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Abstract

Motivation: Many problems of interest in dynamic modeling and control of biological systems can

be posed as non-linear optimization problems subject to algebraic and dynamic constraints. In the

context of modeling, this is the case of, e.g. parameter estimation, optimal experimental design

and dynamic flux balance analysis. In the context of control, model-based metabolic engineering

or drug dose optimization problems can be formulated as (multi-objective) optimal control prob-

lems. Finding a solution to those problems is a very challenging task which requires advanced nu-

merical methods.

Results: This work presents the AMIGO2 toolbox: the first multiplatform software tool that automa-

tizes the solution of all those problems, offering a suite of state-of-the-art (multi-objective) global

optimizers and advanced simulation approaches.

Availability and Implementation: The toolbox and its documentation are available at: sites.google.

com/site/amigo2toolbox.

Contact: ebalsa@iim.csic.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Optimization is at the core of many problems related to the model-

ing and design of biological systems (Banga, 2008). For example,

model parametric identification involves two types of optimization

problems (Balsa-Canto et al., 2010): parameter estimation, to com-

pute unknown parameters by data fitting and optimal experimental

design, to design the best experimental dynamic scheme for model

identification.

The organization and behavior of biological systems can also be

described based on optimality principles. This is the case in, e.g. (dy-

namic) flux balance analysis (Kauffman et al., 2003) or in the ana-

lysis of activation of metabolic pathways (Klipp et al., 2002). In this

context, model-based dynamic optimization aims the computation

of time-varying fluxes or enzyme concentrations and expression

rates that minimize (or maximize) a given objective function (bio-

mass production) or the best trade-off between various objectives

(de Hijas-Liste et al., 2014).

Models can be used to confirm hypotheses, to draw predic-

tions and to find those (time varying) stimulation conditions

that result in a particular desired behavior via (multi-objective)

optimal control. This is the case in, e.g. model-based metabolic

engineering (Villaverde et al., 2016), pattern formation (Vilas

et al., 2012) or drug dose optimization (Jayachandran et al.,

2015).

All these problems can be stated as—or transformed to—(multi-

objective) non-linear programming problems with algebraic and dy-

namic constraints. Their solution requires the combination of the

control vector parameterization approach, a simulation method and

a global optimizer.

AMIGO2 is the first multi-platform (MATLAB-based) environ-

ment that automatizes the solution of all these problems (see Fig. 1

and Supplementary Tables S1 and S2). It fully covers the iterative

identification of dynamic models, it allows using optimality prin-

ciples for predicting biological behavior and it deals with the
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optimal control of biological systems using constrained multi-

objective dynamic optimization.

2 Summary of features

2.1 Models
The tool supports general non-linear deterministic dynamic models

and black-box simulators, dealing with ordinary, partial or delay

differential equations. Biological networks can be visualized linking

to Cytoscape (Shannon et al., 2003).

2.2 Experimental scheme and data
Users can define multi-experiment schemes with maximum flexibil-

ity and several types of Gaussian experimental noise with known or

unknown observable dependent variance.

2.3 Parameter estimation with regularization
It is possible to estimate parameters and initial conditions which

may depend on the experiment using weighted least squares or log-

likelihood functions. Ill-conditioned problems can be handled using

Tikhonov regularization. Users may fix the regularization parameter

or let the tool to automatically compute the most appropriate using

the L-shaped Pareto curve (G�abor and Banga, 2015).

2.4 Identifiability and best fit post-analysis
The tool offers various methods to analyze model identifiability: (i)

local and global parametric sensitivities; (ii) the Fisher Information

Matrix for an asymptotic analysis; (iii) cost contour plots and (iv) a

robust Monte-Carlo sampling approach. Results can be used to de-

fine and solve optimal experimental design problems aimed at im-

proving identifiability. Besides, the validity of models along with the

significance and determinability of their parameters are assessed

using the v2 goodness of fit and Pearsons v2 tests, the autocorrel-

ation of residuals, and the Akaike and Bayesian information criteria.

2.5 Optimal experimental design
To improve identifiability, users may automatically design simultan-

eous or sequential experiments optimizing observables, initial and

stimulation conditions, number and location of sampling times and

experiment durations. The tool allows for different design objectives

and experimental error descriptions.

2.6 (Multi-objective) Optimal control
AMIGO2 solves optimal control problems with flexibility in the ob-

jective functional, stimuli interpolation, and path and point con-

straints. The aim is to find time varying stimulation conditions to

maximize or minimize a given objective related to cell performance

or to a desired behavior. The control vector parameterization

method with mesh refining allow the efficient solution for smooth

control profiles. Pareto fronts with best trade-offs for multi-

objective cases can be obtained with the weighted sum method, the

�-constraint approach or the multi-objective genetic algorithm

NSGA-II (Deb et al., 2002).

2.7 C based enhancements
The tool generates C code to offer the following modes of operation:

(i) C based simulation, compatible with all tasks; (ii) C based cost

function and (iii) stand-alone C code for parameter estimation.

2.8 Numerical methods
AMIGO2 incorporates the MATLAB-based initial value problem

solvers as well as CVODES (Hindmarsh et al., 2005) to cover stiff,

non-stiff and sparse dynamic systems. Parametric sensitivities can be

computed by either direct methods or various finite differences

schemes. Also, exact Jacobians can be obtained using symbolic ma-

nipulation. Regarding the optimizers, AMIGO2 interfaces to a suite

of state-of-the-art solvers to cover constrained convex and non-

convex, multi-objective non-linear optimization problems. Users can

also test their optimizers within the toolbox.

2.9 Documentation
Descriptions of tool underlying theory, numerical methods, and usage

are provided on the web page. Users can access HTML documenta-

tion from the MATLAB Help menu. Step by step examples illustrate

the usage of the tool and serve as templates for new problems.
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for the AMIGO2 logo design.

Funding

EU FP7 project NICHE [ITN grant number 289384], Spanish MINECO/

FEDER projects IMPROWINE [grant number AGL2015-67504-C3-2-R] and

SYNBIOFACTORY [DPI2014-55276-C5-2-R].

Experimental data/
noise
Network display

Biological system

Model simulation  
Black-box model
Pseudo-data generation

Model calibration  
Parameter estimation
Regularization, constraints
Post- analysis

and predictions
Correlation

Optimal  
experiments

Sensitivity
analysis
Local & Global
Rank of parameters

(MO) Optimization 
based modeling
DFBA, Enzyme activation

What, when and
how to measure

(MO) Optimal control
Metabolic engineering,
Stimulation design,  
Drug dosage design, etc.

SModel,SObs 
SData

ShowNetwork

LRank
GRank

 PE, REG_PE
PEPostAnalysis

PE, RIdent
ContourP

OED

DO

DO

Fig. 1. AMIGO2 features and tasks (Color version of this figure is available at Bioinformatics online.)
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