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Abstract: Coupled vibration of a radially polarized piezoelectric cylindrical transducer is analyzed
with the mechanical coupling coefficient method. The method has been utilized to analyze the metal
cylindrical transducer and the axially polarized piezoelectric cylindrical transducer. In this method,
the mechanical coupling coefficient is introduced and defined as the stress ratio in different directions.
Coupled vibration of the cylindrical transducer is regarded as the interaction of the plane radial
vibration of a ring and the longitudinal vibration of a tube. For the radially polarized piezoelectric
cylindrical transducer, the radial and longitudinal electric admittances as functions of mechanical
coupling coefficients and angular frequencies are derived, respectively. The resonance frequency
equations are obtained. The dependence of resonance frequency and mechanical coupling coefficient
on aspect ratio is studied. Vibrational distributions on the surfaces of the cylindrical transducer are
presented with experimental measurement. On the support of experiments, this work is verified and
provides a theoretical foundation for the analysis and design of the radially polarized piezoelectric
cylindrical transducer.

Keywords: piezoelectric cylindrical transducer; coupled vibration; mechanical coupling coefficient;
resonance frequency

1. Introduction

Radially polarized piezoelectric cylindrical transducers are widely used for filters, sensors,
transmitters, and actuators, as well as in the field of nondestructive testing, medical diagnostics,
underwater signaling, and ultrasonic motors [1–5]. For the theoretical analyses of the piezoelectric
cylindrical transducer, Shuaijun Wang studied the ring-type and tube-type piezoelectric transducers
polarized in the radial direction [6,7]. The vibration of the piezoelectric ring is along the plane radial
direction, and the vibration of the piezoelectric tube is along the longitudinal direction. To increase the
radiation area, augment the radiation range and realize the radial and longitudinal propagation at
the same time, the large dimension and finite length piezoelectric cylindrical transducer is studied.
Ebenezer described the piezoelectric thin shell theoretical model to analyze the radially polarized
ceramic cylinder [8,9]. Larbi developed accurate piezoelectric shell finite elements of radially polarized
multilayer piezoelectric hollow cylinder [10]. In these reports, the shell theory [11–14] and the
membrane theory [15] are used, which neglect the radial stress and strain in piezoelectric equations [16].
It is more preferable for the analysis of the thin-wall transducer. When the thickness of the wall of the
piezoelectric transducer is without limitation, the shell and the membrane theory are not recommended.
In this case, the vibration of the piezoelectric cylindrical transducer is a complex coupled vibration,
and the radial, circumferential, and axial stresses and strains are all considered.

To analyze the complex coupled vibration of the transducer, Giebe and Blechshmidt firstly
proposed that vibration of the cylindrical transducer was considered as a dynamical coupling
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between two partial mechanical systems [17]. This thought provided an effective way to study
the coupled vibration of large dimension and finite length cylindrical transducers. According to this
thought, Boris Aronov used the energy method to analyze the coupled vibration of the thin-walled
piezoelectric cylindrical transducers for various polarization states [18,19]. Shuyu Lin utilized the
mechanical coupling coefficient method [20,21] to analyze the coupled vibration of the axially polarized
piezoelectric cylindrical transducer [22,23] and the elastic cylindrical transducer [24]. However, fewer
researchers have studied the radially polarized piezoelectric cylindrical transducer with the mechanical
coupling coefficient method.

The object of this paper is the coupled vibration of radially polarized piezoelectric cylindrical
transducer, in the hypothesis of axial symmetry modes and neglecting the shear and torsion modes.
Generally speaking, numerical simulation methods can analyze the complex coupled vibration of
the piezoelectric transducer. However, it is of less physical insight, and more time consuming,
compared with the analytical method. In the present paper the radially polarized piezoelectric
cylindrical transducer is analyzed with the mechanical coupling coefficient method. The method is
an approximate analytical method. A mechanical coupling coefficient is defined as a ratio of radial
strain and circumferential strain to axial strain. It divides the piezoelectric equations into the radial
and longitudinal vibrational parts. The electric admittances, as functions of resonance frequencies
and mechanical coupling coefficients, are derived. The radial and longitudinal vibrational resonance
frequency equations are obtained. The effects of aspect ratios on resonance frequencies and mechanical
coupling coefficients are studied [25]. In experiment, vibrational distributions on the surfaces of the
cylindrical transducer are presented.

2. Coupled Vibration Analyses of the Radially Polarized Piezoelectric Cylindrical Transducer

A piezoelectric cylindrical transducer polarized in the radial direction is shown in Figure 1. In the
cylindrical coordinate system, a, b, and l represent the inner radius, the outer radius, and the length.
The piezoelectric transducer is considered as mechanically unloaded. The polarization direction is
along the plane radial direction and it is denoted by the four arrows. The external exciting electric
field is parallel to the polarization direction.
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Figure 1. A radially polarized piezoelectric cylindrical transducer.

The three-dimensional motion equations for the cylinder in coupled vibration are:
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ρ
∂2ξθ

∂t2 =
∂Trθ

∂r
+

1
r

∂Tθ

∂θ
+

∂Tθz
∂z

+
2Trθ

r
(1b)

ρ
∂2ξz

∂t2 =
∂Trz

∂r
+

1
r

∂Tθz
∂θ

+
∂Tz

∂z
+

Trz

r
(1c)

where r, θ, z are the cylindrical co-ordinates; ξr, ξθ , ξz are the three displacement components; and Tr,
Tθ , Tz, Trθ , Trz, Tθz are the stress components in the piezoelectric ceramic cylinder. The relationships
between the strain and the displacement are as follows:

Sr =
∂ξr

∂r
, Sθ =

1
r

∂ξθ

∂θ
+

ξr

r
, Sz =

∂ξz

∂z
(2a)

Srθ =
1
r

∂ξr

∂θ
+

∂ξθ

∂r
− ξθ

r
, Sθz =

1
r

∂ξz

∂θ
+

∂ξθ

∂z
, Srz =

∂ξr

∂z
+

∂ξz

∂r
(2b)

Here Sr, Sθ , Sz, Srθ , Srz, Sθz are the strain components.
The constitutive piezoelectric equations for the radially polarized cylinder are as follows:

Tθ = cE
11Sθ + cE

12Sz + cE
13Sr − e31Er (3a)

Tr = cE
13Sθ + cE

13Sz + cE
33Sr − e33Er (3b)

Tz = cE
12Sθ + cE

11Sz + cE
13Sr − e31Er (3c)

Tzr = cE
44Szr (3d)

Dr = e31Sθ + e31Sz + e33Sr + εS
33Er (3e)

Dz = e15Szr (3f)

As the polarization direction is parallel to that of the electric field, the vibration is regarded as
a coupled one of longitudinal and radial extensional vibrations, approximately; therefore, shearing
and torsion stress and strain can be ignored. In this case, when the edge effect of the electric field is
ignored, the following equations are obtained as:

Ez = 0, Eθ = 0, Er 6= 0, Dz = 0, Dθ = 0, Dr 6= 0, (4a)

Trz = Trθ = Tθz = 0, Srz = Srθ = Sθz = 0 (4b)

where Ez, Eθ , Er and Dz, Dθ , Dr are the electric field and electric displacement components [26].
Therefore, the linear constitutive piezoelectric equations for the radially polarized cylinder are

expressed as:
Tθ = cE

11Sθ + cE
12Sz + cE

13Sr − e31Er (5a)

Tr = cE
13Sθ + cE

13Sz + cE
33Sr − e33Er (5b)

Tz = cE
12Sθ + cE

11Sz + cE
13Sr − e31Er (5c)

Dr = e31Sθ + e31Sz + e33Sr + εS
33Er (5d)

where cij, eij and εij (i, j = 1, 2, 3) denote elastic, piezoelectric, and dielectric material constants.
The strains are linked to the displacement and radius by gradient relations.

Sr =
∂ξr

∂r
, Sθ =

ξr

r
, Sz =

∂ξz

∂z
(6)

Radial and longitudinal motion equations are:

ρ
∂2ξr

∂t2 =
∂Tr

∂r
+

Tr − Tθ

r
(7a)
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ρ
∂2ξz

∂t2 =
∂Tz

∂z
(7b)

Based on the piezoelectric equations and motion equations, in order to connect the radial vibration
with longitudinal vibration, the mechanical coupling coefficient c is defined as,

c =
cE

13Sz

cE
12Sθ + cE

13Sr
(8)

The introduction of the mechanical coupling coefficient divides the coupled vibration of the
piezoelectric cylindrical transducer into a short ring radial vibration and a long tube longitudinal
vibration. In the following analyses, equivalent radial vibration and longitudinal vibration are
presented, respectively.

2.1. The Equivalent Radial Vibration of the Piezoelectric Cylindrical Transducer in Coupled Vibration

For the radial vibration of the piezoelectric cylindrical transducer, since there are no free moving
electrical charges in the piezoelectric ceramic material, the radial electric displacement Dr satisfies the
electrostatic condition:

1
r

∂

∂r
(r·Dr) = 0 (9)

The solution to Equation (9) is:
Dr = Droejωt (10)

where Dro =
C′
r is dependent of radius r. Then the radial electric field is expressed as:

Er = c3Sθ + c5Sr +
C′

εS
33r

(11)

where c3, c5 and C′ are constants.
Substituting Equations (8) and (11) into Equation (5d), the radial electric displacement can

be obtained:

Dr = (e31 + εS
33c3 + e31

c·cE
12

cE
13

)Sθ + (e33 + εS
33c5 + e31c)Sr +

C′

r
(12)

From Equations (10) and (12), the constants in Equation (11) can be obtained,

c3 =
−cE

13e31 − c·cE
12e31

cE
13εS

33
(13a)

c5 =
−c·e31 − e33

εS
33

(13b)

Therefore, the stress expressions of Equation (5a,b) are presented as follows:

Tθ = A1Sθ + A4Sr −
e31C′

εS
33r

(14a)

Tr = A2Sθ + A3Sr −
e33C′

εS
33r

(14b)

where A1 = cE
11 +

c·cE
12cE

12
cE

13
− e31c3, A2 = cE

13 + c·cE
12 − e33c3, A3 = cE

33 + c·cE
13 − e33c5,

A4 = cE
13 + c·cE

12− e31c5.
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Substituting Equation (14a,b) into Equation (7a) yields the motion equation for radial vibration:

∂2ξr

∂r2 +
m
r

∂ξr

∂r
+ (k2

r −
v2

r2 )ξr +
n·C′

r2 = 0 (15)

Here m = A2+A3−A4
A3

, n = e31
εS

33 A3
and v =

√
A1
A3

. kr =
ω
Vr

is the equivalent radial wave number; ω is the

angular frequency, and Vr =
√

A3
ρ is the equivalent radial sound speed.

By means of the mathematical software of Mathematica 9.0 (Wolfram Research, Champagne, IL,
USA), the solution to Equation (15) can be obtained as:

ξr = r−
m−1

2 (C1·Jq(krr) + C2·Yq(krr)− C′·nπ

2
Fq(krr)) (16)

where Jq(krr) and Yq(krr) are Bessel functions of the first kind and the second kind, q =

√
(m−1

2 )
2
+ v2.

C1 and C2 are constants determined by the boundary conditions. Fq(krr) is a Lommel function,
its expression is:

Fq(krr) = (
∫

r
m−1

2 −1 Jq(krr)dr)·Yq(krr)− (
∫

r
m−1

2 −1Yq(krr)dr)·Jq(krr) (17)

From Equation (16), the radial strain is obtained,

∂ξr
∂r = −m−1

2 ·r
−m−1

2 −1(C1·Jq(krr) + C2·Yq(krr)− C′· nπ
2 Fq(krr)

)
+r−

m−1
2 (C1·Jq

′(krr) + C2·Yq
′(krr)− C′· nπ

2 Fq
′(krr))

(18)

The radial stress can be expressed as:

Tr = A2Sθ + A3Sr −
C′e33

εS
33r

= r−
m−1

2 [C1·J(r) + C2·Y(r)− C′·nπ

2
F(r)]− C′e33

εS
33r

(19)

where:
J(r) = (A2 −

m− 1
2

A3 + qA3)Jq(krr)/r− kr A3 Jq+1(krr)

Y(r) = (A2 −
m− 1

2
A3 + qA3)Yq(krr)/r− kr A3Yq+1(krr)

F(r) = (A2 −
m− 1

2
A3 + qA3)Fq(krr)/r− kr A3Fq+1(krr)

The following formulas are utilized in the derivation [27],

Jq
′(krr) =

q
r

Jq(krr)− kr Jq+1(krr)

Yq
′(krr) =

q
r

Yq(krr)− krYq+1(krr)

Fq
′(krr) =

q
r

Fq(krr)− krFq+1(krr)

Fq+1(krr) = (
∫

r
m−1

2 −1 Jq(krr)dr)·Yq+1(krr)− (
∫

r
m−1

2 −1Yq(krr)dr)·Jq+1(krr)

The unknown constants C1 and C2 in Equation (16) are determined from the following boundary
conditions,

Tr=a = 0 (20a)

Tr=b = 0 (20b)
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Therefore, C1 and C2 are obtained,

C1 =
C′·[a m−1

2 −1Y(b)− b
m−1

2 −1Y(a)] e33
εS

33
+ nπ

2 [F(a)Y(b)− F(b)Y(a)]

J(a)Y(b)− J(b)Y(a)
(21a)

C2 =
C′·[a m−1

2 −1 J(b)− b
m−1

2 −1 J(a)] e33
εS

33
+ nπ

2 [F(a)J(b)− F(b)J(a)]

J(b)Y(a)− J(a)Y(b)
(21b)

Based on the radial voltage V11 =
∫ b

a Erdr and the radial current I11 = jω
∮

DrdS, the electric
admittance of the radial vibration is obtained:

Y11 =
I11

V11
=

jω
∮

DrdS∫ b
a Erdr

=
jω2πl

P·Jba + Q·Yba − nπ
2 Fba +

Inb−Ina
εS

33

(22)

where:

P =
(a

m−1
2 −1·Y(b)− b

m−1
2 −1·Y(a)) e33

εS
33
+ nπ

2 (F(a)Y(b)− F(b)Y(a))

J(a)Y(b)− J(b)Y(a)

Q =
(a

m−1
2 −1·J(b)− b

m−1
2 −1·J(a)) e33

εS
33
+ nπ

2 (F(a)J(b)− F(b)J(a))

J(b)Y(a)− J(a)Y(b)

Jba = (c3 −
m− 1

2
·c5 + qc5)

∫ b

a
r−

m−1
2 −1 Jq(krr)dr− kr

∫ b

a
r−

m−1
2 Jq+1(krr)dr

Yba = (c3 −
m− 1

2
·c5 + qc5)

∫ b

a
r−

m−1
2 −1Yq(krr)dr− kr

∫ b

a
r−

m−1
2 Yq+1(krr)dr

Fba = (c3 −
m− 1

2
·c5 + qc5)

∫ b

a
r−

m−1
2 −1Fq(krr)dr− kr

∫ b

a
r−

m−1
2 Fq+1(krr)dr

2.2. The Equivalent Longitudinal Vibration of the Piezoelectric Cylindrical Transducer in Coupled Vibration

For the longitudinal vibration of the piezoelectric cylindrical transducer, based on Equations (8),
(11), (5c) and (7b), the longitudinal displacement is obtained,

ξz = Az sin(kzz) + Bz cos(kzz) (23)

From Equation (23), the longitudinal strain is expressed as:

∂ξz

∂z
= Azkz cos(kzz)− Bzkz sin(kzz) (24)

The longitudinal stress is expressed as:

Tz = (
cE

13
c

+ cE
11)Sz − e31Er = (

cE
13
c

+ cE
11)[Azkz cos(kzz)− Bzkz sin(kzz)]− e31Er (25)

where the unknown constants Az and Bz are determined from the following boundary conditions,

Tz=0 = 0 (26a)

Tz=l = 0 (26b)

The constants are obtained:
Az =

c·e31Er

(cE
13 + c·cE

11)kz
(27a)
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Bz =
c·e31Er

cE
13 + c·cE

11

(cos(kzl)− 1)
kz sin(kzl)

(27b)

For the longitudinal vibration of the cylinder, under quasi-static condition Sr = Sθ , and the

mechanical coupling coefficient is expressed as c = cE
13Sz

(cE
12+cE

13)Sr
.

The electric displacement is:

Dr = (e31 + e33)Sr + e31Sz + εS
33Er =

[
(e31 + e33)

cE
13

c(cE
12+cE

13)
+ e31

]
Sz + εS

33Er

=

[
(e31 + e33)

cE
13

c(cE
12+cE

13)
+ e31

][
c·e31Er

cE
13+c·cE

11

(
cos(kzz)− cos(kz l)−1

sin(kz l) sin(kzz)
)]

+ εS
33Er

(28)

Here, the radial electric field Er is considered as a constant.
Based on the longitudinal voltage V13 =

∫ b
a Erdr and the current I13 = jω

∮
DrdS, the electric

admittance of longitudinal vibration is:

Y13 =
I13

V13
=

jω
∮

DrdS∫ b
a Erdr

=

jω2πl·
(

a+b
2

)[
((e31 + e33)

cE
13

c(cE
12+cE

13)
+ e31)

c·e31
cE

13+c·cE
11

tan(kz l/2)
kz l + εS

33

]
b− a

(29)

It is found that Equations (22) and (29) are closely related with material parameters, geometrical
dimensions, the mechanical coupling coefficient, and the frequency. When the material parameters
and the geometrical dimension are given, Y11 and Y13 are the functions of the mechanical coupling
coefficient and the frequency. When Y11 and Y13 both reach the maximum, resonance frequency
equations are obtained. For the resonance frequency equations, there are two groups of solutions.
One group is the radial resonance frequency and the corresponding mechanical coupling coefficient.
The other group is the longitudinal resonance frequency and the corresponding mechanical
coupling coefficient.

3. The Dependence of Resonance Frequency and Mechanical Coupling Coefficient on Aspect Ratio

To analyze the dependence of the resonance frequency and the mechanical coupling coefficient on
the aspect ratio, Equations (22) and (29) are solved. Since they are complex transcendental functions, it
is difficult to obtain the analytical solutions and Mathematica 9.0 (Wolfram Research, Champagne, IL,
USA) software is used to calculate the equations.

For the piezoelectric cylindrical transducer, the inner radius a = 0.016 m and outer radius b = 0.02 m
are fixed, and the length l is changed. The piezoelectric material used is an equivalent of PZT-4
(Kunshan Risun Electronic Co., Ltd. Kunshan, China) manufactured in China. The relevant standard
parameters of PZT-4 are listed in Table 1 [28].

Table 1. Standard parameters of PZT-4.

Parameters Value

ρ
(
kg/m3) 7500

cE
11
(

N/m2) 13.9× 1010

cE
12
(

N/m2) 7.78× 1010

cE
13
(

N/m2) 7.43× 1010

cE
33
(

N/m2) 13.9× 1010

e31(N/(m/V)) −5.2
e33(N/(m/V)) 15.1

εS
33(C/m) 5.62× 10−9

When the aspect ratio l/2b is increasing from 0.1, the resonance frequencies and the corresponding
mechanical coupling coefficients are calculated and illustrated in Figures 2 and 3.
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Figure 2 demonstrates the dependence of the radial and longitudinal resonance frequencies on
aspect ratio. It is seen that when the aspect ratio increases, the radial and longitudinal resonance
frequencies decrease. The influence of longitudinal dimension on longitudinal resonance frequency is
stronger than that on the radial resonance frequency. At the aspect ratio of 0.9 < l/2b < 1.5, the radial
and longitudinal resonance frequencies are close. It is considered that there is a strong coupling
between the radial and longitudinal partial systems.

In addition, the finite element method (FEM) is used to compute the radial and longitudinal
resonance frequencies on different aspect ratios. The simulated resonance frequencies are illustrated in
Figure 2. It is found that the theoretical results are in good agreement with the simulated results.
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Figure 2. The relationships between resonance frequency and aspect ratio.

Figure 3 demonstrates the effect of aspect ratio on the corresponding radial and longitudinal
mechanical coupling coefficients. From the resonance frequency equations, two kinds of mechanical
coupling coefficients are found. The negative mechanical coupling coefficient corresponds to the radial
vibration, and the positive to the longitudinal vibration. When the aspect ratio increases, the values
of mechanical coupling coefficients decrease. At the aspect ratio of 0.9 < l/2b < 1.5, the mechanical
coupling coefficients are at the vicinity of ±1. The coupling of radial and longitudinal vibration is
strong. At the aspect ratio of l/2b < 0.9 and l/2b > 1.5, the coupled vibration is considered weak.

It is concluded that when the radial and longitudinal resonance frequencies are far away from
each other, the coupled vibration is weak. When the radial and longitudinal resonance frequencies are
close, the coupled vibration is strong and the mechanical coupling coefficient is at the vicinity of ±1.
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In addition, COMSOL Multiphysics 5.2 (COMSOL Inc. Stockholm, Sweden) is used to simulate
the different coupled vibrational modes on different aspect ratios. The piezoelectric devices in the
structural mechanics and the eigenfrequency type of analysis are selected, respectively. A radially
polarized piezoelectric cylinder is structured and the material of the model is the lead zirconate titanate
(PZT-4). The mesh density is set as 20. The elastic boundary condition is set as ‘free’. The low voltage
is applied on the inside surface and outside surface is grounded.

Two radially polarized piezoelectric cylindrical transducer models are created separately, the
inner and outer radii are the same (a = 0.016 m, b = 0.02 m), but the lengths are different (l = 0.03 m and
l = 0.056 m). Figure 4 shows at the aspect ratio l/2b = 0.75, the radial resonance frequency is 28.748 kHz,
and the longitudinal resonance frequency is 59.200 kHz. From the vibrational modes, the coupling
between the radial and longitudinal vibration is weak. Figure 5 shows at the aspect ratio l/2b = 1.4,
the radial resonance frequency is 25.400 kHz and the longitudinal resonance frequency is 35.854 kHz.
From the vibrational modes, the radial vibration and longitudinal vibrations affect each other strongly.
It is seen that the aspect ratio affects the coupled degree of the cylindrical transducer.
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Figure 5. The coupled vibration modes of the cylindrical transducer at aspect ratio of l/2b = 1.4.
(a,b) The radial extensional vibration mode of the coupled vibration; (c,d) The longitudinal extensional
vibration mode of the coupled vibration.

4. Experiments

To verify the theoretical analyses of coupled vibration, a radially polarized piezoelectric cylindrical
transducer made of PZT-4, with the inner radius a = 0.016 m, the outer radius b = 0.02 m, and the length
l = 0.03 m was manufactured. The resonance frequencies of the cylindrical transducer are measured by
the Polytec-400 scanning vibrometer (Polytec, Waldbronn, Germany). The measured results are listed
in Table 2.

In Table 2, the experiment method, the mechanical coupling coefficient method, and the finite
element method are used, and the radial and longitudinal resonance frequencies are presented.
The theoretical results are calculated by Mathematica 9.0 (Wolfram Research, Champagne, IL, USA)
according to Equations (22) and (29). The results from the finite element method are calculated with
COMSOL Multiphysics 5.2 (COMSOL Inc., Stockholm, Sweden), as the previous section presented.

Table 2. Comparison of resonance frequencies from different methods.

Resonance Frequency (kHz)

Radial Vibration Longitudinal Vibration

Experiment measurement 29.063 58.891
Mechanical coupling coefficient method 28.954 58.750

Finite element method 28.748 59.200

It is seen that the mechanical coupling coefficient method results are in good agreement with the
experimental results and the finite element method results.

In addition, to present the surface vibrational distributions of the piezoelectric cylindrical
transducer in coupled vibrations, Polytec scanning vibrometer (Polytec, Waldbronn, Germany) is used.
In the measurement, a frequency-sweeping electric signal produced by Polytec OFV-5000 vibrometer
controller is applied to the inside and outside surfaces of the piezoelectric cylinder. By means of the
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piezoelectric effect, mechanical vibration is produced and it excites the cylinder to vibrate. At the
output end of the cylindrical transducer, Polytec PSV-400 laser scanning head automatically measures
the vibration distribution on the surfaces. The experimental setup of the piezoelectric transducer is
illustrated in Figure 6. The vibrational displacement distributions and frequency responses of the
cylindrical transducer are recorded in Figures 7 and 8, respectively. Figure 7a presents the radial
vibrational distribution on the side surface of the transducer at the first resonance frequency. Figure 7b
is the frequency-radial vibrational velocity curve. In the frequency response pattern, the frequency
corresponding to the velocity peak is the radial resonance frequencies of the cylindrical transducer.
Figure 8a illustrates the longitudinal vibrational distribution on the end surface of the cylindrical
transducer at the longitudinal resonance frequency. Figure 8b is the frequency-longitudinal vibrational
velocity curve. In the frequency response pattern, the frequency corresponding to the velocity peak is
the longitudinal resonance frequency of the cylindrical transducer.

Sensors 2017, 17, 2850 12 of 15 

 

means of the piezoelectric effect, mechanical vibration is produced and it excites the cylinder to 
vibrate. At the output end of the cylindrical transducer, Polytec PSV-400 laser scanning head 
automatically measures the vibration distribution on the surfaces. The experimental setup of the 
piezoelectric transducer is illustrated in Figure 6. The vibrational displacement distributions and 
frequency responses of the cylindrical transducer are recorded in Figures 7 and 8, respectively. Figure 
7a presents the radial vibrational distribution on the side surface of the transducer at the first 
resonance frequency. Figure 7b is the frequency-radial vibrational velocity curve. In the frequency 
response pattern, the frequency corresponding to the velocity peak is the radial resonance frequencies 
of the cylindrical transducer. Figure 8a illustrates the longitudinal vibrational distribution on the end 
surface of the cylindrical transducer at the longitudinal resonance frequency. Figure 8b is the 
frequency-longitudinal vibrational velocity curve. In the frequency response pattern, the frequency 
corresponding to the velocity peak is the longitudinal resonance frequency of the cylindrical 
transducer. 

 
Figure 6. Experimental setup for the measurement of the radially polarized piezoelectric cylindrical 
transducer. 

 

(a) 

(b) 

Figure 6. Experimental setup for the measurement of the radially polarized piezoelectric
cylindrical transducer.

Sensors 2017, 17, 2850 12 of 15 

 

means of the piezoelectric effect, mechanical vibration is produced and it excites the cylinder to 
vibrate. At the output end of the cylindrical transducer, Polytec PSV-400 laser scanning head 
automatically measures the vibration distribution on the surfaces. The experimental setup of the 
piezoelectric transducer is illustrated in Figure 6. The vibrational displacement distributions and 
frequency responses of the cylindrical transducer are recorded in Figures 7 and 8, respectively. Figure 
7a presents the radial vibrational distribution on the side surface of the transducer at the first 
resonance frequency. Figure 7b is the frequency-radial vibrational velocity curve. In the frequency 
response pattern, the frequency corresponding to the velocity peak is the radial resonance frequencies 
of the cylindrical transducer. Figure 8a illustrates the longitudinal vibrational distribution on the end 
surface of the cylindrical transducer at the longitudinal resonance frequency. Figure 8b is the 
frequency-longitudinal vibrational velocity curve. In the frequency response pattern, the frequency 
corresponding to the velocity peak is the longitudinal resonance frequency of the cylindrical 
transducer. 

 
Figure 6. Experimental setup for the measurement of the radially polarized piezoelectric cylindrical 
transducer. 

 

(a) 

(b) 
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5. Conclusions

Coupled vibration of the radially polarized piezoelectric cylindrical transducer is analyzed based
on the mechanical coupling coefficient method. The introduction of mechanical coupling coefficient
divides the coupled vibration into the equivalent radial and longitudinal vibrations. By the theoretical
derivation, the electric admittances as functions of mechanical coupling coefficients and resonance
frequencies are obtained. The radial and longitudinal resonance frequency equations are acquired.

The dependence of resonance frequency and mechanical coupling coefficient on the aspect ratio of
the transducer is analyzed. At the aspect ratio of 0.9 < l/2b < 1.5, the radial and longitudinal resonance
frequencies are close, and the mechanical coupling coefficients are at the vicinity of ±1. It is considered
that the coupling of the radial and longitudinal vibrations is strong. At the aspect ratio of l/2b < 0.9
and l/2b > 1.5, the radial and longitudinal resonance frequencies are far away each other, and the
coupling of the two parts is weak.

In practical applications, the cylindrical piezoelectric transducer is neither a very thin ring
nor a very long, slender cylinder. Therefore, its coupled vibration is significant and cannot be
ignored. The analysis in this paper can be effectively used to analyze the coupled vibration. It is an
approximately analytical method and can be used to other cases of coupled vibrations of piezoelectric
devices which are nowadays widely used in ultrasonic emitters and sensors, such as underwater
sound hydrophones, ultrasonic transducers, piezoelectric transformers, and other applications.
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Nomenclature

ξi(m) Displacement component
Ti(Pa) Stress component
Si Strain component
Ei(V/m) Electric field component
Di
(
C/m2) Electric displacement component

cij
(

N/m2) Elastic material constant
eij(N/(m/V)) Piezoelectric material constant
εij(C/m) Dielectric material constant
ρ
(
kg/m3) Density

c Mechanical coupling coefficient
kr Equivalent radial wave number
Vr Equivalent radial sound speed
Jq(krr) Bessel functions of the first kind
Yq(krr) Bessel functions of the second kind
Fq(krr) Lommel function
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