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The PARK16 locus is considered to play a protective role in
Parkinson’s disease (PD). However, the epidemiological
evidence on the relationships between PARK16
single-nucleotide polymorphisms (rs823128, rs1572931,
and rs823156) and PD is inconsistent. Therefore, we carried
out a meta-analysis to validate the relationships and
performed a bioinformatic analysis to explore putative
regulation mechanisms of the single-nucleotide
polymorphisms in PD. Through meta-analysis, we confirmed
that minor variants of rs823128A>G, rs1572931C> T, and
rs823156A>G played protective roles in PD. Through
bioinformatic analysis, we predicted that rs823128,
rs1572931, and rs823156 as noncoding variants of
NUCKS1, RAB29, and SLC41A1, respectively, might affect
PD risk by altering the transcription factor-binding capability
of the genes. These findings suggest new clues for PD

research and potential targets for PD prevention and
treatment. NeuroReport 28:936–941 Copyright © 2017 The
Author(s). Published by Wolters Kluwer Health, Inc.
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Introduction
Parkinson’s disease (PD) is a common and complex

neurodegenerative disorder, which is believed to be

caused by the interaction of multiple genes and envir-

onmental factors. The disease affects about 1% indivi-

duals over 60 years old and the quality of life of patients

with this disease is severely affected [1]. However,

because of the limited knowledge of the molecular

mechanism in PD, effective preventive or curative stra-

tegies for the disease are still absent to date.

The etiology of most PD cases is still vague, but

increasing evidence shows an important role of genetic

susceptibility in PD. Therefore, studies of the relation-

ship between genetic polymorphisms and PD suscept-

ibility may help to elucidate the pathogenesis of the

disease.

The PARK16 locus is the genetic region spanning five

genes on chromosome 1. The genes are solute carrier

family 45 member 3 (SLC45A3), nuclear casein kinase

and cyclin-dependent kinase substrate 1 (NUCKS1), Ras-
related protein Rab29 (RAB29), solute carrier family 41

member 1 (SLC41A1), and peptidase M20 domain con-

taining 1 (PM20D1). In recent years, the PARK16 has

been identified to play a protective role in PD [2,3].

Rs823128, rs1572931, and rs823156 were believed to be

among the most PD-associated single-nucleotide poly-

morphisms (SNPs) in this locus. These SNPs were

identified in NUCKS1, RAB29, and SLC41A1, respec-

tively [3]. The association between rs823128 SNP and

PD was identified in the White population [2], but

showed no relationship in some studies in the East Asian

population [4,5]. Rs1572931 SNP was indicated to be

associated with PD in the East Asian [6] and the

Mediterranean population [7], but not in the White

population [2]. As for rs823156, the SNP located in

SLC41A1 was considered to be associated with PD in the

White population [2], but not in the Hispanic population

[8]. Considering the inconsistent conclusions of studies in

association between these SNPs and PD, we decided to

carry out a comprehensive review and meta-analysis here

to further validate the association of the SNPs with PD

risk. Besides these, the findings of our study might pro-

vide new insights into the pathogenesis of PD.

Methods
Publication search
Relevant literatures were searched in PubMed, Embase,

the Cochrane Library, the Chinese National Knowledge

Infrastructure, the China Science and Technology

Journal Database (VIP), and the Wanfang database up to
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4 February 2017. Inclusion and exclusion criteria were

then used to screen appropriate studies for analysis.

The inclusion criteria were as follows: (a) case–control

studies only; (b) included an association evaluation

between SNPs rs823128, rs823156 or rs1572931, and PD

susceptibility; and (c) included allele or genotype fre-

quencies for the calculation of odds ratios (ORs) and 95%

confidence intervals. Articles were excluded if (a) they

were case reports, reviews, or meta-analyses, and (b) they

lacked the data necessary for a meta-analysis.

Statistical analysis
ORs with 95% confidence intervals were calculated to

evaluate the associations between SNPs and PD sus-

ceptibility under additive models and recessive models; a

P value of less than 0.05 was considered statistically sig-

nificant. Heterogeneity between articles was examined by

the I2 index, a quantity that indicated the consistency of

data from trials [9]. Fixed-effects models were used when

heterogeneity across studies was low (I2< 50% in meta-

analysis); otherwise, random-effects models were applied.

Agreement or disagreement of genotype frequencies with

Hardy–Weinberg equilibrium in each study was analyzed.

Publication bias was evaluated using Egger’s test and

Begg’s test, with a P value of more than 0.10 considered

evidence for no potential publication bias. Meta-analysis

was carried out using Review Manager 5.3 and publication

bias was evaluated using Stata 14 software (Stata

Corporation, College Station, Texas, USA).

In silico analysis for the putative transcription factor-
binding sites affected by single-nucleotide
polymorphisms
Online software Gene-Regulation (http://www.gene-regula
tion.com) was performed to predict the possible effects of

the SNPs on putative alteration of transcription factor-

binding sites in the relevant genes. Parameters used for

the predictions were human matrices only, with a

threshold score of 75.0 points (a maximum 100.0).

Results
Study characteristics
A total of 20 eligible studies were included in this meta-

analysis. The characteristics of the studies are summar-

ized in Table 1. Among these articles, 14 articles referred

to SNP rs823128, 5 referred to rs1572931, and 12 articles

referred to rs823156.

Quantitative synthesis
ORs of rs823128, rs1572931, and rs823156 in PD were

evaluated; the results are shown in Table 2 and

Supplementary Fig. 1 (Supplemental digital content 1,

http://links.lww.com/WNR/A428). In the overall pooled

analysis, PD patients showed significantly lower fre-

quencies of the G allele and the GG genotype than

control participants in SNP rs823128. The frequencies of

the rs1572931T allele and the TT genotype tended to be

lower in PD patients and PD patients showed rarer fre-

quencies in the rs823156 G allele and the GG genotype

compared with the controls.

Taking the ethnic variety of association between these

SNPs and PD into consideration, we carried out a sub-

group analysis determined by sample ethnicity. The

results indicated that, for rs823128, PD patients pre-

sented lower frequencies of the G allele in the White,

East Asian, and Hispanic populations. For rs1572931, PD

patients showed a significantly lower frequency of the T

allele than the controls in the East Asian population, and

showed the same trend of the presence of the rs1572931

T allele and the TT genotype in the Mediterranean

population. However, the relationship was not identified

between rs1572931 and PD risk in White patients. As for

rs823156 SNP, PD patients tended to have lower G allele

frequency than control participants in the White popu-

lation and to have lower frequencies of the G allele and

the GG genotype in the East Asian population, but it

showed no link between rs823156 SNP and PD risk in

the Hispanic population.

In addition, genotype frequencies of rs823128 in controls

disagreed with Hardy–Weinberg equilibrium in the

overall pooled analysis; thus, the result of this poly-

morphism should be interpreted with caution.

Publication bias
Additive models were used as representatives to be

performed. As shown in Table 3 and Supplementary

Fig. 2 (Supplemental digital content 2, http://links.lww.
com/WNR/A429), there was no publication bias in

this study.

Table 1 Characteristics of the studies included in the meta-analysis

Polymorphism
sites

Number of
studies

Sample size
(case/control) References

rs823128 14 11 484/17 859 Chang et al. [10], Chang et al. [11], Gopalai et al. [12], Miyaka et al. [13], Pihlstrom et al. [2],
Yan et al. [14], Zhao et al. [4], Zhou et al. [5], Ramirez et al. [15], Satake et al. [3],
Simon-Sanchez et al. [16], Spencer et al. [17], Tan et al. [18], Vilariño-Güell et al. [19]

rs1572931 5 3809/3328 Gan-Or et al. [7], Goudarzian et al. [20], Pihlstrom et al. [2,] Guo et al. [6], Liu et al. [21]
rs823156 12 12 016/14 609 Chang et al. [10], Chang et al. [11], Chung et al. [22], Gopalai et al. [12], Miyaka et al. [13],

Pihlstrom et al. [2], Guo et al. [23], Satake et al. [3], Mata et al. [8], Simon-Sanchez et al. [16],
Tan et al. [18], Yan et al. [14]
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In-silico analysis
Through bioinformatic analysis using online software

Gene-Regulation, we predicted the modified transcrip-

tion factor-binding sites caused by rs823128, rs1572931,

and rs823156. As shown in Fig. 1, in silico analysis,

change at rs823128 was predicted to add a binding site for

HOXA3 transcription factor (score, 87.5) and eliminated

the sites for TSC2 (score, 100.0) and TOPORS (score,

100.0). Change at rs1572931, the transcription factor-

binding sites for CTCF (score, 100.0), and estrogen

receptor-β (score, 100.0) were predicted to be added and

the site for PGR (score, 100.0) was predicted to be

eliminated. As for change at rs823156, the SNP was

identified to add putative the transcription factor-binding

sites for NP-4 (score, 100.0) and RARA (score, 100.0)

transcription factors and to eliminate the binding site for

the NFASC (score, 100.0) transcription factor.

Discussion
In this meta-analysis, the results of overall pooled analysis

showed that rs823128, rs1572931, and rs823156 SNPs

within PARK16 were associated with PD susceptibility.

The minor alleles of rs823128A>G, rs1572931C>T and

rs823156A>G were associated with a reduced PD risk

and polymorphisms of these three SNPs showed

ethnicity-specific effects on PD, which were consistent

with a previous report [24]. The ethnic differences in the

relationships between SNPs and PD risk were widely

considered to be influenced by environmental factors,

such as lifestyles of patients and the extent of pollution in

the surroundings [24]. However, the detailed mechanisms

of these ethnic differences still need to be confirmed by

further investigation.

SNPs rs823128, rs1572931, and rs823156 were identified

to be located in NUCKS1, RAB29, and SLC41A1,
respectively. Therefore, these genes were implicated to

play protective roles in PD.

NUCKS1, the gene rs823128 SNP locates in, is a house-

keeping gene expressed in various types of cells. It is a

vertebrate-specific gene. Its coding protein, NUCKS1, is

a chromatin-associated protein with a role in DNA

damage response and homologous recombination [25]. It

is responsible for repairing DNA and maintaining chro-

mosome stability, and dysfunction of the protein may

lead to increasing cellular sensitivity to the harmful

substance, such as reactive oxygen species (ROS) [26].

Although accumulating evidence provided suggestive

support that SNP rs1572931 in NUCKS1 was associated

with PD risk, its molecular mechanism is still obscure to

date. However, the interaction between ROS-damaged

DNA and impairment of DNA repair capability in neu-

rons was found to be an important causative factor of PD,

suggesting that capability of DNA repair regulated by

NUCKS1 played a critical function in PD preven-

tion [27].

Table 2 Associations of rs823128, rs1572931, and rs823156 single-nucleotide polymorphisms with Parkinson’s disease risk in
meta-analysis

Additive models Recessive models

Single-nucleotide
polymorphisms N

Sample size
(case/control)

Odds ratio (95%
confidence interval) P

Odds ratio (95%
confidence interval) P

Hardy–Weinberg
equilibrium

rs823128A>G G/A GG/AG+AA
Overall 14 11 484/17 859 0.82 (0.74–0.91)a 0.002 0.72 (0.54–0.96)a 0.030 No
White 3 6411/10 973 0.80 (0.69–0.93)a 0.004 0.63 (0.22–1.81) 0.390 Yes
East Asian 10 4908/6692 0.84 (0.74–0.96)a 0.010 0.74 (0.54–1.02) 0.060 Yes
Hispanic 1 165/194 0.52 (0.33–0.83)a 0.006 0.51 (0.15–1.69) 0.270 Yes
rs1572931C> T T/C TT/CT+CC
Overall 5 3809/3328 0.75 (0.66–0.86)a <0.001 0.47 (0.28–0.81)a 0.007 Yes
White 2 1835/1715 0.82 (0.64–1.05) 0.120 0.51 (0.15–1.67) 0.260 Yes
East Asian 2 1254/971 0.73 (0.64–0.83)a <0.001 0.60 (0.34–1.05) 0.070 Yes
Mediterranean 1 720/642 0.64 (0.51–0.81)a <0.001 0.14 (0.04–0.47)a 0.001 Yes
rs823156A>G G/A GG/AG+AA
Overall 12 12 016/14 609 0.84 (0.81–0.88)a <0.001 0.75 (0.65–0.87)a <0.001 Yes
White 3 4706/5798 0.88 (0.82–0.95)a <0.001 0.81 (0.64–1.02) 0.070 Yes
East Asian 8 5865/7650 0.80 (0.75–0.85)a <0.001 0.69 (0.56–0.84)a <0.001 Yes
Hispanic 1 1445/1161 0.93 (0.80–1.08) 0.340 0.90 (0.56–1.45) 0.660 Yes

aData were statistically significant in analysis.

Table 3 Results of Egger’s and Begg’s tests for publication bias (additive models)

Begg’s test Egger’s test

Single-nucleotide polymorphisms Model Number of studies Z P 95% confidence interval P

rs823128A>G G vs. A allele 14 0.88 0.381 −1.05–4.25 0.213
rs1572931C> T T vs. C allele 5 −0.24 1.000 −14.00–5.55 0.263
rs823156A>G G vs. A allele 12 −1.58 0.115 −2.93–0.61 0.175
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RAB29, where rs1572931 locates, is considered to exert

protective effects on PD. Its coding protein, as a member

of the Ras-related GTP-binding protein subfamily, is

ubiquitously expressed in human tissues. The protein

has been identified to cooperate with leucine-rich repeat

kinase 2 (LKKR2) to reduce human PD risk [28].

LKKR2, a confirmed PD-related protein, was identified

to possess GTPase activity [29]. It could activate the Ras

signaling pathway and autophagy in neurons when

formed as a protein complex with RAB29. The

RAB29-LRRK2 complex, as an activator of the Ras sig-

naling pathway, could promote the clearance of a series of

PD-causing factors (such as α-synuclein and ROS) in

neurons, thus preventing the development of PD [30,31].

In addition, the RAB29-LRRK2 complex was also found

to be able to regulate axonal elongation in neurons,

contributing toward improving the function of learning

and memory in PD patients [29].

SLC41A1, the gene rs823156 SNP locates in, plays a vital

role in physiological function. SLC41A1 protein, as a

Na+/Mg2+ exchanger in eukaryotes, is responsible for

balancing magnesium homeostasis, promoting normal

metabolism, and maintaining physiological function in

the body [32]. SLC41A1 is expressed in numerous tis-

sues, including the kidney and the brain. The SLC41A1

protein in renal epithelial cells of distal convolution plays

a crucial role in transcellular Mg2+ reabsorption in the

distal convoluted tubule, contributing to magnesium

homeostasis in cells, tissues, serum and cerebrospinal

fluid. Decreased SLC41A1 expression/activity might

decrease the SLC41A1-dependent magnesium recycle of

cells, thus causing hypomagnesemia, and decreasing the

free intracellular Mg2+ in cells [33]. Experimental

evidence based on the PD-like dopaminergic cell line

PC12 showed that free intracellular Mg2+ protected cells

from damage of oxidant stress, and expression deficiency

of magnesium transporter protein could significantly

attenuate the oxidation resistance, thus increasing the

susceptibility of neurodegenerative diseases including

PD [34]. In all, Mg2+ homeostasis regulated by

SLC41A1 may play an important role in PD prevention

and treatment.

Taken together, this analysis suggests that, NUCKS1,
RAB29, and SLC41A1, the gene of the PARK16 locus,

might exert preventive effects on PD; minor variants of

these SNPs (rs823128A>G in NUCKS1, rs1572931C>T

in RAB29, and rs823156A>G in SLC41A1) were associated
with reduced PD risk. Interestingly, all of these SNPs were

variants in noncoding regions. To date, there are two

known means for noncoding variants to alter the function

of relevant genes: (a) to cause the alterative splicing of gene

[35] and (b) to alter the binding of transcription factors with

Fig. 1

The putative effects of rs823128, rs1572931, and rs823156 on transcription factor-binding sites. (a) Scheme of the NUCKS1/RAB29/SLC41A1
(between 205712 819 and 205 813 759 according to genome assembly GCRh37) showing the structure of NUCKS1, RAB29, and SLC41A1
genes (exons are in blue rectangles). The three diamonds represent the locations of the three SNPs analyzed in this study. (b) Enlargement of the
partial regions of NUCKS1, RAB29, and SLC41A1 the SNPs is located, is conducted. Below, the positions and sequences of rs823128,
rs1572931, and rs823156 are presented. The rectangles represent the length of the transcription factor-binding sites. The predicted changes
associated with the different alleles are highlighted: additional transcription factor-binding sites are in green and eliminated transcription factor-binding
sites are in red. NUCKS1, nuclear casein kinase and cyclin-dependent kinase substrate 1; RAB29, Ras-related protein Rab29; SLC41A1, solute
carrier family 41 member 1; SNP, single-nucleotide polymorphism.
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genes [36]. To our knowledge, there are no data showing

alterative splicing in NUCKS1, SLC41A1, or RAB29 caused

by SNPs or noncoding variants. Thus, here, our study

focused on the putative alteration of transcription factor-

binding sites in these genes. Through bioinformatic

analysis, we predicted that the up-regulated relevant DNA-

binding capability of transcription factors HOXA3, CTCF,

estrogen receptor-β, NP-4 and RARAmight play protective

roles in PD through regulating gene transcription, and the

capability block of transcription factors TSC2, TOPORS,

PGR and NFASC might have the same effects. However,

the exact effects of these transcription factors on the

function of the relevant genes and on the pathophysiology

of PD are still obscure and need further investigation.

In summary, this study indicated that SNPs of NUCKS1,
RAB29, and SLC41A1, located in PARK16, were asso-

ciated with reduced PD risk. It suggested the potential

roles of genes NUCKS1, RAB29, and SLC41A1 in PD, and

might reveal any potential targets for PD prevention and

treatment. Besides these, the findings indicated ethnicity-

specific effects of rs823128, rs1572931, and rs823156

SNPs on PD, which might be useful in future genetic

counseling, to assess PD susceptibility for carriers with

different ethnicities. For these ethnicity-specific effects of

PARK16, although the detailed mechanisms are still

unclear, they showed potential population differences in

PD susceptibility and PD predisposing factors across

ethnicities. However, future well-designed studies,

including studies with more clinical and more experi-

mental evidence, are needed to shed more light on these

findings. In addition, ethnicity-specific effects of the

SNPs on PD susceptibility, even located in the same

gene, are still unclear, which should be further explored

as well.
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