
GigaScience, 9, 2020, 1–12

doi: 10.1093/gigascience/giaa147
TECHNICAL NOTE

TECHNICAL NOTE

Toward a scalable framework for reproducible
processing of volumetric, nanoscale neuroimaging
datasets
Erik C. Johnson 1,*, Miller Wilt1, Luis M. Rodriguez1,
Raphael Norman-Tenazas1, Corban Rivera1, Nathan Drenkow1,
Dean Kleissas1, Theodore J. LaGrow2, Hannah P. Cowley1, Joseph Downs1,
Jordan K. Matelsky1, Marisa J. Hughes1, Elizabeth P. Reilly1, Brock A. Wester1,
Eva L. Dyer2,3, Konrad P. Kording4 and William R. Gray-Roncal1,*

1Research And Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory,
11100 Johns Hopkins Rd., Laurel, MD, 20723 USA; 2School of Electrical & Computer Engineering, Georgia
Institute of Technology, 777 Atlantic Dr. NW, Atlanta, GA, 30332 USA; 3Coulter Department of Biomedical
Engineering, Georgia Institute of Technology, 313 Ferst Dr., Atlanta, GA, 30332 USA and 4Department of
Biomedical Engineering, University of Pennsylvania, 210 South 33rd St., Philadelphia, PA, 19104 USA
∗Correspondence address. Erik C. Johnson, Research And Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory,
11100 Johns Hopkins Rd., Laurel, MD, 20723 USA. E-mail: erik.c.johnson@jhuapl.edu http://orcid.org/0000-0002-7397-8531; William Gray-Roncal,
Research And Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD, 20723
USA. E-mail: william.gray.roncal@jhuapl.edu

Abstract

Background: Emerging neuroimaging datasets (collected with imaging techniques such as electron microscopy, optical
microscopy, or X-ray microtomography) describe the location and properties of neurons and their connections at
unprecedented scale, promising new ways of understanding the brain. These modern imaging techniques used to
interrogate the brain can quickly accumulate gigabytes to petabytes of structural brain imaging data. Unfortunately, many
neuroscience laboratories lack the computational resources to work with datasets of this size: computer vision tools are
often not portable or scalable, and there is considerable difficulty in reproducing results or extending methods. Results: We
developed an ecosystem of neuroimaging data analysis pipelines that use open-source algorithms to create standardized
modules and end-to-end optimized approaches. As exemplars we apply our tools to estimate synapse-level connectomes
from electron microscopy data and cell distributions from X-ray microtomography data. To facilitate scientific discovery, we
propose a generalized processing framework, which connects and extends existing open-source projects to provide
large-scale data storage, reproducible algorithms, and workflow execution engines. Conclusions: Our accessible methods
and pipelines demonstrate that approaches across multiple neuroimaging experiments can be standardized and applied to
diverse datasets. The techniques developed are demonstrated on neuroimaging datasets but may be applied to similar
problems in other domains.

Received: 20 April 2019; Revised: 19 August 2020; Accepted: 18 December 2020

C© The Author(s) 2020. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0002-7397-8531
mailto:erik.c.johnson@jhuapl.edu
http://orcid.org/0000-0002-7397-8531
http://orcid.org/0000-0002-7397-8531
mailto:william.gray.roncal@jhuapl.edu
http://creativecommons.org/licenses/by/4.0/


2 Reproducible processing of volumetric, nanoscale neuroimaging datasets

Keywords: computational neuroscience; containers; electron microscopy; microtomography; optimization; reproducible
science; workflows

Introduction

Testing modern neuroscience hypotheses often requires ro-
bustly processing large datasets. Often the laboratories best
suited for collecting such large, specialized datasets lack the ca-
pabilities to store and process the resulting images [1]. A di-
verse set of imaging modalities, including electron microscopy
(EM) [1], array tomography [2], CLARITY [3], light microscopy [4],
and X-ray microtomography (XRM) [5] will allow scientists un-
precedented exploration of the structure of healthy and dis-
eased brains. The resulting structural connectomes, cell type
maps, and functional data have the potential to radically change
our understanding of neurodegenerative disease.

Traditional techniques and pipelines developed and vali-
dated on smaller datasets may not easily transfer to datasets
that are acquired by a different laboratory or that are too large
to analyze on a single computer or with a single script. Prior
machine vision pipelines for EM processing, for instance, have
had considerable success [6–10]. However, these pipelines may
require extensive configuration and are not scalable [8], may re-
quire proprietary software and have unknown hyperparameters
[9], or are highly optimized for a single hardware platform [10].

In other domains, computer science solutions exist for im-
proving algorithm portability and reproducibility, including con-
tainerization tools like Docker [11] and workflow specification
such as the Common Workflow Language (CWL) [12]. Cloud
computing frameworks enable the deployment of containerized
tools [13,14], pipelines for scalable execution of Python code
[15], and reproducible execution [16]. Workflow management
and execution systems such as Apache Airflow [17] and related
projects such as TOIL [18] and CWL-Airflow [19] allow execution
of pipelines on scalable cloud resources. Despite the existence
of these tools, a gap currently exists for extracting knowledge
from neuroimaging datasets (due to the general lack of expe-
rience with these solutions, as well as a lack of neuroimaging-
specific features). We propose a solution that includes a library
of reproducible tools and pipelines, integration with compute
and storage solutions, and tools to automate and optimize de-
ployment over large (spatial) datasets. This gap is highlighted
in Table 1 and discussed further in the Methods section; criti-
cally our proposed solution combines common workflow speci-
fications, Dockerized tools, and automation for large-scale jobs
over volumetric neuroimaging datasets.

We introduce a library of neuroimaging pipelines and tools,
Scalable Analytics for Brain Exploration Research (SABER), to ad-
dress the needs of the neuroimaging community. SABER intro-
duces canonical pipelines for EM and XRM, specified in CWL,
with a library of Dockerized tools. These tools are deployed us-
ing the workflow execution engine Apache Airflow [17] using
Amazon Web Services (AWS) Batch to scale compute resources
with imaging data stored in the volumetric database bossDB
[20]. Metadata, parameters, and tabular results are logged using
the neuroimaging database Datajoint [21]. Automated tools al-
low deployment of pipelines over blocks of spatial data, as well
as end-to-end optimization of hyperparameters given labeled
training data.

We demonstrate the use of SABER for 3 use cases critical to
neuroimaging using EM, XRM, and light microscopy methods as
exemplars. While light microscopy is commonly used to image
cell bodies and functional activity with calcium markers, EM of-

fers unique insight into nanoscale connectivity [22–25], and XRM
allows for rapid assessment of cells and blood vessels at scale
[5,26, 27]. These approaches provide complementary informa-
tion and have been successfully used on the same biological
sample [5] because XRM is non-destructive and compatible with
EM sample preparations and light microscopy preparations. Be-
ing able to extract knowledge from large-scale volumes is a criti-
cal capability, and the ability to reliably and automatically apply
tools across these large datasets will enable the testing of excit-
ing new hypotheses.

Our integrated framework is an advance toward easily and
rapidly processing large-scale data, both locally and in the cloud.
Processing these datasets is currently the major bottleneck in
making new, large-scale maps of the brain—maps that promise
insights into how our brains function and are affected by dis-
ease.

Findings
Pipelines and tools for neuroimaging data

To address the needs of the neuroimaging community, we have
developed a library of containerized tools and canonical work-
flows for reproducible, scalable discovery. Key features required
for neuroimaging applications include:

� Canonical neuroimaging workflows specified in CWL [12] and
containerized, open-source image processing tools

� Integration of workflows with infrastructure to deploy jobs
and store imaging data at scale

� Tools to optimize workflow hyperparameters and automate
deployment of imaging workflows over blocks of data

Building on existing tools, our framework provides a more
accessible approach for neuroimaging analysis and can enable a
set of use cases for the neuroscientist by improving reproducibil-
ity. Details on adoption can be found in the Section “Required
background and getting started.”

To ensure broad impact, the SABER is designed to be as gen-
eralizable as possible. The core abilities to schedule and launch
Dockerized workflows are applicable to a wide range of volu-
metric datasets provided that (i) Dockerized tools exist, (ii) CWL
workflows can be specified, and (iii) raw data can be accessed
from existing volumetric repositories [20,28, 29], local files, or
cloud buckets. The standardized workflows described below are
developed specifically for EM and XRM. These workflows per-
form generalized, repeated processing techniques such as clas-
sification, object detection, and 2D and 3D segmentation, but
with parameters and weights specific to these modalities. Users
may be able to adapt these tools to additional problems with the
use of annotated training data and appropriate tuning.

Standardized workflows and tools

While many algorithms and workflows exist to process neu-
roimagery datasets, these tools are frequently laboratory and
task specific. As a result, teams often duplicate common in-
frastructure code (e.g., data download or contrast enhancement)
and re-implement algorithms, when it would be faster and more
reliable to instead reuse previously vetted tools. This hinders



Johnson et al. 3

Table 1: Comparison of existing projects related to workflow execution of neuroimaging pipelines

Feature SABER CWL-Airflow TOIL Galaxy Air-tasks Kubernetes

Purpose Workflow
management

system

Workflow
management

system

Workflow
management

system

Workflow
management

system

Workflow
management

system

Distributed
container

orchestration
Container support Yes Yes Yes Yes Yes Yes
Workflow description CWL CWL CWL or WDL Custom (CWL

beta)
Custom Python NA

Computational
background

Novice–expert Novice–expert Novice–expert Novice–expert Intermediate–
expert

Expert

Installation docker-compose pip install pip install Install scripts docker-compose Cluster
configuration

Cloud support AWS Planned Multiple cloud
providers

Multiple cloud
providers

Docker Infrakit Multiple cloud
providers

Volumetric database bossDB, DVID None None None cloud-volume NA
Parallel processing
model

Block-merge None None None Block-merge NA

Workflow deployment
for neuroimaging

Yes No No No Yes NA

Workflow optimization
for neuroimaging

Yes No No No No NA

Tool benchmarking
and datasets

Yes No No No No NA

EM tool library Yes No No No Yes NA
Tools for other
modalities

Yes No No No No NA

SABER delivers integrated containerized tools, a standardized workflow and tool description, and a volumetric database. It also provides tools for automating deploy-

ment over datasets by dividing into blocks (block-merge) and optimization of workflows. The most comparable tools are other workflow management systems such as
CWL-Airflow, TOIL, Galaxy, and Air-tasks. Air-tasks provides similar capabilities but lacks support for common workflow descriptions and tool optimization and offers
less flexibility for users. Similar projects such as TOIL, Galaxy, and CWL-Airflow lack neuroimaging-specific features to enable the use cases described in Methods.
Scalable cluster systems, such as Kubernetes, provide essential functionality to deploy containers at scale but need capabilities built to manage workflows and data

movement and are complementary to workflow management systems such as SABER. The SABER project adds critical features for neuroimaging by (i) interfacing with
existing solutions; (ii) providing a library of portable, Dockerized neuroimaging tools; and (iii) providing scripting to analyze large-scale neuroimaging datasets. NA:
not applicable; WDL: Workflow Definition Language.

attempts to reproduce results and accurately benchmark new
image-processing algorithms.

In our framework, workflows are specified by CWL pipeline
specifications. Individual tools are then specified by an addi-
tional CWL file, a container file, and corresponding source code.
This ensures a modular design for pipelines and provides a li-
brary of tools for the neuroscientist. This library of pre-packaged
tools and workflows helps reduce the number of computational
frameworks and software libraries that users need to be familiar
with, helping to limit the computational experience required to
run these pipelines.

Initially, we have implemented 2 canonical pipelines for EM
and XRM processing. For EM, we estimate graphs of connectiv-
ity between neurons from stacks of raw images. Given XRM im-
ages, we estimate cell body position and blood vessel position.
Each of these workflows is broken into a sequence of canonical
steps. Such a step-wise workflow can be viewed as a directed
acyclic graph (DAG). Each step of a pipeline is implemented by
a particular containerized software tool. The specific tools im-
plemented in our reference canonical pipelines are discussed
below.

Cell detection from X-ray microtomography and light microcscopy
XRM provides a rapid approach for producing large-scale submi-
cron images of intact brain volumes, and computational work-
flows have been developed to extract cell body densities and
vasculature [5]. Individual XRM processing tools have been de-
veloped for tomographic reconstruction [30], pixel classification

[31], segmentation of cells and blood vessels [5], estimation of
cell size [5], and computation of the density of cells and blood
vessels [5]. Running this workflow on a volume of X-ray images
produces an estimate of the spatially varying density of cells
and vessels. Samples of 1 m3 size (100 GB) can be imaged, re-
constructed, and analyzed in a few hours [5].

To implement a canonical XRM workflow, we define a set of
steps: extracting subvolumes of data, classifying cell and ves-
sel pixel probabilities, identifying cell objects and vasculature,
merging the results, and estimating densities. Details on data
storage and access can be found in the Framework Components
section. We defined Dockerized tools implementing a random
forest classifier, a Gaussian mixture model, and a U-net [32] for
pixel classification and the cell detection and vessel detection
strategies [5]. These tools provide a standard reference for the
XRM community, and modular replacements can be made as
new tools are developed and benchmarked against this exist-
ing standard. Fig. 1 shows this canonical workflow for XRM data,
with each block representing a separate containerized tool. Also
shown in Fig. 1B is example output from running the pipeline,
highlighting the resulting cell body positions and blood vessels.

These same tools can also be applied (with appropriate re-
training) to detecting cell bodies from light microscopy data,
such as from the Allen Institute Brain Atlas [4]. Here the same
pipeline tools can be reused to detect cell bodies using the step
for pixel classification followed by the step for cell detection.
This result demonstrates the application of these tools across
modalities and datasets to ease the path to discover.



4 Reproducible processing of volumetric, nanoscale neuroimaging datasets

Figure 1: Workflow for processing XRM data to produce cell and vessel location estimates. Raw pixels are used to predict probabilities of boundaries, followed by
detection of cell bodies and blood vessels. Finally, cell density estimates are created. A, reconstruction pipeline; B, reconstruction of the detected cells and blood
vessels in the test volume. Cells are shown as spheres and blood vessels as red lines.

Deriving synapse-level connectomes from electron microscopy
Several workflows exist to produce graphs of brain connectiv-
ity from EM data [6,7,10], including an approach that optimizes
each stage in the processing pipeline based on end-to-end per-
formance [8]. However, these tools were not standardized into
a reproducible processing environment, making reproduction of
results and comparison of new algorithms challenging.

We have defined a series of standard steps required to pro-
duce brain graphs from EM images, seen in Fig. 2. First, data
are divided into subvolumes; cell membranes are estimated for
each volume. Next, synapses are estimated and individual neu-
rons are segmented from the data. After this, synaptic connec-
tions must be associated with neurons, and results merged to-
gether across blocks. Then a graph can be generated by iterat-
ing over each synapse to find the neurons representing each
connection. Many tools have been developed for various sec-
tions of this pipeline, and a single tool may accomplish multiple
steps of the pipeline. Examples of tools for membrane segmen-
tation include convolutional neural network [33] and U-net [32]
approaches. Synapse detection has been achieved using deep
learning techniques and random forest classifiers [34,35]. Neural
segmentation has been previously done using agglomeration-
based approaches [36] and automated selection of neural net-
works [9]. For our initial implementation of this workflow, we
create CWL specifications and containerized versions of U-nets
[32] for synapse and membrane detection and use the GALA
tool [37] for neuron segmentation, and algorithms for associat-
ing synapses to neurons and generating connectomes [8].

When creating this canonical pipeline for EM processing,
our initial implementation goal is not to focus on pipeline per-
formance in the context of reconstruction metrics. Rather, we
aim to provide a reference pipeline for scientists and algo-
rithm developers. For scientists, this provides an established and
tested pipeline for initial discovery. For algorithm developers,
this pipeline can be used to benchmark algorithms that encom-
pass ≥1 step in the pipeline.

Optimization and deployment of workflows

To process modern neuroimaging datasets, users need more
than standardized pipelines and the ability to deploy them to
individual blocks of data. Scaling these workflows to current
datasets requires specialized interfaces to distribute jobs over
large volume and tune them to new data. The SABER project
provides (i) a parameterization API to distribute jobs over large
volumes of data and (ii) an optimization API to train pipelines
and fine-tune hyperparameters for new datasets.

To apply SABER workflows to large volumetric datasets, such
as those hosted in bossDB [20], a parameterization API allows
control over creating blocks from large datasets (by specify-
ing sizes and overlap of blocks in each dimension), running

pipelines on each block, and merging results (i.e., a distribute-
collect approach). A second parameter file specifies these de-
sired parameters and can be used with any compatible workflow
to deploy it to a new dataset. Deployment scripts enable rapid
configuration and deployment of workflows for new datasets.

To tune SABER workflows for new datasets, it is necessary
to train the parameters of the pipeline, including any hyper-
parameter optimization (Fig. 3). Our tools currently require a
small volume of labeled training data from the new dataset (al-
though recent efforts are also exploring unsupervised methods
[38]). To perform the hyperparameter search, we pursue an op-
timization strategy that assumes a black-box workflow, avoid-
ing assumptions such as differentiability of the objective func-
tion. SABER makes it possible to iteratively select parameters,
schedule parallel jobs, and collect results. This approach sup-
ports both batch and sequential optimization approaches. Ini-
tially, we implemented a simple grid search, random search,
and the adaptive search method shown in Fig. 3, based on ran-
dom resampling [39]. This will be expanded to techniques such
as sequential Bayesian optimization [40] and convex bounding
approaches [41] to develop a library of readily available, proven
techniques. To provide benchmarking for these approaches, the
team hosts available ground truth data (e.g., [23] for EM), and
scoring tools to compute metrics such as precision-recall or f1-
score.

Datasets for benchmarking workflows

A critical feature for new users, as well as developers of new con-
tainerized tools, is the availability of benchmark datasets for de-
riving synapse-level connectomes from EM, as well as segmen-
tation of cell bodies and vasculature from XRM data. Datasets
are hosted in the bossDB system [20, 42] for this purpose. For
testing XRM pipelines, data from the datasets “Dyer et al. 2017”
[5] and “Prasad et al. 2020” [43] can be used. These datasets con-
tain different brain regions including labels of cell bodies and
vasculature for training new users and developing new algo-
rithms. Similarly, for EM data, datasets such as “Kasthuri et al.
2015” [23] provide EM data along with segmentation and synapse
labels. These similarly enable new users and algorithm develop-
ers to compare to existing data and approaches.

Neuroimaging Use Cases
Use case 1: Pipeline optimization

When a new neuroimaging dataset is being collected, it is often
necessary to fine-tune or retrain existing pipelines. This is typi-
cally done by labeling a small amount of training data, which can
often be labor intensive, followed by optimizing the automated
image-processing pipeline for the new dataset. These pipelines



Johnson et al. 5

Figure 2: Canonical workflow for graph estimation in EM data volumes. This workflow provides the ability to reconstruct a nanoscale map of brain circuitry at the
single-synapse level. The procedure of mapping raw image stacks to graphs representing synapse-level connectomes consists of synapse and membrane detection,
segmentation of neurons, assignment of synapses, merging, and graph estimation. A, reconstruction pipeline; B, example segmentation of a neuron from a block of
data.

Figure 3: Use case of optimizing a pipeline for light microscopy data, comparing grid search, random search, and the random resampling approach described in
the text. We demonstrate these tools on a light microscopy dataset, leveraging methods originally developed for XRM—showcasing the potential for applying tools

across diverse datasets. The framework allows a user to easily compare the trade-offs of different approaches for a particular dataset. The maximum f1 score for each
approach is marked with a red cross. Automating this process using SABER allows for rapid deployment and optimization.

consist of heterogeneous tools with many hyperparameters and
are not necessarily end-to-end differentiable.

Users can execute the optimization routines using a simple
configuration file to specify algorithms, parameter ranges, and
metrics. Fig. 3 demonstrates the application of 3 algorithms for
pipeline optimization. We choose the Allen Institute for Brain
Science Reference Atlas [4] as a demonstration of generaliza-
tion beyond EM and XRM datasets. To optimize the pipeline, this
example optimizes over the following parameters: the initial
threshold applied to the probability map, size of circular tem-
plate, size of circular window used when removing a cell from
the probability map, and the stopping criterion for maximum
correlation within the image. The user specifies the range of
each parameter.

Our framework supports implementations of different opti-
mization routines, such as random selection of parameters with
resampling, as seen in Fig. 3. Random selection of parameters

often produces results comparable to those of grid search, and
users may need to explore algorithms to find an approach that
works well for the structure of their pipeline [39]. For the resam-
pling approach, we initially choose parameters at random and
then refine search parameters by choosing new parameters near
the best initial set, with the user setting a maximum number of
iterations. Fig. 3B shows a parameter reduction of 20% at each
resampling, leading to a more efficient parameter search and
improved performance. Using SABER, it is possible for a user to
explore the trade-offs for a range of hyperparameter optimiza-
tion routines.

Use case 2: Scalable pipeline deployment

The second critical use case of interest to neuroscientists is
the deployment of pipelines to large datasets of varying sizes.
Datasets may be on the order of gigabytes or terabytes, as in



6 Reproducible processing of volumetric, nanoscale neuroimaging datasets

XRM, to multiple petabytes, as in large EM volumes used for
connectome estimation. SABER provides a framework for block-
ing large datasets, executing optimized pipelines on each block,
then merging the results through a functional API. Given a
dataset in a volumetric database, such as bossDB, our Python
scripts control blocking, execution, and merging. Results are
placed back into a database for further analysis, or stored locally.
An example of this use case for XRM data can be seen in Fig. 4,
and another example of this use case for extracting synapse-
level connectomes can be seen in Fig. 5.

Use case 3: Benchmarking neuroimaging algorithms

The third major use case applies to developers implementing
new algorithms for neuroimaging datasets. Owing to tools be-
ing written in a variety of languages for a variety of platforms,
it has been difficult for the community to standardize compari-
son between algorithms. Moreover, it is important to assess end-
to-end performance of new tools in a pipeline that has been
properly optimized. Without this comparison, it is difficult to
directly compare algorithms or their impact. Using the specified
pipelines, a new tool may subsume 1 or more of these steps, with
the specification defining the inputs and outputs. A new CWL
pipeline can be quickly specified with the new tool replacing the
appropriate step or steps. Hyperparameter optimization can be
run on each example to compare tools, leveraging reference im-
ages and annotations for the pipelines provided in SABER.

Discussion

We have developed a framework for neural data analysis along
with corresponding infrastructure tools to allow scalable com-
puting and storage. We facilitate the sharing of workflows by
compactly and completely describing the associated set of tools
and linkages. Future enhancements will introduce versioning to
track changes in workflows and tools.

The SABER project aims to support multiple modalities, fo-
cusing initially on EM and XRM data through the development
of containerized tools for different steps such as synapse and
cell detection. The same tools can be used for different steps of
both workflows. For instance, our U-net [32] tool can be used to
generate probability maps for synapses, cell bodies, or cell mem-
branes when training with different data. The framework also
allows for joint analysis of co-registered datasets using our CWL
pipelines using different parameterized sweeps. The user can
then use simple Python scripts to pull and analyze any parts of
these data.

While the SABER project has focused on tools for processing
large EM and XRM datasets, many of the tools and infrastructure
developed would also be of interest to researchers investigating
light microscopy, positron emission tomography, and fMRI. The
features of SABER are most appropriate for large-scale volumet-
ric data, where records are large (gigabytes or larger) and it is
difficult to process a dataset in memory. Therefore, larger light
microscopy datasets may benefit the most from SABER. The de-
veloped tools focus on canonical problems such as object de-
tection, 2D segmentation, and 3D segmentation. These are gen-
erally useful for structural neuroimaging datasets and may be
reused in other contexts.

Our goal is to establish accessible reference workflows and
tools that can be used for benchmarking new algorithms and
assessing performance on new datasets. Moving forward, we
will encourage algorithm developers to containerize their solu-
tions for pipeline deployment and to incorporate state-of-the-

art methods. Through community engagement, we hope to grow
the library of available algorithms and demonstrate large-scale
pipelines that have been vetted on different datasets. We also
hope to recruit researchers from different domains to explore
how these tools apply outside of the neuroimaging community.

Prior solutions have taken different approaches to processing
neuroimaging data. For example, the workflow execution engine
LONI has been used for processing EM data [8] but requires ex-
tensive configuration and is not scalable to very large volumes.
The SegEM framework [9] offers extensive features for optimiz-
ing and deploying EM pipelines but is specifically focused on
neuron segmentation from EM data and is tied to a MATLAB clus-
ter implementation. Highly optimized pipelines can be deployed
on a single workstation [10], which is ideal for proven pipelines
as part of ongoing data collection but is limited in developing
and benchmarking new pipelines.

A major strength of the SABER approach is the use of CWL to
provide a common specification for workflows, which has con-
siderable advantages compared to workflow managers with spe-
cific Python syntax (e.g., [15, 45]). The common, interoperable
standard is important to allow reuse of the SABER workflows in
other workflow managers as they continue to evolve. This ap-
proach also encourages tools developed for other open-source
projects to be deployed using the SABER system.

A limitation of our existing tooling is interactive visualiza-
tion. Although we provide basic capabilities, additional work is
needed to interrogate raw and derived data products and iden-
tify failure modes. We are extending the open-source packages
substrate [46] and neuroglancer [44] to easily visualize data in-
puts and outputs of our workflows and tools.

Scalable solutions for containers such as Kubernetes [13] and
general workflow execution systems like Apache Airflow [17]
have provided the ability to orchestrate execution of contain-
ers at scale. These solutions, however, lack workflow defini-
tions, imaging databases, and deployment tools to enable neu-
roimaging use cases. SABER builds on top of these technologies
to enable neuroimaging use cases while avoiding the special-
ized, one-off approaches often used in conventional neuroimag-
ing pipelines.

Our solution leverages many powerful existing third-party
solutions (e.g., AWS, Apache Airflow). While this allows use of
powerful modern software packages and shared development,
it creates a risk if these technologies are not supported and de-
veloped in the future. While it is not possible to completely mit-
igate this risk, the modular strategies for storage and computa-
tion, described below, help to mitigate this challenge by allow-
ing components related to these services to be replaced. The key
dependency is Apache Airflow, but even in this case the work-
flows and Dockerized tools have potential applications with fu-
ture workflow managers.

Potential Implications

While our initial workflows focus on XRM and EM datasets,
many of these methods can be easily deployed to other modali-
ties such as light microscopy [47], and the overall framework is
appropriate for problems in many domains. These include other
scientific data analysis tasks as varied as machine learning for
processing noninvasive medical imaging data or statistical anal-
ysis of population data.

Code, demonstrations, and results of the SABER platform are
available on GitHub under an open-source license, along with
documentation and tutorials (see below). We make SABER avail-



Johnson et al. 7

Figure 4: Example deployment of pipeline over spatial dataset, in this case cell detection in XRM data. An example slice of raw data can be seen in A. The pipeline in
Fig. 1 was used to classify pixels (B) and detect cells. From the cells, a 3D scatter plot of the positions of the cell centers was generated (C).

able to the public with the expectation that it will help to en-
able and democratize scientific discovery of large, high-value
datasets and that these results will offer insight into neurally
inspired computation, the processes underlying disease, and
paths to effective treatment. Contributors and developers are
also encouraged to visit and join the open-source developers on
the project.

Future work will focus on usability, while integrating SABER
into existing open source frameworks for data storage and vi-
sualization (e.g., [20], [44]). In an effort to lower the barriers for
new users, this work will include GUIs, as well as the develop-
ment of additional reference pipelines. Integration with data-
stores like bossDB will enable a common ecosystem for new
users to find storage, processing, and visualization in a common
location.

Methods
Existing software solutions

For small-scale problems, individual software tools and
pipelines that are fully portable and reproducible have been
produced (e.g., [48]), but this challenge has not yet been solved
at the scale of modern EM and XRM volumes.

Many tools have become available for scalable computation
and storage, such as Kubernetes [13] and Hadoop [49], which en-
able the infrastructure needed for running containerized code
at scale. However, such projects are domain agnostic and do not
necessarily provide the features or customization needed by a
neuroscientist. As scalable computation ecosystems, these so-
lutions can be integrated as the back end for workflow manage-
ment systems such as SABER.

Traditional workflow environments (e.g., LONI Pipeline [50],
Nipype [45], Galaxy [51], and Knime [52]) provide a tool reposi-
tory and workflow manager but require connection to a shared
compute cluster to scale. All of these systems rely on software
that is installed locally on the cluster or local workstation, and
can result in challenging or conflicting configurations that slow
adoption and hurt reproducibility.

New frameworks for workflow execution have been devel-
oped but solve only a subset of the challenges for neuroimag-
ing. Boutiques [53] manages and executes single, command line
executable neuroscience tools in containers. Pipelines must be
encapsulated in a single tool, meaning that coding is required
to swap pipeline components. Dray [54] executes container-

based pipelines as defined in a workflow script. While Dray con-
tains some of the core functionality to execute container-based
pipelines, non-programmers cannot easily use the system and
it is limited in the types of workflows that are supported.

Similarly, Pachyderm [14] offers execution of containerized
workflows but lacks support for storage solutions appropriate
for neuroimaging, as well as optimization tools needed for these
neuroimaging pipelines. Workflow execution engines such as
TOIL [18] and CWL-Airflow [19] are closely related to SABER,
providing lightweight Python solutions for workflow schedul-
ing. However, like Pachyderm, they lack the automation tools
and storage scripts required by neuroimaging applications. The
most closely related tool is Air-tasks [55], which provides tools
to automate deployment of neuroimaging pipelines. Air-tasks,
however, provides fewer capabilities to the user and does not
support a common workflow specification or explicitly support
optimization or benchmarking.

Table 1 breaks down this comparison between SABER and ex-
isting workflow managers and execution solutions for scientific
computing. In general, neuroimaging applications benefit from
several key features that are not provided in these more general-
purpose scientific workflow approaches owing to the use of vol-
umetric data, few large datasets (versus many smaller images
in a large collection), and the need for tool cross-compatibility.
SABER delivers these key features through the use of stan-
dardized workflows, containerized tools, automation of deploy-
ment over volumetric data (as opposed to processing individual
records), and the ability to optimize pipelines. The closest exist-
ing solutions are workflow managers such as TOIL [18], Galaxy
[51], and CWL-Airflow [19]. These approaches are powerful but
focused on other problems in bioinformatics, such as gene se-
quence analysis, consisting of many small records. SABER adds
the necessary features to provide these capabilities for the neu-
roimaging community.

While existing pipeline tools like LONI [50] and Nipype [45]
enable the execution of scientific workflows, they still lack a few
key features for the neuroimaging user and may limit the porta-
bility and utility of workflows. SABER provides a library of tools
required for modern segmentation and detection problems on
EM and XRM data, including GPU-enabled deep neural network
tools. These tools, and their corresponding CWL definitions, are
useful in any system that can support them, rather than being
specific to a workflow manager, as with LONI and Nipype. We en-
able the use and sharing of Dockerized tools and standardized
workflows within and beyond the SABER framework.



8 Reproducible processing of volumetric, nanoscale neuroimaging datasets

Figure 5: Example deployment of EM segmentation pipeline to extract graphical
models of connectivity from raw images. The processing pipeline (Fig. 1) consists
of neural network tools to perform (A) membrane detection and (B) synapse de-

tection. This is followed by a segmentation tool (C). Finally, segmentation and
synapses are associated to create a graphical model. Visualizations of segmen-
tations are done with Neuroglancer [44], a tool compatible with SABER and inte-
grated with the bossDB [20] system.

SABER

To overcome limitations in existing solutions, SABER provides
canonical neuroimaging workflows specified in a standard work-
flow language (CWL); integration with a workflow execution
engine (Airflow), imaging database (bossDB), and parameter
database (Datajoint) to deploy workflows at scale; and tools
to automate deployment and optimization of neuroimaging
pipelines. Our automation tools include end-to-end hyperpa-
rameter optimization methods and deployment by dividing data
into blocks, executing pipelines, and merging results (block-
merge). In our repository, this is broken into 2 key components.
The first is CONDUIT, which is the core framework for deploying
workflows. The second is SABER, which contains the code, Dock-
erfiles, and CWL files for the workflows (Fig. 6). A comparison of
SABER/CONDUIT to existing solutions is seen in Table 1.

The core framework (called CONDUIT) is provided in a Docker
container to reduce installation constraints and increase porta-
bility (Fig. 6). The core framework interfaces with scalable cloud
compute and storage resources, as well as local resources. The
user interacts via command line tools and can visualize the sta-
tus of workflows using Airflow’s GUI. Each tool used in the work-
flows will also be built into a separate image.

In our CONDUIT framework (Fig. 6 highlights the architecture
of the system), workflows and tools are defined with CWL v1.0
specifications. Tools additionally include Dockerfiles and source
code. Parameter files contain user-specified parameters for opti-
mization and deployment of pipelines. The features of CONDUIT
include parsing the CWL parameters and deploying workflows,
as in the CWL-Airflow project [19]. Features added on top of the
existing CWL-Airflow functionality include an API for parame-
terizing jobs for deployment over chunks of data in large volu-
metric datasets (specified by coordinates), iterative execution of
the same workflow with different parameters (for parameter op-
timization), and logging of metadata and job results. Moreover,
wrappers allow for the use of local files and cloud files (S3) for
intermediate results with the same workflows and minimal re-
configuration.

The GitHub repository [56] contains both our CONDUIT
framework and the SABER workflows and tools, as visualized
in Fig. 6. The CONDUIT framework consists of the Python code
and scripts that build upon CWL and Airflow to enable the de-
ployment of workflows. The SABER workflow code contains the
tools, Dockerfiles, CWL definitions for tools, CWL definitions for
workflows, and example job files. This structure emphasizes the
portability of SABER tools—the use of Docker and CWL encour-
ages their reuse in other contexts where the full power of the
framework may not be needed (e.g., running on small, locally
stored datasets).

Framework components

The overall structure of SABER is seen in Fig. 6 and consists
of tools, workflows, parsers for user commands, workflow exe-
cution, and cloud computation and storage. Workflows, found
in the SABER component, consist of code, Dockerfiles, and
CWL files. The core functionality of parsing workflows, run-
ning Airflow, and scheduling jobs is found in the CONDUIT
component.



Johnson et al. 9

Figure 6: The architecture and components of SABER. Tools, workflows, and parameters for individual use cases (optimization, deployment) are captured in a file
structure using standardized CWL specifications and configuration files. The core of the framework (called CONDUIT) is run locally in a Docker container. CONDUIT
consists of scripts to orchestrate deployment and optimization, a custom CWL parser, Apache Airflow for workflow execution, and tools to collect and visualize results.
Containerized tools are executed locally or using AWS Batch for a scalable solution. The bossDB provides a solution for scalable storage of imaging data, and a local

database is used for storing parameters and derived information. JSON: JavaScript Object Notation.

SABER workflow library
The SABER subproject consists of a library of code, tools, and
workflows. Each SABER tool must have a corresponding Docker-
file. Tools and workflows are specified following CWL specifica-
tions. To package a tool for SABER, a developer must

� Provide a Dockerfile for the tool
� Use command line arguments to specify file input and out-

puts (which can be read as any local file the tool can use)
� Provide a CWL tool file with tool parameters and input and

output file names specified

Optionally, developers can choose to print metrics, scores, or
other information on the command line. When building work-
flows, tools are wrapped to allow for either local or cloud exe-
cution and no additional requirements are placed on the tool
developer.

Workflows are specified using standard CWL syntax. To spec-
ify local versus cloud execution, the CWL “doc” flag can be set to
run with completely local compute and storage. Individual step
“hints” can be used to specify that an individual step should use
local compute resources. GPU resources can be used through
configuration of the system Docker installation. Workflow pa-
rameters are also specified with standard CWL files.

To enable our neuroimaging use cases, parameter sweeps are
specified with a new custom parameterization file. This specifies
the parameter start, stop, step, and overlap. A typical use case
is the specification of boundaries of a large volumetric dataset
(xmin, xmax, ymin, ymax, zmin, zmax, and stepsize). Any pa-
rameter specified by a tool CWL can be included in the parame-
terization file.

To enable hyperparameter optimization of pipelines, a simi-
lar format to parameterization is used to specify which param-
eters are to be optimized and the range of these parameters, as
well as the algorithm (e.g., grid or random search). A CWL hint is
added to the workflow indicating the name of the optimization
metric for each step, which will be parsed from standard out.
This allows the specification of multiple objective functions or
metrics for each workflow stage.

CONDUIT Docker container
The CONDUIT component (Fig. 6) contains the scripts for pars-
ing CWL workflows, processing user commands, scheduling jobs
using Airflow, and storing and accessing metadata in the meta-
data store (Datajoint [21]). All of this functionality is itself con-
tained in a Docker container to simplify installation on the user’s
machine. The CONDUIT container and related containers are
started with Docker-compose.

The user interacts with CONDUIT through a series of com-
mand line tools. The user interface consists of:

� conduit init: used to configure AWS for cloud use through
the provided cloudformation template. Optional for local use,
and only needs to be run when configuring a new AWS ac-
count.

� conduit build: used to build the necessary tool Docker con-
tainers

� conduit parse: used to create a DAG from the CWL and sched-
ule with Airflow. Accepts an optional parameterization file

� conduit collect: used to collect metadata results related to a
workflow from the metadata database

� conduit optimize: used to schedule hyperparamter search for
a given workflow

These commands provide the key method for users to sched-
ule workflows, which can be monitored using the Apache Air-
flow webserver started with CONDUIT.

Workflow execution
The CONDUIT container shown in Fig. 6 provides SABER with a
managed pipeline execution environment that can run locally or
scale using the AWS Batch service. Our custom command scripts
and CWL parser generate DAG specifications for execution by
Apache Airflow. We select Apache Airflow to interface with a
cloud-based computing solution. As an example, we use the
AWS Batch service, although Airflow can interface with scalable
cluster solutions such as Kubernetes or Hadoop. The framework
facilitates the execution of a batch processing (versus streaming)
workflow composed of software tools packaged inside multiple



10 Reproducible processing of volumetric, nanoscale neuroimaging datasets

software containers. This reduces the need to install and config-
ure many, possibly conflicting software libraries.

Cloud computation and storage
Large neuroimaging datasets are distinct from many canonical
big data solutions because researchers typically analyze a few
(often 1) very large datasets instead of many individual images.
Custom storage solutions [20, 28, 29] exist but often require tools,
knowledge, and access patterns that are disparate from those
used by many neuroscience laboratories. SABER provides tools
to connect to specialized neuroimaging databases that integrate
into CWL tool pipelines. We use intern [57, 58] to provide access
to bossDB and DVID and abstract data storage, RESTful calls,
and access details. Workflow parameters, objective functions,
and summary results such as graphs and cell densities can be
stored using a DataJoint database [21] using a custom set of ta-
ble schemas.

Some datasets, however, can be stored locally but are too
large to process in memory on a single workstation. In addition
to volumetric data stored in bossDB, SABER also supports local
imaging file formats such as HDF5, PNG, or TIFF. As users share
pipelines, they might wish to use a pipeline originally developed
for data stored in one archive with that stored in another. There-
fore, using the existing SABER tools raw and annotated data can
be accessed, retrieved, and stored using:

� bossDB
� DVID
� Cloudvolume
� Amazon S3 buckets
� Local files (e.g., hdf5, numpy)

For intermediate results in a pipeline, files can be stored
locally (or on any locally mounted drive) in numpy or HDF5
files or stored in AWS S3 buckets. Future work will increase
the number of supported file formats. The modular nature
of raw data access will allow additional tools to access new
data sources as they emerge. Supporting further cloud sys-
tems will require additional development, although it will not
affect the SABER tools or workflows. Currently only AWS is
supported.

Modern cloud computing tools, such as AWS Batch or Ku-
bernetes, allow large-scale deployment of containerized tools
on demand. The CONDUIT container schedules workflows using
Apache Airflow and currently supports 2 execution methods:

� AWS Batch
� Local compute resources

Workflows have a “local” flag, which can be set to indicate a
choice of resources. Tools can also be configured to run with GPU
resources. Both methods can be used with local or remote data
storage. Further development will be required to enable support
of further executors, such as Kubernetes, using the operators
that exist in Apache Airflow.

Required background and getting started

A new user to the SABER framework will require intermediate
familiarity with Python programming, the use of command line
tools (e.g., Bash), and Docker. These capabilities are often found
in capable computer science undergraduates or new computa-
tionally oriented graduate students. To get started, new users
will:

� Install Docker
� Build the desired tool containers (e.g., EM or X-ray containers)

in the SABER folder
� Build and configure the core CONDUIT Docker containers
� Use the command line interface to schedule workflows

However, the use of SABER with the AWS cloud will require
an AWS account, and ≥1 experienced AWS user to configure the
system and serve as the administrator. To configure this system,
the user needs to

� Use the cloudformation template to configure AWS Batch and
S3

� Create credentials for other users and configure access from
local machines

The envisioned users of this tool are neuroimaging laborato-
ries, algorithm developers, and data analysts. One experienced
user can quickly configure a cloud SABER deployment for use
by others in the laboratory. Envisioned use cases include neu-
roimaging laboratories wanting to apply tools to newly collected
datasets and tool developers who want to package and bench-
mark software tools to reach new users. While this framework
certainly does not remove all barriers to entry, the use of Dock-
erized tools limits the number of competing software configura-
tions for neuroimaging users and provides a common and pow-
erful system for tool developers to share their work. Our system
accomplishes this with a set of Dockerized tools to replace in-
stalling many, often conflicting dependencies with a single tool
(i.e., Docker), the use of standard CWL definitions that are cross-
compatible with other efforts, and specialized scripts to handle
difficult use cases such as scheduling runs over large datasets
using cloud computing resources. This approach attempts to
balance the flexibility needed by tool developers with standard-
ization to help the novice user. A user looking to deploy existing
tools and workflows to new data will primarily interface through
the user commands for CONDUIT, and a tool developer will pri-
marily package tools following the Dockerfiles and CWL exam-
ples in SABER (to ensure compatibility with existing tools).

Availability of Source Code and Requirements

The SABER framework is open source and available online:

� Project name: SABER
� Project home page: e.g., https://github.com/aplbrain/saber
� Operating system(s): Platform independent
� Programming language: Python, other
� Other requirements: Docker, AWS account (if scalable cloud

computing required)
� License: Apache License 2.0
� RRID:SCR 018812

Data Availability

The source code for this project is available on GitHub, including
code for tools and demonstration workflows. An extensive wiki
documenting the repository is also hosted on GitHub. The data
are stored in a bossDB instance at https://api.bossdb.io. Snap-
shots of our code and other supporting data are openly available
in the GigaScience repository, GigaDB [59].

https://github.com/aplbrain/saber
https://scicrunch.org/resolver/RRID:SCR_018812
https://api.bossdb.org


Johnson et al. 11

Abbreviations

AWS: Amazon Web Services; API: application programming in-
terface; bossDB: Block and Object Storage Service Database;
CWL: Common Workflow Language; DAG: directed acyclic
graph; DVID: Distributed, Versioned, Image-Oriented Dataser-
vice; EM: electron microscopy; fMRI: functional magnetic res-
onance imaging; GPU: graphics processing unit; GUI: graphi-
cal user interface; REST: representational state transfer; SABER:
Scalable Analytics for Brain Exploration Research; XRM: X-ray
microtomography.

Competing Interests

The authors declare that they have no competing interests.

Funding

Research reported in this publication was supported by the
National Institute of Mental Health of the National Insti-
tutes of Health under Award No. R24MH114799 and Award No.
R24MH114785. The content is solely the responsibility of the au-
thors and does not necessarily represent the official views of the
National Institutes of Health.

Authors’ Contributions

E.C.J.: conceptualization, investigation, formal analysis,
methodology, software, supervision, and writing of the orig-
inal draft. M.W.: investigation, software development, and
methodology development. L.M.R.: investigation, software, data
curation, visualization, review, and editing. R.N.T.: investigation,
software, methodology, review, and editing. C.R.: conceptual-
ization and software. N.D.: formal analysis and software
development. D.K.: conceptualization, funding acquisition, and
investigation. T.J.L.: software, resources, data curation, and
validation. H.P.C.: software and visualization. J.D.: software and
visualization. J.K.M.: conceptualization, software, and valida-
tion. M.J.H.: conceptualization, validation, investigation, and
methodology. E.P.R.: conceptualization, validation, software,
investigation, and methodology. B.A.W.: conceptualization, re-
sources, funding acquisition, and project administration. E.L.D.:
conceptualization, supervision, software, funding acquisition,
project administration, investigation, review, and editing. K.P.K.:
conceptualization, supervision, funding acquisition, project
administration, review, and editing. W.R.G.R.: conceptual-
ization, data curation, formal analysis, funding acquisition,
investigation, methodology, project administration, software,
supervision, and writing original draft.

Acknowledgments

We thank the Apache Airflow and Common Workflow language
teams for their open-source tools supporting reproducible work-
flows, as well as the research groups who produced our reference
EM and XRM volumes for analysis.

References

1. Lichtman JW, Pfister H, Shavit N. The big data challenges of
connectomics. Nat Neurosci 2014;17(11):1448.

2. Micheva KD, O’Rourke N, Busse B, et al. Array tomog-
raphy: High-resolution three-dimensional immunofluores-
cence. Cold Spring Harb Protoc 2010;5(11):1214–9.

3. Chung K, Deisseroth K. CLARITY for mapping the nervous
system. Nat Methods 2013;10(6):508–13.

4. Allen Institute for Brain Science. Allen Brain Atlas. ht
tp://brain-map.org/api/index.html. Accessed on June 6,
2018.

5. Dyer EL, Gray Roncal W, Prasad JA, et al. Quantifying
mesoscale neuroanatomy using X-ray microtomography.
eNeuro 2017;4(5), doi:10.1523/ENEURO.0195-17.2017.

6. Plaza SM, Berg SE. Large-scale electron microscopy image
segmentation in spark. arXiv 2016: 1604.00385.

7. Knowles-Barley S, Kaynig V, Jones TR, et al. Rhoananet
pipeline: Dense automatic neural annotation. arXiv 2016:
1611.06973.

8. Gray Roncal WR, Kleissas DM, Vogelstein JT, et al. An auto-
mated images-to-graphs framework for high resolution con-
nectomics. Front Neuroinform 2015;9:20.

9. Berning M, Boergens KM, Helmstaedter M. SegEM: Efficient
image analysis for high-resolution connectomics. Neuron
2015;87(6):1193–206.

10. Matveev A, Meirovitch Y, Saribekyan H, et al. A mul-
ticore path to connectomics-on-demand. In: Proceedings
of the 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. New York: ACM; 2017,
doi:10.1145/3155284.3018766.

11. Docker, Inc. Docker. https://www.docker.com. Accessed June
6, 2018.

12. Common Workflow Language Working Group. Common
Workflow Language. https://www.commonwl.org. Accessed
on June 8, 2018.

13. The Linux Foundation. Kubernetes. https://kubernetes.io.
Accessed June 8, 2018.

14. Pachyderm, Inc. Pachyderm. www.pachyderm.io. Accessed
June 8, 2018.

15. Dask Development Team. Dask: Library for dynamic task
scheduling. 2018 https://dask.org.Accessed on September 10,
2018.

16. Kiar G, Brown ST, Glatard T, et al. A serverless tool for
platform agnostic computational experiment management.
arXiv 2018, 1809.07693.

17. Apache. Airflow. https://airflow.apache.org. Accessed June 8,
2018.

18. UCSC Computational Genomics Lab. TOIL. 2018. http://toil.u
csc-cgl.org. Accessed June 8, 2018.

19. Kotliar M, Kartashov A, Barski A. CWL-Airflow: A lightweight
pipeline manager supporting Common Workflow Language.
Gigascience 2019;8(7), doi:10.1093/gigascience/giz084.

20. Hider R, Kleissas DM, Pryor D, et al. The Block Object Stor-
age Service (bossDB): A cloud-native approach for petascale
neuroscience discovery. bioRxiv 2017, doi:10.1101/217745.

21. Vathes LLC. Datajoint: A hub for developing, sharing, and
publishing scientific data pipelines. https://datajoint.io. Ac-
cessed September 10, 2018

22. Bock DD, Lee WCA, Kerlin AM, et al. Network anatomy
and in vivo physiology of visual cortical neurons. Nature
2011;471(7337):177.

23. Kasthuri N, Hayworth K, Berger D, et al. Saturated re-
construction of a volume of neocortex. Cell 2015;162(3):
648–61.

24. Takemura Sy, Bharioke A, Lu Z, et al. A visual motion de-
tection circuit suggested by Drosophila connectomics. Nature
2013;500(7461):175.

25. Lee WCA, Bonin V, Reed M, et al. Anatomy and func-
tion of an excitatory network in the visual cortex. Nature
2016;532(7599):370.

http://brain-map.org/api/index.html
https://www.docker.com
https://www.commonwl.org
https://kubernetes.io
http://www.pachyderm.io
https://dask.org
https://airflow.apache.org
http://toil.ucsc-cgl.org
https://datajoint.io


12 Reproducible processing of volumetric, nanoscale neuroimaging datasets

26. Hieber SE, Bikis C, Khimchenko A, et al. Tomographic brain
imaging with nucleolar detail and automatic cell counting.
Sci Rep 2016;6, doi:10.1038/srep32156.

27. Busse M, Müller M, Kimm MA, et al. Three-dimensional
virtual histology enabled through cytoplasm-specific X-ray
stain for microscopic and nanoscopic computed tomogra-
phy. Proc Natl Acad Sci U S A 2018;115(10):2293–98.

28. Plaza S, Katz W. DVID. https://github.com/janelia-flyem/dvi
d. Accessed June 6, 2018.

29. Seung Lab. cloud-volume. 2018. https://github.com/seung-l
ab/cloud-volume. Accessed June 6, 2018.

30. Gürsoy D, De Carlo F, Xiao X, et al. TomoPy: A framework for
the analysis of synchrotron tomographic data. J Synchrotron
Radiat 2014;21(5):1188–93.

31. Sommer C, Straehle C, Koethe U, et al. Ilastik: Interactive
learning and segmentation toolkit. In: Biomedical Imaging:
From Nano to Macro. IEEE; 2011:230–33.

32. Ronneberger O, Fischer P, Brox T. U-net: Convolutional Net-
works for Biomedical Image Segmentation. Springer; 2015.

33. Ciresan D, Giusti A, Gambardella LM, et al. Deep neural net-
works segment neuronal membranes in electron microscopy
images. In: Advances in Neural Information Processing Sys-
tems. 2012:2843–51.

34. Gray Roncal W, Pekala M, Kaynig-Fittkau V, et al. VESICLE:
Volumetric evaluation of synaptic interfaces using computer
vision at large scale. arXiv 2014: 1403.3724.

35. Staffler B, Berning M, Boergens KM, et al. SynEM, auto-
mated synapse detection for connectomics. eLife 2017;6,
doi:10.7554/eLife.26414.

36. Nunez-Iglesias J, Kennedy R, Plaza SM, et al. Graph-based
active learning of agglomeration (GALA): A Python library
to segment 2D and 3D neuroimages. Front Neuroinform
2014;8:34.

37. Nunez-Iglesias J, Kennedy R, Parag T, et al. Machine learning
of hierarchical clustering to segment 2D and 3D images. PLoS
One 2013;8(8):e71715.

38. Johnson EC, Rodriguez LM, Norman-Tenazas R, et al. Transfer
learning analysis of image processing workflows for electron
microscopy datasets. In: 2019 53rd Asilomar Conference on
Signals, Systems, and Computers. IEEE; 2019:1197–201.

39. Bergstra J, Bengio Y. Random search for hyper-parameter op-
timization. J Mach Learn Res 2012;13:281–305.

40. Jones DR, Schonlau M, Welch WJ. Efficient global opti-
mization of expensive black-box functions. J Glob Optim
1998;13(4):455–92.

41. Azar MG, Dyer E, Kording K. Convex relaxation regression:
Black-box optimization of smooth functions by learning
their convex envelopes. arXiv 2016, 1602.02191.

42. bossDB Projects. https://bossdb.org/projects. Accessed May
10, 2020.

43. Prasad JA, Balwani AH, Johnson EC, et al. A three-
dimensional thalamocortical dataset for characterizing
brain heterogeneity. Sci Data 2020;7, doi:10.1038/s41597-020-
00692-y.

44. Google. Neuroglancer. 2018. https://github.com/google/neur
oglancer. Accessed June 6, 2018.

45. Gorgolewski K, Burns CD, Madison C, et al. Nipype: A flex-
ible, lightweight and extensible neuroimaging data pro-
cessing framework in python. Front Neuroinform 2011;
5:13.

46. Matelsky J. Substrate. https://github.com/iscoe/substrate.
Accessed June, 8 2018.

47. LaGrow TJ, Moore MG, Prasad JA, et al. Approximating cel-
lular densities from high-resolution neuroanatomical imag-
ing data. Annu Int Conf IEEE Eng Med Biol Soc 2018,
doi:10.1109/EMBC.2018.8512220.

48. Kiar G, Gorgolewski KJ, Kleissas D, et al. Science In the Cloud
(SIC): A use case in MRI connectomics. Gigascience 2017;6(5),
doi:10.1093/gigascience/gix013.

49. Apache. Apache Hadoop. https://hadoop.apache.org. Ac-
cessed June, 8 2018.

50. Dinov I, Van Horn J, Lozev K, et al. Efficient, distributed
and interactive neuroimaging data analysis using the LONI
pipeline. Front Neuroinform 2009;3:22.

51. Afgan E, Baker D, Van den Beek M, et al. The Galaxy platform
for accessible, reproducible and collaborative biomedical
analyses: 2016 update. Nucleic Acids Res 2016;44(W1):W3–
W10.

52. Berthold MR, Cebron N, Dill F, et al. KNIME-the Konstanz in-
formation miner: version 2.0 and beyond. ACM SIGKDD Ex-
plor Newsl 2009;11(1):26–31.

53. Glatard T, Ferreira da Silva R, Nouha B, et al. Boutiques: An
application-sharing system based on Linux containers. Front
Neurosci 2015, 9, doi:10.3389/conf.fnins.2015.91.00012.

54. CenturyLink Labs. DRAY: Docker Workflow Engine. https://gi
thub.com/CenturyLinkLabs/dray. Accessed June 8, 2018.

55. Air-tasks. https://github.com/wongwill86/air-tasks. Ac-
cessed June 8, 2018.

56. SABER. https://github.com/aplbrain/saber. Accessed May 10,
2020.

57. Matelsky J. Intern: Integrated Toolkit for Extensible and Re-
producible Neuroscience. https://github.com/jhuapl-boss/i
ntern. Accesed June 10, 2018.

58. Matelsky JK, Rodriguez L, Xenes D, et al. Intern: Integrated
toolkit for extensible and reproducible neuroscience. bioRxiv
2020, doi:10.1101/2020.05.15.098707.

59. Johnson EC, Wilt M, Rodriguez L, et al. Supporting data
for “A scalable framework for reproducible processing of
volumetric, nanoscale neuroimaging datasets.” GigaScience
Database 2020. http://dx.doi.org/10.5524/100822.

https://github.com/janelia-flyem/dvid
https://github.com/seung-lab/cloud-volume
https://bossdb.org/projects
https://github.com/google/neuroglancer
https://github.com/iscoe/substrate
https://hadoop.apache.org
http://www.dray.it
https://github.com/wongwill86/air-tasks
https://github.com/aplbrain/saber
https://github.com/jhuapl-boss/intern
http://dx.doi.org/10.5524/100822

