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are linked to deletion of the X chromosome
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ABSTRACT
Background Congenital heart disease (CHD) is a
cardinal feature of X chromosome monosomy, or Turner
syndrome (TS). Haploinsufficiency for gene(s) located on
Xp have been implicated in the short stature
characteristic of the syndrome, but the chromosomal
region related to the CHD phenotype has not been
established.
Design We used cardiac MRI to diagnose
cardiovascular abnormalities in four non-mosaic
karyotype groups based on 50-metaphase analyses:
45,X (n=152); 46,X,del(Xp) (n=15); 46,X,del(Xq) (n=4);
and 46,X,i(Xq) (n=14) from peripheral blood cells.
Results Bicuspid aortic valves (BAV) were found in
52/152 (34%) 45,X study subjects and aortic coarctation
(COA) in 19/152 (12.5%). Isolated anomalous
pulmonary veins (APV) were detected in 15/152 (10%)
for the 45,X study group, and this defect was not
correlated with the presence of BAV or COA. BAVs were
present in 28.6% of subjects with Xp deletions and
COA in 6.7%. APV were not found in subjects with Xp
deletions. The most distal break associated with the
BAV/COA trait was at cytologic band Xp11.4 and
ChrX:41,500 000. One of 14 subjects (7%) with the
46,X,i(Xq) karyotype had a BAV and no cases of
COA or APV were found in this group. No cardiovascular
defects were found among four patients with Xq
deletions.
Conclusions The high prevalence of BAV and COA in
subjects missing only the X chromosome short arm
indicates that haploinsufficiency for Xp genes
contributes to abnormal aortic valve and aortic arch
development in TS.

INTRODUCTION
Turner syndrome (TS) is caused by sex chromo-
some haploinsufficiency and occurs in ∼1/2500 live
female births, as determined by large-scale cytogen-
etic screening studies.1 2 Although formation of
embryos monosomic for the X chromosome occurs
commonly during mammalian reproduction, the
great majority of human 45,X gestations are lost in
spontaneous abortions.3 The cause for this high
rate of lethality in human gestations is unknown,
and contrasts with the fact that X monosomy does
not impair survival, somatic size or fertility in
mice.4 Most spontaneous 45,X abortions occur in
mid-late first trimester characterised by ruptured
chorionic and amniotic sacs and minimal fetal
development.5 Second trimester miscarriages are

associated with severe fetal hydrops, and defective
lymphatic and vascular development.5

Congenital heart defects (CHD) are a major
cause of pre- and postnatal mortality in TS.6

Approximately 10% of newborns with TS have left
heart hypoplasia, which is usually lethal.7 The most
common cardiovascular defects in surviving girls and
women are bicuspid aortic valve (BAV) and aortic
coarctation (COA), seen in approximately 30% and
12%, respectively,8–10 but the chromosomal locus for
CHD in TS has not been established. Therefore, in
the present study we investigated the prevalence of
CHD in groups of girls and women with non-mosaic
karyotypes for 45,X compared to prevalence in
groups with selective deletions of X chromosome
short or long arms.

METHODS
Study subjects were enrolled in the intramural
NICHD (National Institute of Child Health and
Human Development) protocol: Turner syndrome:
genotype and phenotype (NCT:00006334).
Participants or parents in the case of minors signed
institution review board approved informed
consent documents. Inclusion in this CHD focused
sub-study required a peripheral blood karyotype
with 100% of cells in 50-metaphase analyses dem-
onstrating (1) 45X; (2) 46,X,del(Xp); (3) 46,X,i
(Xq); (45) 46,X,del(Xq), and ability to undergo a
cardiac MRI. The review of 50 metaphases rules
out mosaicism for a second cell line with 95% con-
fidence.11 The diagnosis of BAV, COA, and anomal-
ous pulmonary veins (APV) by cardiac MRI has
been described in prior papers.9 10 Further charac-
terisation of X chromosome deletion breakpoints
for informative cases was on genomic DNA isolated
from whole blood and analysed by comparative
genomic hybridisation using custom X chromo-
some tiling arrays containing 220 000 probes with
average 280 bp spacing (Agilent Technology).
Results were analysed using CGH Analytics V.3.4
software from Agilent.

RESULTS
BAV was detected in 34.2% of the 45,X group,
28.6% of the 46,X,del(Xp) group, 7% of the 46,X,
i(Xq) group, and 0% of the 46,X,del(Xq) group
(table 1). COA was present in 12.5% of 45,X and
7% of 46,X,del(Xp) subjects (table 1). APV were
present in 10.8% of the 45,X group, and in none
of the other groups (table 1). The prevalence of
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these specific defects in the general female population is also
noted in the last row of table 1.

The most informative case regarding further localisation of an
Xp CHD locus was provided by a patient with BAVand COA, and
deletion at Xp11.4 associated with translocation of terminal frag-
ment of chromosome 14q demonstrated by fluorescence in situ
hybridisation (FISH) (46,X,der(X)t(X;14)(p11.4;q32.3). Analysis
of this genome by CGH revealed a breakpoint at ∼X: 41 500 000,
interrupting the CASK gene between exons 8–9 (figure 1). This
patient had short stature as a child and spontaneous menarche at
14 years followed by primary ovarian failure by age 18. She had
surgical COA repair at 14 years of age. She had neither dys-
morphic features nor any signs of lymphoedema. There was no
developmental delay. The other Xp deletions associated with BAV
involved breakpoints nearer the centromere, at Xp11.1 or 11.2
and peri-centromeric breaks for 46,X,(Xq10) (table 2). None of
these BAV patients with Xp deletion had neck webbing.

Associations between the different defects in the 45,X group
COA was significantly more common among BAV patients
(11/52) vs 8/100 of normal tricuspid aortic valve patients
(p<0.01 by Fisher’s exact t test). APV prevalence was similar in
patients with BAV (6/52; 11.5%) and normal tricuspid aortic
valves (9/100; 9%, p=0.6).

DISCUSSION
Prior studies have shown that short stature, and cognitive and
lymphoedema traits in TS are correlated with Xp deletions.12–16

A pioneering effort to determine the chromosomal locus for the
CHD phenotype in TS was frustrated by paucity of non-mosaic

Xdel subjects and limited definition of specific deletions in X
fragmentation subjects (ie, rX).17 Furthermore, ascertainment in
early studies was based on clinical cardiac evaluations supported
at best with M-mode transthoracic echocardiography. Using
cardiac MRI to screen for defects in a large cohort with rigor-
ously defined, non-mosaic karyotype groups, we were able to
demonstrate a significant prevalence of BAV in patients with Xp
deletion (27%), similar to that in 45,X (34%) and more than 50
times greater than the general female population.18 These obser-
vations indicate that haploinsufficiency for Xp gene(s) contri-
butes to left sided defects in cardiovascular development in TS.
An informative deletion in a subject with both COA and BAV
was associated with a breakpoint at X:41,500 000 implicating
gene(s) telomeric to this locus.

The pathogenesis of cardiovascular developmental defects in
TS is not well understood. The characteristic spectrum involves
the left side of the heart and thoracic aorta, including hypoplastic
left heart (HLH), aortic valve and aortic hypoplasia, interruption
or coarctation, all representing left ventricular outflow tract
(LVOT) defects. Noting an association between fetal cystic
hygroma and the presence of COA, Clarke suggested that dis-
tended lymphatics obstructed or reduced blood flow in the devel-
oping fetal heart and thus caused the signature LVOT defects in
TS.19 He also suggested that outflow obstruction led to backup
of blood into the pulmonary bed, potentially causing APV. Thus
was formed the view that haploinsufficiency for unknown X and
Y chromosome ‘lymphogenic’ gene(s) were the proximate cause
of CHD in TS. A lymphoedema critical region was mapped to
Xp11.4,14 15 but there has been no further progress in identify-
ing this gene over the past decade. Some recent observations
suggest that defects in outflow tract development are not causally
linked to fetal lymphoedema. For example, pedigree and epi-
demiological studies show that LVOT defects cluster together
in families without lymphoedema,20 21 supporting a primary
genetic defect causing both BAV and COA independent of fetal
lymphoedema. The fact that not one of the 5 Xp deletion sub-
jects with BAV in our study had neck webbing or other signs
of fetal lymphoedema also supports the view that CHD and
lymphoedema are likely independent aspects of the Turner
phenotype. Finally, fetal lymphoedema and neck webbing are
associated with many different congenital cardiac defects in
Down and Noonan syndromes and lymphoedema-distichiasis,
indicating that these features represent relatively non-specific
associations with diverse forms and genetic aetiologies of CHD.

Figure 1 Xp deletion at p11.4 and
ChX 41,500 000 shown by comparative
genomic hybridisation. The break
interrupts CASK between the eighth
and ninth exons. This patient had both
aortic coarctation and bicuspid aortic
valves. Access the article online to
view this figure in colour.

Table 1 Prevalence of specific congenital cardiovascular defects
according to Turner karyotype

Karyotype BAV COA APV

45,X (n=152) 52 (34.2%) 19 (12.5%) 15 (9.9%)
46,X,del(Xp) (n=15) 4 (28.6%) 1 (7%) 0
46,X,i(Xq) (n=14) 1 (7.7%) 0 0
46,X,del(Xq) (n=4) 0 0 0
46,XX 0.5% <0.1% <0.1%

APV, anomalous pulmonary veins; BAV, bicuspid aortic valves; COA, aortic
coarctation.
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Isolated APV were the third most common defect found in
this study. At a prevalence of 10%, that is 100-fold greater than
the general population.22 A relatively high rate of APV in TS
has been noted previously.9 23–27 Interestingly, APV are not
more common in males versus females in the general popula-
tion,22 separating these venous anomalies from the LVOT
defects. Moreover, APV were not correlated with BAV or COA
—further supporting the view that LVOT obstruction does not
cause APV. We did not observe any cases of APV in patients
with Xp deletions, isoX chromosomes or Xq deletions in this
study, but given a prevalence of 10%, the likelihood of cases
occurring in the small X deletion samples is low, and further
studies or meta-analyses with larger sample size will be neces-
sary to determine the locus for APV.

The most distal or telomeric informative breakpoint in our
study interrupted CASK, which encodes a serine kinase that is
active in the central nervous system (CNS). Mutations/deletions
have been associated with mental retardation and microcephaly
(OMIM 300172), which are not features of TS. Moreover,

CASK does not escape X inactivation and has a defective Y
homologue. Two more likely candidates are immediately telo-
meric in p11.4: USP9X escapes X-inactivation, has an expressed
Y homologue,28 and is highly expressed in endothelium and
heart. The gene encodes a ubiquitinase that is involved in trans-
forming grow factor β (TGFβ)-Smad signalling,29 a pathway
strongly implicated in the development of the cardiovascular
system. DDX3 encodes an RNA helicase that escapes
X-inactivation and has a Y homologue,30 and is abundant
during embryogenesis. However, USPY and DDX3Y mutations/
deletions are associated with azoospermia/infertility, but not
cardiac or other somatic defects.31

Pedigree studies in recent years have demonstrated familial
clustering of LVOT defects, with some individuals having COA,
some BAV, and some HLH20 21—including a case of monozy-
gotic twins, one of whom had BAV and the other HLH.32 These
data suggest that a single gene defect may produce variations of
LVOT. An additional consideration pertinent in the search for
sex chromosome genes involved in the cardiovascular system is
that LVOT defects are significantly more common in males
than females,33 and this major epidemiological fact is without
explanation. We have raised the possibility that a gene critically
important for LVOT development is located in PAR1.34 35 This
region exhibits extreme sex dimorphism in meiotic recombin-
ation rate, with males having 7–8-fold greater crossover events
versus females.36 This excess recombinant activity may be asso-
ciated with higher genetic disruption for the Y chromosome
PAR1, and thus higher rate of LVOT defects in males. Therefore
it is important for genomic investigations on CHD may pro-
ductively focus on the Y chromosome. In one recent study, null
mutations in TBL1Y were reported in two unrelated men with
COA37; this gene is located in an unstable Yp region outside
PAR1. The X homologue is located at Xp22.3 close to the
border with PAR1. These recent findings, together with
the present data showing that the LVOT defect in TS maps to
the Xp terminal regions, support the view that a gene or genes
located on Xp and presumably Yp are important for normal car-
diovascular development.
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