acts as a 
sleep promoter [14]. These two nuclei, interacting with the 
arousal system, form the “flip-flop” model proposed by 
Saper and his coworkers [15]. The suprachiasmatic nucleus 
(SCN), known as the pacemaker in mammalian brains, is 
involved in sleep-wake regulation as well. Several lines of 
evidence show that lesions of the SCN cause a redistribution 
of sleep bouts evenly within a 24-hour cycle [16-22] and can 
increase total sleep time [22, 23]. Other studies have shown 
that vasoactive intestinal peptide–positive GABA-ergic neu-
rons in the core part of the SCN receive arousal-related sero-
tonergic inputs from the midbrain raphe [24-26]. The SCN 
also projects to the subparaventricular zone (sPVZ) and then 
to the dorsomedial hypothalamus (DMH), which is strongly 
connected with neurons both in the VLPO and wake-
prompting areas such as basal forebrain (BF), lateral hypo-
thalamus (LH), posterior hypothalamus (PH), and brain stem 
[25, 27]. Thus, as suggested by Mistlberger et al. [19], the 
function of the SCN in sleep regulation is more to counter 
the effects of circadian phases than simply to prompt sleep or 
wakefulness. 

 Moreover, neuromodulators also participate in regulating 
the sleep-wake cycle. For example, adenosine, linking en-
ergy metabolism with neuronal activity and sleep, accumu-
lates in the BF and cortex [28, 29] during prolonged wake-
fulness, and its nonselective antagonist caffeine prolongs 
wakefulness [30, 31]. The mechanism underlying this in-
volves the activation of both adenosine A1 and A2A receptors 
(A1Rs and A2ARs). Studies have shown that adenosine de-
creases neuronal activity and increases sleep by inhibiting 
wakefulness-promoting neurons [32, 33] and disinhibiting 
sleep-promoting neurons in the VLPO [34, 35]. Activation of 
A1R in the BF, laterodorsal tegmentum (LDT), LH, and pre-
frontal cortex results in sleep [33, 36-38]. The infusion of 
selective A2AR agonists to the subarachnoid space near the 
VLPO induced NREM sleep [39, 40] and increased the ex-

pression of c-Fos [41]. The homeostatic response after sleep 
deprivation was attenuated when the accumulation of ex-
tracellular adenosine was interfered [39]. Caffeine failed to 
induce wakefulness in the A2AR knockout mice [42]. Later, 
the A2ARs in the shell part of nucleus accumbens were found 
to be essential for the arousal effect of caffeine [43]. Prosta-
glandin D2 (PGD2), the most abundant prostanoid in the 
brain, also participates in the regulation of sleep. The length 
of sleep rose after the infusion of PGD2 into the third ventri-
cle or preoptic area of rats [44] or the third ventricle of non-
human primates [45] in a dose-dependent way; Sleep depri-
vation results in an increase in the concentration of PGD2 in 
cerebrospinal fluid [46, 47]. PGD2 is produced by either 
lipocalin-type PGD synthase (L-PGDS) or hematopoietic 
PGD synthase (H-PGDS) and interacts with the homeostasis 
system by linking with the DP1 receptor (DP1R) or chemoat-
tractant receptor CRTH2 (DP2R) [48]. It is now well estab-
lished that the system that regulates sleep is the L-
PDGS/PGD2/DP1R system [40, 49, 50]. Melatonin is another 
intriguing example. Its production is ruled by the SCN, yet 
there is a feedback mechanism that allows melatonin to act 
as an internal synchronizer [51]. Other main neurotransmit-
ters involving in the sleep-wake cycle are (a) noradrenalin, 
from neurons located in the LC, which plays a role in neural 
plasticity [52]; (b) serotonin, from neurons originating in the 
dorsal raphe, which can be activated by sensory information 
and stress [53]; (c) acetylcholine, which is abundant in both 
pontomesencephalic nuclei and the BF; (d) histamine, which 
lies in the TMN [54]; and (e) orexin/hypocretin, which is 
situated in LH and is important in the maintenance of wake-
fulness [55]. All the aforementioned waking nuclei secrete 
less neurotransmitter during NREM sleep, but unlike any 
other nuclei which secrete hardly any neurotransmitters dur-
ing REM sleep [7], cholinergic neurons in the BF secrete 
normally, as during wakefulness [56]. Furthermore, sensory 
stimuli also promote wakefulness. The underlying circuit, 
also referred to the reticular activating system (RAS), is 
made up of thalamic relay neurons, thalamic reticular neu-
rons, and cortex [7, 57]. The RAS not only serves as a switch 
between sleep and wakefulness [58, 59] but also generates 
slow-wave activity [60] and is responsible for gamma-band 
activity [61]. 

 In brief, wakefulness, which involves a high level of cor-
tical activity, is maintained by a complex and overlapping 
system involving in both circadian and homeostatic regula-
tors, as described above. When the transition from wakeful-
ness to sleep occurs, a chain of events is also initiated. Neu-
rons in VLPO and MnPO are disinhibited when adenosine 
accumulates during wakefulness; thus, they send inhibitory 
signals to wake-promoting nuclei, leading to the onset of 
sleep [11, 27, 57, 62]. 

2.2. Microstructures Within Sleep and Their Relation to 
Epilepsy	  

 With the developing of different EEG recording tech-
niques and other methodologies, the microstructures hidden 
beneath sleep stages have now been revealed. Sleep spindles 
and κ-complexes are 2 particularly distinctive components of 
the N2 stage in humans [63]. The main function of κ-
complexes is to protect sleep by suppressing cortical arousal 
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from external stimuli [64]. κ-complexes tend to be generated 
predominantly in the frontal parts of the brain [65] and then 
to be transferred to the thalamus, where sleep spindles rang-
ing from 7 to 15 Hz and delta waves are produced [64, 66]. 
To be specific, sleep spindles originate from the reticular 
GABA-ergic neurons and are then transferred to the cortex 
via glutamatergic neurons, generating synchronous activities 
that can be seen on the EEG [59, 60, 67-70]. The N3 is char-
acterized by slow waves and delta oscillations. The delta 
oscillations, ranging from 1 to 4 Hz, have both cortical [71] 
and thalamic [72] elements, although the thalamic level of 
their generation is better understood. At the thalamic level, 
the formation of delta oscillations, which seems to result 
from the same circuit that generates sleep spindles, actually 
utilizes the more hyperpolarized membrane potentials to 
initiate delta activity [63, 73]. Meanwhile the slow oscilla-
tions at frequencies below 1 Hz are generated exclusively in 
the cerebral cortex, which represents the synchronization of 
different cortical areas [74, 75]. The slow oscillations occur 
not only in N3 but also in other NREM sleep stages and thus 
function as connectors of the other EEG phenomena of 
NREM sleep [76, 77]. For instance, κ-complexes can be 
triggered by slow oscillations [78]. In fact, slow oscillations 
result from the “up” state, during which neurons are highly 
activated through depolarization, and the opposite “down” 
state, during which the cortical network is widely inhibited 
through hyperpolarization [57, 79, 80]. When it comes to 
estimating sleep intensity, slow oscillations and delta oscilla-
tions are often combined in slow-wave activity [81]. All the 
microstructures mentioned above actually reveal the interre-
lationships between cortical and thalamic structures within 
sleep [57]. In 1985, Terzano and his colleagues [82] found a 
periodic pattern within NREM sleep, representing the insta-
bility of sleep; this is described as a cyclic alternating pattern 
(CAP). During CAP, phases having more vigilance compo-
nents are regarded as phase A, which alternates with the 
lower vigilance phase B [83]. This kind of alternation sheds 
light on the balance between sleep- and wake-promoting 
systems [57]. 

 There is an intricate relationship between epilepsy and 
sleep [84, 85]. Like focal seizures [4, 86-88] and nocturnal 
frontal lobe epilepsy (NFLE), some seizures strike mainly 
during sleep [89-91] while others, as in the Landau-Kleffner 
syndrome, favor slow-wave sleep [57]. When seizures occur 
during the nocturnal period, in addition to a decrease in the 
duration of REM sleep and increase in REM sleep latency 
[4, 92, 93], sleep efficiency and total sleep time drop, caus-
ing sleep fragmentation [94]. Besides, seizures can also in-
terfere with the microstructures of sleep (e.g., CAPs and 
sleep spindles) [95, 96]. Moreover, several studies have 
shown that sleep deprivation acts as a trigger for seizures 
[97-103] by inducing NREM sleep afterwards and affecting 
cortical excitability [104]. Interictal spikes are abnormal dis-
charges due to the incongruous synchronization of focal neu-
ronal populations; they do not spread throughout the brain 
and thus cause no clinical symptoms [105, 106]. Recent 
studies focusing on generalized spike-wave discharges 
showed that they tended to occur during phase A of CAP and 
intensify with the progression of NREM sleep; they also 
altered morphologically during the latter sleep phase [104-
106]. In conclusion, epilepsy and sleep may share the same 

neurophysiological mechanism, which is worth further in-
vestigating. 

2.3. Mechanisms Responsible for the Interaction between 
Sleep and Epilepsy	  

 Because NREM sleep represents a synchronization of 
brain activities [1, 107], studies of the relationship between 
NREM sleep and epilepsy are essential. When data on 
NREM sleep are combined with functional neuroimaging, 
neurophysiologic, and clinical data, it becomes clear that 
NREM sleep and idiopathic generalized epilepsy (IGE) share 
the same thalamocortical networks [57]. Thus a shift to or 
induction of NREM sleep would cause the expression of 
IGE. The same mechanism may also account for the correla-
tion of sleep deprivation and seizures [101]. Spike-and-wave 
discharges (SWDs), characteristic of typical absence seizures 
at the EEG level, are seen in several types of IGE [57, 58]. 
Gloor et al. in 1978 raised the hypothesis that the same cir-
cuit generating sleep spindles might be responsible for 
SWDs, since SWDs seemed to favor light NREM sleep 
stages [108]. Several series of in vivo and in vitro experi-
ments have verified this hypothesis [109-111], which in-
volves, first, the inhibitory signal produced by thalamic re-
ticular neurons on thalamic relay cells and, second, the com-
plex thalamocortical circuitry built up with cortical pyrami-
dal and thalamic relays as well as thalamic reticular neurons 
[57, 112]. However, SWDs and sleep spindles can also be 
interpreted by the different degrees of GABA-ergic inhibi-
tion in the thalamus [113]. In this hypothesized working 
mode, the synchronization of neurons in the reticular nucleus 
and thalamocortical network depends on the degree of 
GABA-ergic inhibition. Therefore reduced inhibition would 
allow an increase in the degree of synchronization, which 
would cause sleep spindles to transit to thalamic oscillations 
and facilitate epileptiform discharges. In some cases, sei-
zures are actually related more to the instability of sleep than 
to increased synchronization because the onset stage of sei-
zures appears during phase A of CAP [114-116]. 

 Neuromodulators are also involved. Several studies 
showed that adenosine may contribute to the prevention of 
interictal spikes through the increased concentration of 
adenosine and the quantity of its receptors [117-120]. A re-
cent study conducted by Kaushik and his colleagues [121] 
using different types of knockout mice demonstrated that 
PGD2 produced by H-PGDS and acting on DP1R was essen-
tial for seizure suppression and that the sleep after seizures 
strike was mediated by the same system responsible for 
physiological sleep. Melatonin is also involved in epilepsy. 
Bazil et al. found that the low baseline of melatonin in-
creased remarkably after seizures in patients with intractable 
epilepsy [122]. Combined with other studies [123-125], 
these findings suggest that melatonin can relieve seizures 
either by improving sleep quality or through a more particu-
lar neuroprotective role. Other than adenosine and melatonin, 
serotonin and histamine, which promote wakefulness, are 
considered to have antiepilepsy effects [58]. However, 
orexin, which also promotes wakefulness, can induce sei-
zures, and its level is increased in models of epilepsy as well 
as in patients [126]. 



8    Current Neuropharmacology, 2018, Vol. 16, No. 1 Wang et al. 

 Seizures also interact with circadian rhythms. Several 
lines of evidence using different animal models show that 
the light-dark cycle can alter the effects of seizures on sleep 
[127] and that c-Fos expression in SCN decreases after sei-
zures [128]. In a recent study, Yi et al. [129] proposed the 
hypothesis suggesting that the central nucleus of the 
amygdala, lateral hypothalamic area, and SCN account for 
alterations in the period circadian clock 1 protein after sei-
zures. In addition, the seizure threshold was reduced in an 
ARNT-like protein 1 (BMAL1) knockout mouse, suggesting 
a role for BMAL1 in the regulation of seizures [130]. 

3. SLEEP AND ANTICONVULSANT THERAPY	  

3.1. Effects of Antiepilepsy Drugs (AEDs) on Sleep	  

 Because of the reciprocal relationship between sleep and 
epilepsy, it is not surprising that the treatment of epilepsy 
affects the sleep of patients with both generalized and partial 
epileptic seizures. Although the effects of AEDs on sleep 
architecture have been known for several decades, complica-
tions and the diversity of epileptic manifestations challenge 
us to clarify them. These effects may be different in partial 
and generalized seizure disorders, and they also vary accord-
ing to the different mechanisms of action of AEDs. 

 In view of the pathogenesis of epilepsy, most AEDs on 
the market target neurotransmission by acting on the ion 
channels (Na+, Ca2+, Cl-), GABA and glutamate receptors, or 
the process of release, inactivation, and reuptake of excita-
tory or inhibitory amino acids [131-134]. Generally, com-
pared with conventional AEDs that tend to disrupt sleep, 
newer AEDs can improve it or have no effect on it. How-
ever, this conclusion is limited by small study samples 
and/or studies of short duration. The multitarget AED val-
proic acid (VPA) has been reported to consistently disrupt 
sleep and impair the attention of patients by increasing N1 
sleep and decreasing slow-wave sleep (SWS) [135-137]. 
Carbamazepine (CBZ), which works as a blocker of the volt-
age-gated Na+ channel, has been found to improve sleep con-
tinuity and increase SWS in healthy subjects [138]. Another 
study has also reported a significant increase in the percent-
age of SWS after treatment with CBZ in patients with epi-
lepsy [139]. However, conflicting studies reported that CBZ 
did not influence the sleep of patients with epilepsy or dis-
turbed it by increasing wake/sleep fragmentation, thus di-
minishing both SWS and REM sleep. Some researchers 
thought that these are merely initial effects that can be re-
versed by chronic treatment [135, 136, 140, 141]. A similar 
agent is phenytoin (PHT), an AED that falls into the same 
group as CBZ. PHT increased sleep latency and N1 sleep 
while also decreasing SWS and total sleep time [135, 136]. 
However, others claimed that patients treated with PHT 
showed a shorter sleep latency, decreased light sleep, and 
increased deep sleep [137, 142, 143]. In one study, this effect 
was also reported to be reversed with continuing therapy 
[143]. 

 In contrast, newer AEDs, such as lamotrigine (LTG), 
have been reported to produce positive effects on the sleep of 
patients with epilepsy and to improve sleep stability [144, 
145]. Another advantage is that LTG, like topiramate (TPM), 
does not impair patients’ vigilance or cognitive function, nor 

does it cause daytime somnolence [144-147]. Zonisamide 
(ZNS), as a new AED or add-on therapy in focal epilepsy, 
has been reported to have no effect on nighttime sleep or to 
cause daytime somnolence [148]. These effects may be re-
lated to these drugs’ multiple mechanisms of action, which 
influence both sleep and epilepsy. An exception was 
levetiracetam (LEV), a medication that binds to synaptic 
vesicle protein 2A. Its effect on sleep has been reported to be 
inconsistent. One study showed that LEV increased sleep 
efficiency without affecting sleep structure [139]; another 
demonstrated that it did not affect sleep time and efficiency 
during the night [149]. In more tests, however, LEV was 
reported to disrupt sleep, causing an increase in N2 sleep and 
a decrease in total sleep time, deep NREM sleep, and REM 
sleep [150, 151]. Most studies pointed to the possibility of 
daytime drowsiness [152].	  

 Some AEDs are sedating agents in themselves and are 
also used as hypnotics or analgesics; these include the 
GABAA modulator phenobarbitone (PB) as well as the  
L-type Ca2+-channel binding agents gabapentin (GBP) and 
pregabalin (PGN). They were expected to improve sleep in 
both healthy volunteers and patients by increasing SWS and 
REM sleep as well as reducing sleep latency, awakenings, 
and N1 sleep [136, 137, 142, 153-159]. Unlike the old AED 
PB which tends to cause daytime sleepiness as well as  
having negative effects on attention, psychomotor speed, 
mood, and cognition [137, 154, 158] PGN, which is newer, 
has been reported to improve attention in patients with  
partial epilepsy [156].	  

3.2. Drugs That Regulate the Sleep-Wake Cycle as Poten-
tial Antiseizure Agents	  

 The beneficial effect of melatonin on sleep disorders has 
yet to be confirmed. Known as a sleep-wake-regulating drug 
for some types of insomnia and jet-lag syndrome [160], 
melatonin is also being considered as a potential antiepilepsy 
agent [161] since it could possibly modulate the electrical 
activity of neurons by influencing glutamatergic and GABA-
ergic neurotransmission [160]. The anticonvulsant activity of 
melatonin had been observed in both animal models and 
patients, especially children and juveniles with intractable 
epilepsy [160, 162-165], producing not only a significant 
improvement of patients’ sleep-related phenomena but also a 
reduction in seizure severity. Additional benefits have in-
cluded improved physical, emotional, cognitive, and social 
function [160]. However, negative effects have also been 
noted, including EEG abnormalities in patents with temporal 
lobe epilepsy and increased seizure activity in neurologically 
disabled children [160]. After discussing 26 papers reporting 
an association between melatonin and epilepsy or seizures, a 
recent review suggests that in view of conflicting results 
from earlier work, more large-scale, double-blind, random-
ized, placebo-controlled clinical trials were needed [166].	  

 Another agent is beprodon (BPD), an agonist of mela-
tonin receptors [167, 168]. It is the first drug of this type to 
be evaluated for anticonvulsant and neuroprotective proper-
ties. There have been 2 reported phase II double-blind stud-
ies in patients with refractory focal epilepsy, but the results 
are not yet available [167]. 
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 Pitolisant, as an inverse agonist of the histamine H3 re-
ceptor to block H3 autoreceptors, is the first drug of this type 
used in clinics to treat refractory diurnal sleepiness in pa-
tients with narcolepsy, Parkinson’s disease, or sleep ob-
structed by apnea/hypopnea [169, 170]. It has also recently 
been explored as an antiseizure drug medication. In one trial, 
after being given to 14 photosensitive adults showing gener-
alized photoparoxysmal responses (4 of whom had myoclo-
nic jerks), pitolisant significantly suppressed the subjects’ 
generalized epileptiform discharges for 4 hours, with com-
plete abolition in 6 patients [171]. 

 There have been similar reports for other drugs. As a 
potent and long-lasting wake-promoting substance, mo-
dafinil is used in patients with excessive sleepiness for ex-
ample, narcolepsy. This drug is remarkable for its low poten-
tial for dependence, abuse, and/or withdrawal symptoms 
[172]. Today this agent is also being investigated for its po-
tential to exert antiepilepsy effects via adrenergic α1 and 
histaminergic H1 receptors [172]. In addition, magnolol, one 
of extracts and major bioactive constituents of Magnolia 
dealbata, is used in Chinese traditional medicine as a tran-
quilizer to treat epilepsy [173]. Its impact on sleep has re-
cently been discovered, including a shortening of sleep la-
tency and increases in the amounts of NREM and REM sleep 
[174]. Both of antiepilepsy and sleep-promoting effects are 
mediated by the GABAA/benzodiazepine receptor complex, 
which offers us another insight into the close relationship 
between sleep and epilepsy [173, 174]. 

3.3. Nonpharmacological Management of Epilepsy	  

 Despite the development of a growing number of AEDs 
serving as the primary treatment modalities, there are still 
about 20% to 40% of patients with newly diagnosed epilepsy 
who become refractory [175]. In contrast, nonpharmacologi-
cal management of epilepsy sometimes has unexpected ef-
fects. These treatments can be divided into several catego-
ries, including the ketogenic diet and its modifications, epi-
lepsy surgery, neurostimulation (vagus nerve stimulation, 
deep brain stimulation, responsive cortical neurostimulation, 
and transcranial magnetic stimulation) [176, 177]. 

3.3.1. The Ketogenic Diet and Its Modification	  

 The classic ketogenic diet (KD), also called the long-
chain triglyceride diet, includes a high ratio of fat (80%), 
adequate protein (15%), and low carbohydrates (5%). It has 
been used as a treatment for intractable childhood epilepsy 
since the 1920s [178]. Because of the restrictive role and 
diverse side effects of AEDs, the KD remerged in the late 
20th century and came into more common use over the last 2 
decades. Many studies in children with refractory seizures 
point to KD as a significant anticonvulsant alternative [179-
181]. It has also been modified in terms of the ratio of fat 
components and the initiation of the diet with or without fast 
to facilitate its tolerability and expand its use. Such modifi-
cations include the medium-chain triglyceride diet, modified 
Atkins diet, low-glycemic-index treatment, and so on [178, 
182]. 

 Sleep structure during KD treatment was evaluated in 18 
children with therapy-resistant epilepsy [183, 184], showing 
a significant decrease in total sleep, daytime sleep, and 

nighttime sleep and an increase in REM sleep. SWS re-
mained intact. A correlation between increased REM sleep 
and quality of life was also found. However, another similar 
study reported partially conflicting results, finding a reduc-
tion in N2 sleep and REM sleep after 3 months of KD treat-
ment [185].	  

3.3.2. Epilepsy Surgery	  

 Surgery is an option for patients with medically intracta-
ble epilepsy. A careful evaluation should be performed to 
exclude nonepileptic events before the surgery [159]. Be-
cause recurrent seizures can harm the brain, early surgical 
intervention is now recommended for patients with well-
defined focal seizures, especially for children with focal  
epilepsies and adults with temporal lobe epilepsy [176]. 
While moderating or eliminating the manifestations of sei-
zures, successful epilepsy surgery can also improve sleep 
quality, sleep architecture, and obstructive sleep apnea with 
reducing excessive day time sleepiness in patients with focal 
epilepsy [161]. Improvements in sleep architecture (such as 
increased total sleep and REM sleep) caused by surgical 
treatment may be related to a reduction in the number of 
seizures and interictal epileptiform abnormalities [186]. Us-
ing questionnaires (Epworth Sleepiness Scale [ESS] and 
Pittsburgh Sleep Quality Index, [PSQI]) to assess daytime 
sleepiness and sleep quality, one study found that surgery 
significantly improved subjective sleep conditions in patients 
with partial recurrent seizures of temporal origin. This effect 
was not correlated with gender, AED class, age, or seizure 
frequency [187].	  

3.3.3. Neurostimulation 

 Neurostimulation is always the third line of adjunctive 
antiepilepsy treatment for patients with refractory partial 
epilepsy; it has been shown to influence a pathological sub-
strate and to achieve a therapeutic effect by sending electri-
cal or magnetic pulses to brain and nerve tissues directly or 
indirectly [176, 188, 189]. 

3.3.3.1. Vagus Nerve Stimulation	  

 VNS is the oldest and most frequently used neurostimu-
latory modality [188, 189]. It was approved in Europe in 
1994 and in the United States in 1997 [168, 177]. A stimula-
tor that can send electrical impulses to the vagus nerve is 
implanted in the left cervical region. Besides its antiepilepsy 
effects [190, 191], the influence of VNS on sleep has also 
been studied in many other experiments. It has been reported 
that VNS at low stimulus intensities can reduce daytime 
sleepiness and promote daytime vigilance in patients with 
epilepsy and that it therefore can have a positive effect on 
their quality of life [192, 193]. In nighttime sleep, VNS in 
children induced a significant increase in SWS and a de-
crease in sleep latency and N1 sleep [194]. In spite of these 
positive effects, many negative respiratory effects were also 
noted, such as hoarseness, dyspnea, and laryngeal irritation 
due to autonomic nervous system dysfunction [195]. Accord-
ing to some studies, it was common for this modality to af-
fect respiration during sleep and even to cause a severe noc-
turnal OSA or respiratory sinus arrhythmia, especially in 
children or patients with preexisting OSA [195-199]. In turn, 
it also altered patients’ brain function for the worse. A trial 
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of continuous positive airway pressure might resolve this 
issue [196].	  

3.3.3.2. Deep Brain Stimulation (DBS)	  

 DBS is an intracranial technique that places electrodes 
stereotactically into specific nuclei or regions of the brain 
and sends electrical stimuli directly to crucial brain struc-
tures or epileptogenic foci [186]. It is a mainstream therapy 
for several movement disorders and neuropsychiatric condi-
tions, and today DBS is playing an increasing role in refrac-
tory epilepsy [200]. Various neural targets have been inves-
tigated in numerous clinical and animal studies involving the 
cerebellum, brain stem, reticular activating system, hypo-
thalamus, thalamic basal ganglia, basal forebrain, limbic 
system, and so on. The feasibility, benefits, and pitfalls of 
such therapy vary with the targets of DBS [201-204]. One 
study reported that epilepsy patients undergoing DBS di-
rected to the anterior nuclear thalami experienced signifi-
cantly more electroclinical arousals during the stimulation 
periods. Moreover, the number of arousals correlated posi-
tively with the level of DBS voltage [205]. 

3.3.3.3. Responsive Cortical Neurostimulation and Tran-
scranial Magnetic Stimulation	  

 Unlike the classic VNS and DBS systems, which are 
open-loop systems (stimulation independent of seizure activ-
ity), RNS is a closed-loop system, which means that the elec-
trical stimulus is delivered directly to the seizure focus in 
response to seizure activity [176, 200]. The U.S. Food and 
Drug Administration has recently approved it as a treatment 
for epilepsy that is resistant to medical intervention [177]. 

 As a noninvasive brain stimulation technique, TMS is 
relatively inexpensive and safe. Targets vary from cerebel-
lum, thalamus, and basal ganglia to vagal nerve and epilep-
togenic focus. The antiepilepsy effect of TMS has been ap-
proved in some studies [206, 207], but current research is 
insufficient to establish TMS as a treatment modality for 
epilepsy [161].	  

 As to the treatment of disordered sleep, thus far there are 
no data regarding the influence of RNS and TMS on sleep in 
patients with epilepsy.	  

CONCLUSION	  

 Although current studies have confirmed a strong relati-
onship between sleep and epilepsy, the roles of both require 
further elucidation, in particular to clarify the psychiatric 
consequences of these disorders and their treatment.	  
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