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Abstract

Motivation: Many problems of interest in dynamic modeling and control of biological systems can
be posed as non-linear optimization problems subject to algebraic and dynamic constraints. In the
context of modeling, this is the case of, e.g. parameter estimation, optimal experimental design
and dynamic flux balance analysis. In the context of control, model-based metabolic engineering
or drug dose optimization problems can be formulated as (multi-objective) optimal control prob-
lems. Finding a solution to those problems is a very challenging task which requires advanced nu-

merical methods.

Results: This work presents the AMIGO2 toolbox: the first multiplatform software tool that automa-
tizes the solution of all those problems, offering a suite of state-of-the-art (multi-objective) global

optimizers and advanced simulation approaches.

Availability and Implementation: The toolbox and its documentation are available at: sites.google.

com/site/amigo2toolbox.
Contact: ebalsa@iim.csic.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Optimization is at the core of many problems related to the model-
ing and design of biological systems (Banga, 2008). For example,
model parametric identification involves two types of optimization
problems (Balsa-Canto et al., 2010): parameter estimation, to com-
pute unknown parameters by data fitting and optimal experimental
design, to design the best experimental dynamic scheme for model
identification.

The organization and behavior of biological systems can also be
described based on optimality principles. This is the case in, e.g. (dy-
namic) flux balance analysis (Kauffman et al., 2003) or in the ana-
lysis of activation of metabolic pathways (Klipp et al., 2002). In this
context, model-based dynamic optimization aims the computation
of time-varying fluxes or enzyme concentrations and expression
rates that minimize (or maximize) a given objective function (bio-
mass production) or the best trade-off between various objectives
(de Hijas-Liste et al., 2014).

©The Author 2016. Published by Oxford University Press.

Models can be used to confirm hypotheses, to draw predic-
tions and to find those (time varying) stimulation conditions
that result in a particular desired behavior via (multi-objective)
optimal control. This is the case in, e.g. model-based metabolic
engineering (Villaverde et al., 2016), pattern formation (Vilas
et al., 2012) or drug dose optimization (Jayachandran et al.,
2015).

All these problems can be stated as—or transformed to—(multi-
objective) non-linear programming problems with algebraic and dy-
namic constraints. Their solution requires the combination of the
control vector parameterization approach, a simulation method and
a global optimizer.

AMIGO?2 is the first multi-platform (MATLAB-based) environ-
ment that automatizes the solution of all these problems (see Fig. 1
and Supplementary Tables S1 and S2). It fully covers the iterative
identification of dynamic models, it allows using optimality prin-
ciples for predicting biological behavior and it deals with the
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Fig. 1. AMIGO2 features and tasks (Color version of this figure is available at Bioinformatics online.)

optimal control of biological systems using constrained multi-

objective dynamic optimization.

2 Summary of features
2.1 Models

The tool supports general non-linear deterministic dynamic models
and black-box simulators, dealing with ordinary, partial or delay
differential equations. Biological networks can be visualized linking
to Cytoscape (Shannon et al., 2003).

2.2 Experimental scheme and data
Users can define multi-experiment schemes with maximum flexibil-
ity and several types of Gaussian experimental noise with known or
unknown observable dependent variance.

2.3 Parameter estimation with regularization

It is possible to estimate parameters and initial conditions which
may depend on the experiment using weighted least squares or log-
likelihood functions. Ill-conditioned problems can be handled using
Tikhonov regularization. Users may fix the regularization parameter
or let the tool to automatically compute the most appropriate using
the L-shaped Pareto curve (Gdbor and Banga, 2015).

2.4 |dentifiability and best fit post-analysis

The tool offers various methods to analyze model identifiability: (i)
local and global parametric sensitivities; (ii) the Fisher Information
Matrix for an asymptotic analysis; (iii) cost contour plots and (iv) a
robust Monte-Carlo sampling approach. Results can be used to de-
fine and solve optimal experimental design problems aimed at im-
proving identifiability. Besides, the validity of models along with the
significance and determinability of their parameters are assessed
using the #* goodness of fit and Pearsons y* tests, the autocorrel-
ation of residuals, and the Akaike and Bayesian information criteria.

2.5 Optimal experimental design

To improve identifiability, users may automatically design simultan-
eous or sequential experiments optimizing observables, initial and
stimulation conditions, number and location of sampling times and
experiment durations. The tool allows for different design objectives

and experimental error descriptions.

2.6 (Multi-objective) Optimal control

AMIGO?2 solves optimal control problems with flexibility in the ob-
jective functional, stimuli interpolation, and path and point con-
straints. The aim is to find time varying stimulation conditions to
maximize or minimize a given objective related to cell performance
or to a desired behavior. The control vector parameterization
method with mesh refining allow the efficient solution for smooth
control profiles. Pareto fronts with best trade-offs for multi-
objective cases can be obtained with the weighted sum method, the
e-constraint approach or the multi-objective genetic algorithm
NSGA-II (Deb et al., 2002).

2.7 C based enhancements

The tool generates C code to offer the following modes of operation:
(i) C based simulation, compatible with all tasks; (ii) C based cost
function and (iii) stand-alone C code for parameter estimation.

2.8 Numerical methods

AMIGO?2 incorporates the MATLAB-based initial value problem
solvers as well as CVODES (Hindmarsh et al., 2005) to cover stiff,
non-stiff and sparse dynamic systems. Parametric sensitivities can be
computed by either direct methods or various finite differences
schemes. Also, exact Jacobians can be obtained using symbolic ma-
nipulation. Regarding the optimizers, AMIGO?2 interfaces to a suite
of state-of-the-art solvers to cover constrained convex and non-
convex, multi-objective non-linear optimization problems. Users can
also test their optimizers within the toolbox.

2.9 Documentation

Descriptions of tool underlying theory, numerical methods, and usage
are provided on the web page. Users can access HTML documenta-
tion from the MATLAB Help menu. Step by step examples illustrate
the usage of the tool and serve as templates for new problems.
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