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Inactivation of Cgl0062, a cis-3-Chloroacrylic Acid Dehalogenase Homologue in
Corynebacterium glutamicum, by (R)- and (S)-Oxirane-2-carboxylate: Analysis and

Implications’
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ABSTRACT: (R)- and (S)-oxirane-2-carboxylate were determined to be active site-directed irreversible
inhibitors of the cis-3-chloroacrylic acid dehalogenase (cis-CaaD) homologue Cgl10062 found in
Corynebacterium glutamicum. Kinetic analysis indicates that the (R) enantiomer binds more tightly and
is the more potent inhibitor, likely reflecting more favorable interactions with active site residues. Pro-1
is the sole site of covalent modification by the (R) and (S) enantiomers. Pro-1, Arg-70, Arg-73, and Glu-
114, previously identified as catalytic residues in Cg10062, have also been implicated in the inactivation
mechanism. Pro-1, Arg-70, and Arg-73 are essential residues for the process as indicated by the observation
that the enzymes with the corresponding alanine mutations are not covalently modified by either enantiomer.
The E114Q mutant slows covalent modification of Cgl0062 but does not prevent it. The results are
comparable to those found for the irreversible inactivation of cis-CaaD by (R)-oxirane-2-carboxylate with
two important distinctions: the alkylation of cis-CaaD is stereospecific, and Glu-114 does not take part in
the cis-CaaD inactivation mechanism. Cgl0062 exhibits low-level cis-CaaD and trans-3-chloroacrylic
acid dehalogenase (CaaD) activities, with the cis-CaaD activity predominating. Hence, the preference of
Cg10062 for the cis isomer correlates with the observation that the (R) enantiomer is the more potent
inactivator. Moreover, the factors responsible for the relaxed substrate specificity of Cg10062 may account
for the stereoselective inactivation by the enantiomeric epoxides. Delineation of these factors would provide
a more complete picture of the substrate specificity determinants for cis-CaaD. This study represents an
important step toward this goal by setting the stage for a crystallographic analysis of inactivated Cg10062.

Cg10062 is a cis-3-chloroacrylic acid dehalogenase (cis-
CaaD)' homologue (~34% identical in sequence with cis-
CaaD) found in Corynebacterium glutamicum (1). The
physiological role and reaction of Cgl10062 are unknown,
and the gene has no clear genomic context. In contrast, cis-
CaaD catalyzes the conversion of cis-3-chloroacrylic acid
(2, Scheme 1) to malonate semialdehyde (4), which is one
reaction in a catabolic pathway for the nematocide 1,3-
dichloropropene (1) in coryneform bacterial strain FG41 (2, 3).
An enzyme-catalyzed decarboxylation of 4 completes the
overall transformation of 1 to acetaldehyde (5). cis-CaaD
and its counterpart in Pseudomonas pavonaceae 170, trans-
3-chloroacrylic acid dehalogenase (CaaD), which processes
3 to 4, are highly specific for their substrates (4, 5).

Both Cg10062 and cis-CaaD are trimers composed of 149-
amino acid monomers, and a sequence comparison shows
that six key catalytic residues (Pro-1, His-28, Arg-70, Arg-
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73, Tyr-103, and Glu-114) in cis-CaaD are present in
Cgl0062 (1, 6, 7). In the proposed cis-CaaD mechanism,
Glu-114 and Tyr-103 activate a water molecule for addition
to C-3 of 2 (1, 7). His-28, Arg-70, and Arg-73 interact with
the C-1 carboxylate group to bind and “activate” the substrate
for the conjugate addition of water (/, 7). Pro-1 provides a
proton to C-2, which completes the reaction and yields 4.

Cg10062 and cis-CaaD are found in the same family in
the tautomerase superfamily, the members of which are
distinguished by a f—a—/f building block and a catalytic
Pro-1 (1, 7). Despite the presence of the key catalytic groups
and the high degree of amino acid sequence similarity with
cis-CaaD, Cg10062 is a poor cis-CaaD. It has a much lower
catalytic efficiency, and it does not display absolute specific-
ity for the cis isomer (6). These observations suggest that a
fully functional cis-CaaD requires features beyond those
already identified, and Cg10062 could be representative of
the type of intermediate template that gave rise to cis-CaaD
(6).

As part of an effort to determine a structural basis for the
differences between the two enzymes, we examined (R)- and
(8)-oxirane-2-carboxylate (6) as potential irreversible inhibi-
tors of Cg10062. We have previously reported that cis-CaaD
is irreversibly inactivated by (R)-6, due to the covalent
modification of Pro-1 (8). The (S) enantiomer is not an
irreversible inhibitor, and neither enantiomer inactivates
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CaaD. In accord with the relaxed substrate specificity and
preference for 2, we find that Cgl0062 is irreversibly
inactivated by both enantiomers, with the (R) enantiomer
being more potent. Inactivation is due to covalent modifica-
tion of Pro-1. Pro-1, Arg-70, and Arg-73 are essential for
the inactivation of Cgl0062, whereas Glu-114 may play a
role but not an essential one. These observations parallel
those found for cis-CaaD, but the lack of stereospecificity
and the participation of Glu-114 distinguish the inactivation
mechanism for Cg10062 from that of cis-CaaD. Hence, the
inactivation mechanisms could be similar but may result from
different orientations in the active site. These results provide
the necessary foundation for a crystallographic analysis of
Cg10062 inactivated by (R)- and (5)-6 so that these orienta-
tions can be determined.
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MATERIALS AND METHODS

Materials. All reagents, buffers, and solvents were ob-
tained from Sigma Aldrich Chemical Co. (St. Louis, MO),
Fisher Scientific Inc. (Pittsburgh, PA), Spectrum Laboratory
Products, Inc. (New Brunswick, NJ), or EM Science
(Cincinnati, OH), unless noted otherwise. Literature proce-
dures were used for the syntheses of (R)- and (5)-6 (9) and
2-ox0-3-pentynoate (7) (10). cis-CaaD, malonate semialde-
hyde decarboxylase (MSAD), Cgl10062, and the Cg10062
mutants (P1A, R70A, R73A, and E114Q) (6) were purified
to homogeneity, as assessed by sodium dodecyl sulfate—
polyacrylamide gel electrophoresis (SDS—PAGE), according
to published procedures (/, 6, I). The construction and
characterization of the Cg10062 mutants are reported else-
where (6). Prepacked PD-10 Sephadex G-25 columns were
purchased from Biosciences AB (Uppsala, Sweden). En-
doproteinase Glu-C (protease V-8) was obtained from F.
Hoffmann-La Roche, Ltd. (Basel, Switzerland).

General Methods. Protein was analyzed by SDS—PAGE
under denaturing conditions on gels containing 15% poly-
acrylamide (/2). The gels were stained with Coomassie
brilliant blue. Protein concentrations were determined by the
method of Waddell (/3). Kinetic data were obtained on a
Hewlett-Packard 8452A diode array spectrophotometer or
an Agilent 8453 UV —visible spectrophotometer. The kinetic
data were fitted by nonlinear regression data analysis using
Grafit (Erithacus Software Ltd., Horley, U.K.) obtained from
Sigma Chemical Co. Cgl10062 activity was determined by
following the absorbance increase at 296 nm (¢ = 7000 M~!
cm™ ), which corresponds to formation of acetopyruvate (8)
by the Cg10062-catalyzed hydration of 7 (/, 5, 6). Typically,
Cg10062 preparations used in these studies have a Ky, of
42 4+ 0.3 mM and a ke, of 0.16 & 0.01 s~! using 7. cis-
CaaD activity was measured by following the absorbance
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decrease at 224 nm (¢ = 2900 M~! cm™!), as described
elsewhere (/). Mass spectral analyses were carried out using
the indicated instruments, which are housed in the Analytical
Instrumentation Facility Core in the College of Pharmacy at
The University of Texas.
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Irreversible Inhibition of Cg10062 by (R)- and (S)-6. The
time-dependent inactivation of Cgl0062 by (R)- and (5)-6
was characterized using a previously described protocol (8),
with the following modifications. Varying concentrations of
(R)-6 (0.99—33.0 mM) or (5)-6 (4.8—56.5 mM) were
incubated with the enzyme in 20 mM Na,HPO, buffer (pH
9.0) at 22 °C. The initial incubation mixtures (total volume
of 110 uL) were made up in 1.5 mL Eppendorf micro test
tubes and contained 100 M Cg10062 (based on a monomer
concentration). Aliquots (10 4L) from these mixtures were
removed at various time intervals, diluted into 1 mL of 20
mM Na,HPO, buffer (pH 9.0), and assayed for residual
activity using 7. Assays were initiated by the addition of 7
(4 uL from a 365 mM stock solution) to give a final
concentration of 1.5 mM for 7 in all experiments. Stock
solutions of 7 were made up in 100 mM Na,HPO, buffer
(pH ~9), and the pH was slowly adjusted to 7.3 via the
addition of 2 uL aliquots of a 1 M NaOH solution. Stock
solutions (100 mM) of (R)- or (S)-6 were made up in 100
mM NaH,PO, buffer (pH 7.3). For experiments using the
(R) enantiomer, rates were monitored for 120 s, and for
experiments using the (S) enantiomer, rates were monitored
for 200 s. The initial time point (t = 0) corresponded to the
rate measured for an aliquot removed before the addition of
(R)- or (5)-6. This activity was defined as 100% activity.
The addition of inhibitor [1—50 uL for (R)-6 and 5—130
uL for (S)-6] diluted the enzyme so that the final enzyme
concentration ranged from 67 to 99 uM for the (R) enanti-
omer and from 44 to 95 uM for the (S) enantiomer. Hence,
for each aliquot removed, the observed rate was divided by
the enzyme concentration (in the assay mixture) and the
resulting rate was divided by that obtained for 100% activity.
The kops values were plotted against the initial inhibitor
concentrations, and the kinetic parameters (K and kiya) Were
determined as described elsewhere (/4, 15).

Protection of Cgl10062 from Inactivation by (R)- and (S)-
6. The incubation mixtures for the substrate protection studies
were made up as described above and elsewhere (§), with
the following modifications. Accordingly, Cg10062 (100 uM
based on a monomer concentration) was incubated with
varying concentrations of 7 (0—5.25 mM) in 20 mM
NaH,PO, buffer (pH 7.3) at 22 °C. After a 30 s interval, a
fixed concentration of (R)- or (5)-6 (0.4 or 4.0 mM,
respectively) was added to the mixture. Aliquots (10 uL)
were removed at various time intervals, diluted into 1 mL
of 20 mM Na,HPO, buffer (pH 9.0), and assayed for residual
activity.

Irreversibility of Inactivation of Cg10062 by (R)- and (S)-
6. Three samples were made up containing ~1.5 mg of
enzyme (80 uL of a 18.5 mg/mL solution) and a sufficient
quantity of 20 mM Na,HPO, buffer (pH 9.0) to give a final
volume of 990 uL. Two samples were treated with (R)- or
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(5)-6 [10 uL from a 100 mM stock solution in 100 mM
NaH,PO, buffer (pH 7.3)], and a third one was treated with
100 mM NaH,PO, buffer (pH 7.3, 10 uL). After a 5 day
incubation period at 4 °C, an aliquot (200 #L) was removed
from the control and the (R)-6-modified Cgl10062 sample
and subjected to Sephadex G-25 chromatography as de-
scribed previously (5). Subsequently, a solution was made
up from each set of fractions such that a final concentration
of 2 uM enzyme (~520 uL of a 0.26 mg/mL solution) was
obtained in 3.5 mL of 20 mM Na,HPOy, buffer (pH 9.0). A
1 mL aliquot was removed from each solution and assayed
for activity using 7. Activity assays were initiated by the
addition of 7 (4 uL from a 365 mM stock solution made up
as described above) to give 7 at a final concentration of 1.5
mM. The remaining solution (~2.5 mL) was stored at 4 °C
and assayed after an additional 3 day incubation period. The
sample containing Cg10062 and (S)-6 was incubated for 10
days at 4 °C and then processed in a comparable manner.

Irreversible Inhibition of cis-CaaD by (R)-6. The time-
dependent inactivation of cis-CaaD by (R)-6 was assessed
using varying concentrations of inhibitor (0—14 mM) and
enzyme (20 M based on a monomer concentration) in 20
mM Na,HPO, buffer (pH 9.0) at 22 °C, as described
elsewhere (8). The incubation mixtures (total volume of
101—114 uL) were made up in 1.5 mL Eppendorf micro
test tubes. Aliquots (10 uL) from these mixtures were
removed at various time intervals, diluted into 1 mL of 20
mM Na,HPO, buffer (pH 9.0), and assayed for residual
activity using 2 at a final concentration of 200 M. The initial
time point (+ = 0) corresponded to the aliquot removed
immediately after the addition of (R)-6 to the incubation
mixture. The cis-CaaD activity measured for this aliquot was
defined as 100% activity. Activity assays were initiated by
the addition of an aliquot of 2 (4 uL) removed from a 50
mM stock solution made up in 100 mM Na,HPO, buffer
(pH 9.1). The pH of the stock solution was adjusted to ~7.5
via the addition of small quantities of 1 M NaOH.

Mass Spectral Analysis of Cg10062 and Mutants Incubated
with (R)- and (S)-6. The covalently modified Cgl0062
samples were prepared for mass spectral analysis by the
incubation of the enzyme with (R)- or (S)-6 in 20 mM
Na,HPO, buffer (pH 9.0) as follows. Each sample contained
~1.5 mg of enzyme (~81 uL of a 18.5 mg/mL solution)
and a sufficient quantity of 20 mM Na,HPO, buffer (pH 9.0)
to give a final volume of 990 uL. The samples were treated
with (R)- or (5)-6 [10 uL from a 100 mM stock solution of
(R)- or (8)-6 in 100 mM NaH,PO, buffer (pH 7.3)]. A control
sample was made up similarly, but the enzyme was treated
with a 10 uL portion of buffer. Subsequently, the mixture
containing Cgl0062 and (R)-6 was incubated at 4 °C for
24 h and analyzed. The control sample and the sample
containing Cgl10062 and (S)-6 were incubated at 4 °C for
10 days and aliquots removed and analyzed after 24 h, 48 h,
5 days, and 10 days. The P1A, R70A, R73A, and E114Q
mutants of Cg10062 were incubated separately with (R)- or
(8)-6 in 20 mM Na,HPO, buffer (pH 9.0) as follows.
Samples contained ~1.75 mg of enzyme (~100 uL of a 17.5
mg/mL solution) and a sufficient quantity of the 20 mM
Na,HPO, buffer to give a final volume of 495 ul. The
samples were treated with (R)- or (S)-6 [5 uL from a 100
mM stock solution of (R)- or (5)-6 in 100 mM NaH,PO,
buffer (pH 7.3)]. The mixtures were incubated at 4 °C for
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FIGURE 1: Time-dependent inactivation of Cgl0062 by (R)- and
(8)-6. (A) A logarithmic plot of the percent Cgl0062 activity
remaining as a function of time using varying amounts of (R)-6
[(a) 0.99, (a) 2.9, (O) 4.8, (@) 6.5, (O) 9.1, and (M) 33.0 mM].
(B) A logarithmic plot of the percent Cg10062 activity remaining
as a function of time using varying amounts of (5)-6 [(A) 4.8, (A)
9.1, (O) 16.7, (@) 23.1, (O) 37.5, and (M) 56.5 mM]. For purposes
of clarity, the rates obtained for six experiments are shown. The
data from all of the experiments were used to calculate kopsg.

10 days and aliquots removed and analyzed after 24 h, 5
days, and 10 days. Samples for electrospray ionization mass
spectrometry (ESI-MS) analysis were made up as described
previously (5) and analyzed using an LCQ electrospray ion
trap mass spectrometer (Thermo, San Jose, CA).

Peptide Mapping of Cg10062 Inactivated by (R)- and (S)-
6. Three samples were made up containing ~1 mg of enzyme
(39 uL of a 26.5 mg/mL solution) and a sufficient quantity
of 20 mM NaH,PO; buffer (pH 7.3) to give a final volume
of 500 uL. Two samples were treated with (R)- or (5)-6 [5
uL from a 100 mM stock solution in 100 mM NaH,PO,
buffer (pH 7.3)], and a third sample was treated with buffer
(5 uL). After a 24 h incubation period at 4 °C, the samples
were subjected to Sephadex G-25 chromatography as de-
scribed previously (5), yielding three sets of fractions
containing modified Cg10062 [by (R)- or (S)-6] or unmodi-
fied Cg10062. A sufficient quantity of protein was removed
from the fraction containing the highest concentration of
protein [now in 100 mM NH,HCOj; buffer (pH 8.0)] to give
~27 ug of enzyme, which was diluted into the necessary
quantity of 100 mM NH4HCOj buffer to yield a final volume
of 45 uL. After the addition of a 5 uL aliquot of 10 M
guanidine HCI, the three samples were incubated for 1 h at
37 °C. The protein samples were then incubated for an
additional 48 h at 37 °C with sequencing grade protease V-8
(2 uL of a 10 mg/mL stock solution made up in water) (16).
Subsequently, the V-8-treated samples were made up and
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analyzed on the delayed extraction Voyager-DE PRO matrix-
assisted laser desorption ionization time-of-flight (MALDI-
TOF) instrument (PerSeptive Biosystems, Framingham, MA)
as described previously (5). Selected ions in the samples were
also subjected to MALDI postsource decay (PSD) analysis
using the protocol described elsewhere (5, 17).

Mass Spectral Analysis of cis-CaaD Incubated with (S)-6
and MSAD Incubated with (R)- and (S)-6. A sample of cis-
CaaD was made up as described above for Cg10062 and
treated with (S)-6 [10 uL from a 100 mM stock solution in
100 mM NaH,PO, buffer (pH 7.3)]. Similarly, samples of
MSAD were made up and treated with (R)- and (5)-6 [10
uL from 100 mM stock solutions in 100 mM NaH,PO, buffer
(pH 7.3)]. The samples were incubated at 4 °C for 10 days
and aliquots removed and analyzed after 24 h, 5 days, and
10 days as noted in the text. The samples were prepared for
mass spectral analysis as described previously (5) and
subjected to ESI-MS analysis.

RESULTS

Time-Dependent Inactivation of Cg10062 by (R)- and (S)-
6. Cg10062 is irreversibly inactivated by both (R)- and (S)-6
in a time-dependent first-order process (Figure 1A,B). The
kobs values from 18 experiments using (R)-6 and the kobs
values from 15 experiments using (S)-6 were plotted versus
the initial inhibitor concentrations and fit to a rectangular
hyperbola.2 The values of K; and kiy.e Obtained from the plot
for (R)-6 (Figure 2A) were 14.0 = 2.1 mM and 0.021 =+
0.001 s~!, respectively. The values obtained from the plot
for (S)-6 (Figure 2B) were 71.2 £ 12.7 mM and 0.005 +
0.001 s~ !, respectively. Assuming K; is an estimate of binding
affinity, these values indicate that (R)-6 binds more tightly
(~5.1-fold) at the active site than the (S) enantiomer and
that at saturating concentrations of inhibitor, the (R) enan-
tiomer is the more potent inactivator (~4.2-fold).

To compare directly the inactivation of Cg10062 with that
of cis-CaaD, the kinetic parameters for the inactivation of
cis-CaaD by (R)-6 were determined again. Accordingly, the
kobs values from 18 experiments using cis-CaaD and (R)-6
were fit to a rectangular hyperbola. The values of K; and
kinact Obtained from the plot for (R)-6 (Figure 2C) were 10.8
+ 1.6 mM and 0.20 & 0.02 s~!, respectively.® Although (R)-6
binds comparably to both enzymes (as indicated by the
similar Kj values), the (R) enantiomer is an approximately
9.5-fold more potent inhibitor of cis-CaaD than it is of
Cgl10062. As noted elsewhere, the (S) enantiomer does not
inactivate cis-CaaD but functions as a weak competitive
inhibitor (8).

2 In some cases, a better fit of the data can be obtained using the
Hill equation, as found in Grafit. The Kj and kin.e values obtained for
the inactivation of Cgl10062 by (R)- and (S)-6 and cis-CaaD by (R)-6
by fitting the data to the Hill equation and the resulting plots are
provided as Supporting Information. The resulting fits could suggest
positive cooperativity and may indicate that the inactivation of one
subunit accelerates the rate of inactivation for the two remaining
subunits. Positive (or negative) cooperativity has not been detected for
Cgl10062 or cis-CaaD by steady state kinetics.

3 In a previous report (8), the concentrations of 6 were calculated
on the basis of a molecular mass of 88 Da, which corresponds to the
free acid. Hence, the actual concentrations are lower than the reported
concentrations (8). The concentrations in this report take into account
the fact that 6 is a potassium salt.
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Both plots for the inactivation of Cg10062 show saturation
kinetics, indicating that inactivation occurs by the prior
formation of a dissociable complex between enzyme and
inhibitor at the active site (/8). Further evidence for binding
at the active site comes from substrate protection studies
using 7, which at four different concentrations slows the
inactivation of Cgl0062 by (R)-6, and at two different
concentrations slows the inactivation of Cgl10062 by (5)-6
(Figure 3A,B) (18).

The rates for the inactivation of Cg10062 by (R)- and (S)-6
in the substrate protection studies (e.g., Figure 3 in the
absence of 7) differ from the corresponding ones in Figure
1. For example, 4 mM (S)-6 results in ~20% remaining
activity after 1500 s (Figure 3B), but 4.8 mM (5)-6 results
in ~60% remaining activity after 1500 s (Figure 1B). This
discrepancy is likely due to the fact that the remaining
activity was determined using different preparations of 7.
The variable quality and decomposition of 7 preclude an
accurate determination of its concentration in solution. The
conclusions do not change.

The irreversible nature of inactivation was demonstrated
by the observation that Cg10062 inactivated by either (R)-
or (§)-6 did not regain activity after gel filtration on a PD-
10 Sephadex G-25 column. After 5 days, Cg10062 incubated
with (R)-6 had no residual activity (using 7) compared to a
control. Gel filtration and an additional 3 day incubation
period at 4 °C did not result in recovery of activity.
Incubation of Cg10062 with (5)-6 completely inactivated the
enzyme after a 10 day interval. Once again, gel filtration
and an additional 3 day incubation period at 4 °C did not
result in the recovery of activity.

Mass Spectral Analysis of Cg10062 Treated with (R)- and
(S)-6. Both the (R)- and (S)-6-inactivated Cgl0062 were
subjected to ESI-MS analysis and the spectra compared to
that of the wild type. An 11:1 ratio of inhibitor to enzyme
concentration (based on a monomer molecular mass) was
used. For Cg10062 inactivated by the (R) enantiomer, the
spectrum acquired after a 24 h incubation period exhibits a
major signal corresponding to a mass of 17190 =£ 2 Da (data
not shown). A similar spectrum is obtained after a 48 h
incubation period. The signal corresponds to the mass of
Cgl10062 (17092 £ 2 Da) modified by the covalent attach-
ment of a species with a mass of 88 Da. There is no residual
signal forunmodified Cg10062 indicating ~100% modification.

For Cgl0062 inactivated by the (S) enantiomer, the
spectrum acquired after a 24 h incubation period exhibits
signals corresponding to masses of 17092 £ 2 and 17190 £+
2 Da (data not shown). The signal at 17092 Da corresponds
to that of Cg10062, and the signal at 17190 Da corresponds
to Cgl0062 modified by the covalent attachment of the
species with a mass of 88 Da. The intensities of the signals
suggest 15—30% modification (in two separate runs). The
same spectrum is obtained after a 48 h incubation period,
where the intensities of the signals now suggest ~45%
modification. After 5 days, the intensities of the signals
suggest 60—70% modification. After 10 days, the signal at
17190 Da predominates. The relative intensities of the signals
suggest ~90% modification.

For both (R)- and (S)-6-inactivated Cg10062, the increase
in mass corresponds to the expected molecular mass of 6 as
its ring-opened derivative (7, §8). The mass does not
distinguish between a 2- or 3-hydroxypropanoate species
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FIGURE 2: Plot of kg, values obtained for the inactivation of
Cgl0062 by (R)- and (S)-6 and cis-CaaD by (R)-6 vs the
concentration of inactivator. (A) konsa Values for 18 experiments
using (R)-6 and Cg10062 vs the concentration of (R)-6. (B) kopsa
values for 15 experiments using (5)-6 and Cgl0062 vs the
concentration of (5)-6. (C) kopsa Values for 18 experiments using
(R)-6 and cis-CaaD vs the concentration of (R)-6. The data from
all of the experiments were used to calculate kin,e and Kj, which
are reported in the text.

attached to the enzyme. However, for both enantiomers,
Cgl10062 shows only a single site of modification.

Mass Spectral Analysis of cis-CaaD Treated with (S)-6
and MSAD Treated with (R)- and (S)-6. In a previous report,
covalent modification of cis-CaaD by (S)-6 was not detected
for a sample analyzed after a 24 h incubation period (8). In
view of the lengthy incubation times required for near-
complete covalent modification of Cgl0062 by the (S)
enantiomer, cis-CaaD was incubated with (S)-6 for 10 days
at a ratio of 11:1 (inhibitor:enzyme). The spectrum showed
only a signal corresponding to the mass of unmodified cis-
CaaD, confirming that cis-CaaD is not covalently modified
by (8)-6. The inactivation of MSAD by (R)- and (5)-6 was
not previously reported. At ratios of 7:1 and 11:1 (inhibitor:
enzyme), the spectra for MSAD samples incubated with (R)-
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FIGURE 3: Protection of Cgl0062 from inactivation by (R)- and
(8)-6 using substrate 7. (A) Cg10062 (100 uM) was incubated with
four different concentrations of 7 [(A) 0, (a) 1.0, (O) 2.1, (@) 3.5,
and (O) 5.2 mM] for 30 s before the addition of (R)-6 (0.4 mM).
(B) The same quantity of Cg10062 was incubated with two different
concentrations of 7 [(A) 0, () 1.7, and (O) 3.5 mM] for 30 s before
the addition of (S)-6 (4.0 mM).

or (5)-6 for a 10 day period show only signals at 14107 £+
2 Da (data not shown). This mass corresponds to the expected
mass of the MSAD monomer (/7) and indicates that MSAD
is not covalently modified by either enantiomer of 6.
Mass Spectral Analysis of Cg10062 Mutants Treated with
(R)- and (S)-6. Four active site mutants of Cg10062 (P1A,
R70A, R73A, and E114Q) were incubated in individual
reaction mixtures with (R)- and (S)-6 for 10 days at 4 °C
(6). Mass spectral analysis of the reaction mixtures containing
the P1A, R70A, and R73A mutants showed that each one
produced signals (17066, 17007, and 17006 + 2 Da,
respectively) corresponding to the expected molecular masses
of the unmodified mutants (6). Thus, Pro-1, Arg-70, and Arg-
73 are essential for covalent modification of Cgl0062 by
either (R)- or (S)-6. Mass spectral analysis of the reaction
mixture containing the E114Q mutant revealed a more
complex situation. Analysis of the mixture containing (R)-6
and the E114Q mutant (7:1 ratio) after 24 h exhibited two
signals corresponding to the masses of the unmodified
enzyme (17092 + 2 Da) and the modified enzyme (17180
4 2 Da). The relative intensities suggested 40% covalent
modification. Using the same ratio of inhibitor to enzyme,
wild-type Cg10062 was completely modified by (R)-6 after
24 h. After 5 days, mass spectral analysis showed complete
covalent modification of the E114Q mutant by (R)-6.
Analysis of the mixture containing (S)-6 and the E114Q
mutant (7:1 ratio) at 24 h showed only a mass corresponding
to unmodified enzyme. After 5 days, a second signal
appeared corresponding to the mass of the modified enzyme.
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Table 1: Peptides Identified in the Protease V-8 Digestion Mixture of
Unmodified and (R)- and (S)-6-Modified Cg10062

observed mass”
of (R)- and (§)-6-modified
Cgl0062 (Da)

peptide calculated  observed mass”
fragment mass (Da)* of Cgl0062 (Da)

Ip—15E 1896.15 1895.69 1983.86 1983.74
SIL-4E 1742.05 1741.75 1741.89 1741.80
6IN-TE 1767.96 1767.67 1767.84 1767.76
SIL—88E 985.19 985.48 985.55 985.52
ISY—126E  1422.57 1422.47 1422.58 1422.53

“The monoisotopic singly charged masses are predicted from
analysis of the translated amino acid sequence of the Cg/0062 gene
(corresponding to Cg10062). ” The observed masses correspond to MH*.

The relative intensities of the signals indicated 20% modi-
fication. After 10 days, mass spectral analysis suggested 45%
covalent modification of the E114Q mutant by the (S)
enantiomer. Using the same ratio of inhibitor to enzyme,
wild-type Cg10062 was 60% modified by (5)-6 after 10 days.
Thus, in contrast to cis-CaaD, where Glu-114 is not required
for the inactivation reaction, it plays a role in the alkylation
of Cgl0062 by (R)- and (S)-6 because the E114Q mutant
slows the inactivation reaction.

Identification of Pro-1 as the Site of Modification by (R)-
and (S)-6. ESI-MS analysis of incubation mixtures containing
Cg10062 and (R)- or (S5)-6 showed covalent attachment of a
species with a mass of 88 Da to the enzyme. The mass is
consistent with modification of the enzyme by a 2- or
3-hydroxypropanoate species (7, 8). The modified residue
was identified by incubating the three samples [unmodified
Cgl0062, (R)-6-modified Cgl0062, and (S)-6-modified
Cgl10062] with endoproteinase Glu-C (protease V-8) and
analyzing the resulting peptide mixtures by MALDI-MS.
Although protease V-8 cleaves peptide bonds at the car-
boxylate side of glutamate and aspartate residues (leaving
Glu or Asp as the C-terminal residue), glutamates are
preferred (in 100 mM ammonium bicarbonate buffer at pH
8.0) (16).

Mass spectral analysis identified five major peptide species
in all three samples corresponding to peptide bond cleavage
at Glu-15, Glu-30, Glu-41, Glu-60, Glu-75, Glu-80, Glu-
88, Glu-114, and Glu-126 (Table 1). Additional peptide
species were identified in the (R)- and (S5)-6-modified
Cgl10062 samples having masses of 1983.86 and 1983.74
Da, respectively. The mass corresponds to the Pro-1—Glu-
15 peptide fragment covalently modified by 6. The other four
peptide fragments (Table 1) had not been modified.

The unmodified (1895.69 Da) and (R)- and (S)-6-modified
fragments (1983.86 and 1983.74 Da, respectively) were
subjected to MALDI-PSD analysis in an effort to locate the
residue with the covalently attached species (/7). The PSD
spectrum of the unmodified peptide exhibited N-terminal
sequence-specific fragment ions b, (199) and bs (362). The
PSD spectrum of the modified peptide exhibited modified
fragment ions b, (287), corresponding to a modified Pro-
1—Thr-2 fragment, and bs (551), corresponding to the
modified Pro-1—Thr-4 fragment. These observations nar-
rowed the site of covalent attachment to Pro-1 or Thr-2.
Although the PSD spectra of the unmodified and two
modified fragments did not show a b, ion, corresponding to
Pro-1 or modified Pro-1, a proline immonium ion (70) and
a modified proline immonium ion (158) were present in the
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spectra for the (R)- and (S)-6-modified fragments. Hence,
Pro-1 is the site of covalent modification by (R)- and (S)-6.

DISCUSSION

cis-CaaD and CaaD are isomer-specific dehalogenases and
represent two of the five known families in the tautomerase
superfamily (/). Tautomerase superfamily members are
characterized by their signature f—a—/ building block and
catalytic Pro-1 (/9-21). The catalytic mechanisms of cis-
CaaD and CaaD are largely the same (/, 5, 7). Both have a
glutamate residue (Glu-114 and aGlu-52, respectively)* that
activates water for attack at C-3 of the substrate (2 and 3,
respectively), a pair of arginines (Arg-70 and Arg-73 and
aArg-8 and aArgl 1, respectively) that interacts with the C-1
carboxylate group to bind and polarize the substrate, and an
amino-terminal proline (Pro-1 and SPro-1, respectively) that
adds a proton to the C-2 position to complete the conjugate
addition of water. Two additional groups, His-28 and Tyr-
103, are found in cis-CaaD. His-28 assists in substrate
binding, and Tyr-103 assists in water activation. Cg10062
is a cis-CaaD family member that functions as a hydratase
but a poor cis-CaaD. Despite the presence of the six residues
that make up the core catalytic machinery, Cg10062 has a
much lower catalytic efficiency than cis-CaaD and lacks
absolute isomer specificity (6). A determination of the basis
for the poor cis-CaaD activity of Cgl0062 could provide
insights into the elements required for a fully functional and
highly specific cis-CaaD and suggest how cis-CaaD evolved.

(R)-Oxriane-2-carboxylate (6) was previously characterized
as a stereospecific affinity label of cis-CaaD (8). Mass
spectral and crystallographic analysis established that inac-
tivation resulted from covalent modification of the Pro-1
nitrogen by (R)-2-hydroxypropanoate at the C-3 position (7, 8).
Pro-1, Arg-70, and Arg-73 were identified as essential active
site residues for the inactivation mechanism (8). The crystal-
lographic analysis of the inactivated cis-CaaD implicated His-
28 in the mechanism and suggested roles for Arg-70 and
Arg-73 (7). On the basis of these observations, it was
proposed that Arg-73 and His-28 interact with the carboxy-
late group and position (R)-6 for covalent modification of
Pro-1 (Scheme 2A). The side chain of Arg-70 or an Arg-
70-bound water molecule functions as the proton donor for
the epoxide ring opening reaction. This proposed orientation
places the (R) enantiomer in position for the alkylation
reaction. If the (S) enantiomer binds similarly, the epoxide
ring is flipped so that the Pro-1 nitrogen cannot be alkylated
(Scheme 2B).

4 1In contrast to cis-CaaD and Cgl10062, which are trimers, CaaD is
a heterohexamer consisting of three o-subunits and three S-subunits (1, 4).
A functional CaaD active site is a heterodimer made up of an a-subunit
and a f3-subunit.
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The presence of His-28 in cis-CaaD may be a determinant
of the enzyme’s vulnerability to alkylation (7). CaaD, which
is not inactivated by either enantiomer, lacks this residue or
an equivalent. As in the proposed binding mode for 3, the
carboxylate group of 6 may interact with the two arginines
(aArg-8 and aArg-11) in the active site of CaaD, thereby
preventing one of the arginines from serving as a necessary
proton source to facilitate ring opening. We have also
confirmed that MSAD is not inactivated by either enantiomer
of 6. Like CaaD, MSAD has two arginines residues (Arg-
73 and Arg-75) but lacks His-28 or an equivalent. The two
arginine residues of MSAD are proposed to interact with
the substrate and may likewise interact with the carboxylate
group of 6 and prevent one from functioning as a proton
source. Evidently, there is not an alternate nearby proton
source.

Oxirane-containing compounds have been used extensively
as affinity labels of enzymes, and the subsequent character-
ization of the inactivated enzyme has provided much
mechanistic insight (22-24). Ring opening, with the con-
comitant alkylation and inactivation, generally involves
acid—base catalysis and proceeds by one of two mechanisms
(25). In one mechanism, the acid catalyst protonates the
oxygen of the oxirane ring (25). Ring opening produces a
carbocation, which captures a nearby base catalyst at the
more highly substituted carbon (25). In a second mechanism,
the base catalyst attacks the less sterically hindered carbon
of the oxirane in conjugation with polarization of the
carbon—oxygen ring by the acid catalyst. The regiochemistry
of the ring-opened product generated in the cis-CaaD reaction
with (R)-6 would suggest that the second mechanism is
operative. However, it is unknown whether active site
constraints played a role in the observed outcome (23).

The two key findings in this study are that both (R)- and
(8)-6 inactivate Cgl10062 and that Glu-114 is an additional
participant in the inactivation mechanism. Otherwise, the
inactivation process parallels that observed for cis-CaaD, and
for the (R) enantiomer, a similar mechanism can be envi-
sioned. Accordingly, the carboxylate group would interact
with His-28 and Arg-73, and the side chain of Arg-70 or an
Arg-70-bound water molecule would interact with the oxirane
oxygen to facilitate ring opening. Pro-1 is positioned to attack
at C-3.% The lower potency [compared to the inactivation of
cis-CaaD by (R)-6] suggests weaker binding and less
favorable interactions with the key active site groups and
may reflect some “wobble” in the active site with regard to
inhibitor positioning and binding. Glu-114 might further
position the epoxide for alkylation or maintain the position
of one of the essential residues such that replacement with
a glutamine slows the inactivation process.

There are at least two possible mechanistic explanations
for the inactivation of Cg10062 by the (S) enantiomer. If it

5 In the proposed mechanism for Cg10062, Pro-1 functions as a
general acid catalyst (6), raising the question of how the charged prolyl
nitrogen is alkylated. The sequence similarity between the cis-CaaD
and Cgl0062 active sites suggests that the pK, values for the prolyl
nitrogens will be comparable (~9.3) (/, 8). At the pH of the inactivation
experiments (9.0), ~33% of the enzyme is in a protonation state where
the prolyl nitrogen can function as a nucleophile. Alkylation of the
nitrogen perturbs the equilibrium and places an additional amount of
enzyme into the nucleophilic and reactive form. In this manner, the
enzyme can become entirely alkylated.
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is assumed that the carboxylate group of (5)-6 interacts with
His-28 and Arg-73, one potentially interesting scenario
involves a change in the regiochemistry of ring opening such
that C-2 is the site of attachment. This scenario could involve
another unknown residue functioning as the proton source
for the oxirane oxygen. In a second scenario, the epoxide
could bind in the active site of Cgl0062 in a different
orientation where the carboxylate group interacts with Arg-
70 and Arg-73. Ring opening could occur at C-2 or C-3,
and His-28 could function as a proton source. In both
scenarios, the side chain of Glu-114 could favor a productive
binding mode (i.e., one that results in alkylation) over a
nonproductive one.

There are likely to be subtle differences between the active
sites of cis-CaaD and Cg10062, and as a consequence, slight
differences are observed between the inactivation mecha-
nisms. The two enzymes are 34% identical in sequence (and
53% similar). The residues involved in binding and catalysis
(Pro-1, His-28, Arg-70, Arg-73, Tyr-103, and Glu-114) as
well as the other residues defining the cis-CaaD active site
cavity (Thr-32, Thr-34, His-69, and Met-112) are mostly
found in Cg10062. The two major exceptions are His-69 and
the residues of a loop that connects the o-helix to the second
p-strand in the f—o.—p building block. In cis-CaaD, His-28
and His-69 interact with the hydroxyl group of Tyr-3. In
Cgl10062, His-69 is replaced with an isoleucine, which could
affect this interaction and perhaps alter the position of His-
28 and/or otherwise modulate the active site properties. These
changes could contribute to the wobble in the positioning
and binding of the inhibitor.

In addition, the loop residues in Cg10062 are significantly
different from those found in cis-CaaD. In cis-CaaD, Leu-
31 and Ala-39 anchor the loop, which consists of Thr-32,
Gly-33, Thr-34, GIn-35, His-36, Phe-37, and Leu-38. In
Cgl10062, Leu-31 and Val-39 anchor the loop, which consists
of Ala-32, His-33, Ala-34, Pro-35, Lys-36, Tyr-37, and Leu-
38. Examination of the crystal structure of cis-CaaD inac-
tivated by (R)-6 shows interactions between the amide
hydrogens of Phe-37 and Leu-38 and a carboxylate oxygen
of the ring-opened product (2- or 3-hydroxypropanoate).
These interactions may be precluded in Cg10062 due to the
different N-terminal loop residues (i.e., residues 32—35). The
absence of these interactions coupled with the potentially
different properties of the loop may result in a less
discriminating active site and allow binding of both enan-
tiomers. Crystal structures of Cgl0062 inactivated by the
enantiomers of 6 will shed light on the basis for the
differences in the inactivation mechanisms and are currently
being pursued.
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K and ki, values obtained for the inactivation of Cg10062
by (R)- and (S)-6 and cis-CaaD by (R)-6 by fitting the data
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to the Hill equation. This material is available free of charge
via the Internet at http://pubs.acs.org.
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