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ABSTRACT

Single-nucleotide variation and gene expression of
disease samples represent important resources for
biomarker discovery. Many databases have been
built to host and make available such data to the
community, but these databases are frequently lim-
ited in scope and/or content. BioMuta, a database
of cancer-associated single-nucleotide variations,
and BioXpress, a database of cancer-associated dif-
ferentially expressed genes and microRNAs, dif-
fer from other disease-associated variation and ex-
pression databases primarily through the aggre-
gation of data across many studies into a sin-
gle source with a unified representation and an-
notation of functional attributes. Early versions of
these resources were initiated by pilot funding for
specific research applications, but newly awarded
funds have enabled hardening of these databases
to production-level quality and will allow for sus-
tained development of these resources for the next
few years. Because both resources were devel-
oped using a similar methodology of integration,
curation, unification, and annotation, we present
BioMuta and BioXpress as allied databases that will
facilitate a more comprehensive view of gene as-
sociations in cancer. BioMuta and BioXpress are
hosted on the High-performance Integrated Virtual
Environment (HIVE) server at the George Wash-
ington University at https://hive.biochemistry.gwu.
edu/biomuta and https://hive.biochemistry.gwu.edu/
bioxpress, respectively.

INTRODUCTION

Single-nucleotide variations (SNVs) are sequence alter-
ations in DNA that exist between individuals or can accu-

mulate over time within an individual. These variations can
be associated with diseases or other phenotypes and hold
tremendous value for researchers aiming to characterize the
role of variation in disease (1,2). These changes are identi-
fied by DNA sequencing in various types of studies, such
as genome-wide association studies (GWAS). Despite limi-
tations like variable penetrance and indirect association in-
herent to the GWAS approach (3), diseases have been suc-
cessfully linked to multiple, seemingly independent SNVs
and such studies have yielded increasingly confident asso-
ciations with the continued evolution of statistical models
(4,5). While nonsynonymous SNVs (nsSNVs), those SNVs
that result in altered amino acid sequences, can directly
change protein structure and therefore function, gene and
microRNA (miRNA) dysregulation can alter normal ex-
pression and can also contribute to disease (6,7). Differen-
tial expression analysis of RNA-seq data can quantify the
expression levels of genes or miRNAs across multiple sam-
ples and multiple conditions to identify important markers
in disease diagnosis, progression, and treatment (8,9). Be-
cause of the potential wealth of clinically relevant informa-
tion to be gleaned from these data, substantial efforts and
resources have been dedicated to host, maintain, and make
available to various research communities both normal and
suspected disease-associated variation and expression data
(2,10–13).

There are many extant databases containing some form
of disease variation or expression data, including but not
limited to the Database of Single Nucleotide Polymor-
phisms (dbSNP) (10), the Human Gene Mutation Database
(HGMD) (11), ClinVar (14), the Cancer Genome Atlas
(TCGA) (https://cancergenome.nih.gov/), CIViC (15), Ex-
pression Atlas (16) and others (17–24). However, these cur-
rent databases are frequently not comprehensive, but rather
cover individual studies or a limited number of data ad-
hering to some very strict criterion. Primary repositories
like TCGA and the International Cancer Genome Consor-
tium (ICGC) (25) contain raw DNA- and RNA-seq data
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as well as processed variant calls and expression levels, but
rarely contain value-added information regarding the in-
terpretation of individual samples or the study as a whole.
Other database projects like cBioPortal (20,21) and CIViC
do collect data from numerous studies, but the variety of
available data in each is entirely dependent on the intended
scope of each project. For example, while CIViC’s approach
to curation of clinically relevant cancer variants and ded-
ication to transparency ensure the highest quality of in-
cluded variants, the workflow of manual curation requiring
agreement by two independent curators creates an inherent
tradeoff between quality and database growth rate poten-
tial (15). Our databases, BioMuta (26,27) and BioXpress
(28), differ from previous attempts at cataloging disease-
associated mutation and expression primarily through the
aggregation of data across many studies into a single source
with a unified representation. BioMuta is a database of
single-nucleotide variations (SNVs) identified in tumor tis-
sue while BioXpress is a database of genes that are differen-
tially expressed in adjacent normal and tumor tissue from
the same patient. These databases can be used throughout
the research lifecycle, allowing a quick survey of markers
previously reported in major studies, by driving hypothesis
generation, or by forming the basis for experiments that re-
quire more raw data than is available in a single study to
support a finding. For example, the BioMuta dataset could
be used to discover the most common variations for each
cancer, which could then be analyzed to determine the ge-
netic similarity between different cancer types (29).

All knowledgebases generated by our group heavily em-
phasize the importance of a unified approach to integra-
tion, curation, and representation by a single vocabulary (in
this case, the subset of cancer disease ontology terms (30)).
BioMuta and BioXpress were built following this model by
retrieving data primarily from large genomic, public stud-
ies, filtering and performing quality control (QC) measures
on the data in accordance with our goals, annotating the
remaining data with predictions and a diversity of func-
tional annotations, and repackaging the enhanced infor-
mation into easily usable tables and graphical user inter-
faces. Early versions of these resources were predominantly
datasets used for research by our group and collaborators,
sustained through pilot funding. However, strong interest
from our user community, demonstrated through high data
access traffic and critical feedback, has encouraged us to
increase efforts to develop these resources further into pro-
duction level modules, and to continuously update and in-
crease their content with datasets from new studies.

Although mutation and expression of the same gene are
not necessarily mechanistically related, identification of one
or both features in disease can strengthen the implication
that a given gene or miRNA marker or the pathway(s) in-
volving that marker is likely to be important in that disease.
Furthermore, our interaction with users has demonstrated
that distinct users have very different research endpoints,
many of which are as interested in global implications as
in specific gene or miRNA-centric findings. For this reason,
we consider the strength of BioMuta and BioXpress in their
position as allied databases toward a comprehensive view
of cancer involvement, and suggest that each should not be
thought of in isolation. We have also implemented fully doc-

umented APIs for accessing content on both databases to
allow programmatic integration with other resources.

MATERIALS AND METHODS

BioMuta

The BioMuta dataset was generated using a pipeline devel-
oped to curate and validate variation data from multiple
sources (Figure 1) (26).

Data retrieval, integration, and ID mapping. Raw data was
downloaded from several repositories including TCGA, the
Catalog of Somatic Mutations in Cancer (COSMIC) (31),
ICGC, IntOGen (32) and ClinVar. UnitProtKB/Swiss-Prot
(33) resource was used as a source for both variation and an-
notation data. Some of the data sources offer alternate ver-
sions of the same data depending on individual project goals
and requirements. For each source, we retrieved the most ex-
pansive coding region dataset. For example, while TCGA
has conducted both whole genome and exome sequencing,
we used only the exome-specific variants for this version of
BioMuta (see Supplemental Table S1 for access dates and
versions of primary resources). In addition to data sources
mentioned, we include a small but important dataset of
cancer-associated variations manually gathered from liter-
ature review. For each dataset considered, genomic posi-
tions were verified using custom QC scripts that validate
the reported reference nucleotide at a given genomic posi-
tion making sure the same nucleotide exists in that position
of the reference human genome assembly (GRCh37/hg19).
Next, each dataset was reformatted to match the input re-
quirements for the ANNOVAR (34) annotation software
tool. The ANNOVAR software tool was used to annotate
variants, which are reported in genomic coordinates, with
associated gene and protein IDs, strand orientation, posi-
tion on transcript and protein sequences, and correspond-
ing reference and variant amino acid residues based on an-
notation in the RefSeq (35,36) database. For increased accu-
racy, QC measures were performed on ANNOVAR results
to validate the reference nucleotide and amino acid at mu-
tation positions matches the nucleotide and amino acid on
respective RefSeq sequences.

Up to this point, datasets from each source were an-
alyzed and maintained separately. At this stage, indepen-
dent datasets were merged and a new record attribute was
added to store data source information. All variants in
the merged dataset were then mapped to the correspond-
ing reviewed UniProtKB sequences using custom software
that uses RefSeq-UniProtKB ID mapping (37) and per-
forms protein sequence alignment using Clustal Omega (38)
to validate the reported mapping between the RefSeq se-
quence and the canonical UniProt isoform and to convert
all positions to UniProt coordinates. Another QC proce-
dure was applied here to check if the reported amino acids
with UniProt coordinates match the ones at the same pos-
tions in UniProt canonical protein sequences.

Functional prediction and annotation. To increase the func-
tional scope of the database, variants were then assessed by
PolyPhen (39), a software that predicts the impact on both
the structure and function of a protein based on the change
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Figure 1. The development pipelines of both BioMuta and BioXpress share several common features, including primary data sources, integration
and ID mapping approaches, unification and interface design. Several sources supply primary data including variation, expression, annotation and
ontology/identifier data. In the ‘Data Retrieval’ portion of the figure, the sources to the far left represent those data sources used only for BioMuta.
Similarly, the sources to the far right are those used only for BioXpress. The sources in the middle (between the dashed gray lines) are datasets or sources
that contribute data to both BioMuta and BioXpress. Throughout data processing, a number of quality control (QC) steps are imposed to ensure integrity
and accuracy of data, where possible. Processed data are unified by cancer type to the corresponding DOID(s) and entered into MySQL database to be
searchable by query on the web interfaces. * Due to the number of primary data sources, those resources supplying only functional annotations are not
included in the figure above. Sources for functional annotations not pictured include: CDD, SysPTM, PhosphoSite, Phospho.ELM, dbSNO, HPRD and
OGlycBase6.0. Additional annotations are supplied following analysis by Polyphen and NetNGlyc.
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in amino acid (if any) that occurs during nucleotide substi-
tution. The PolyPhen tool uses a Naı̈ve Bayes approach to
determine whether a mutation is benign, possibly damag-
ing, or probably damaging based on several different struc-
tural calculations. Similarly, NetNGlyc was used to anno-
tate post-translational modification (PTM) sites at any po-
sitions where there are SNVs that affect N-linked glycosyla-
tion (primarily based on existence of the consensus NXS/T
sequon for N-glycosylation). Note that in its native con-
figuration, NetNGlyc restricts protein length to 4000, pre-
venting annotation of variation sites in proteins of length
greater than 4000. Specific annotations for PTMs including
glycosylation, phosphorylation and other functional impli-
cations (active and binding site) were obtained through re-
trieval and mapping of UniProtKB feature (FT) lines (see
Supplemental Table S2 for a list of all FT entities used in
functional annotations). Additional sources of functional
annotations include: CDD (40), SysPTM 1.1 (41), Phos-
phoSite (42), Phospho.ELM (43), dbSNO 1.0 (44), HPRD
9.0 (45) and OGlycBase6.0 (45).

Finally, all variation entries were unified to Disease On-
tology or DO (46) terms to facilitate better cancer classi-
fication and easier database searching. Specifically, entries
were mapped to the subset of DO Cancer Slim (30) terms
that represent a streamlined vocabulary for cancer nomen-
clature.

BioXpress

The BioXpress dataset was constructed through a similar
pipeline involving data integration, annotation, unification,
analysis, and databasing (Figure 1). For mRNA, raw RNA-
seq read counts were downloaded from TCGA by TCGA
Assembler (47) restricting the value for assayPlatform to
‘gene RNAseq.’ Similarly, for miRNA, the values for as-
sayPlatform were restricted to ‘mir GA.hg19.mirbase20’
and ‘mir HiSeq.hg19.mirbase20’ (see Supplemental Table
S3 for access dates and versions of primary resources).

Differential expression using paired data. Downloaded
dataset was filtered for those samples with matched tumor
and adjacent non-tumor tissue. The dataset was then used
to build an appropriate schema for differential expression
analysis using DESeq2 (48). Rows, corresponding to spe-
cific transcripts with no raw counts (no expression) in any
sample, were deleted prior to differential expression analy-
sis. For each sample for a given cancer type, a model ma-
trix was built with two catgory designations: one category
described the disease status for each sample with possible
values ‘cancer’ and ‘non-tumor,’ the other containing the
TCGA patient Ids for the sample. The program DESeq2
then normalized the input data and analyzed differential
expression based on the schema labels. From the results of
differential expression analysis, over- and under-expression
of a transcript in one cancer type were defined as |log2 fold
change| > 0. For miRNA, the cutoff for significance is an
adjusted P-value < 0.05/n (Bonferroni’s Approach, where
n is the total number of expressed miRNAs in each can-
cer type). Patient frequencies were also generated including
counts of patients with over- or under-expression for each

gene/miRNA along with the total number of patients in a
given cancer.

All tumor expression using tumor-only data. In addition to
the data from TCGA described above, two datasets were
retrieved for miRNA from ICGC by the following criteria:
select all projects not from the US (most are from TCGA,
and the remaining four from TARGET contain only BAM
files for miRNAseq data); select data type as ‘miRNA-seq’.
Normalized read counts for each gene/miRNA from each
cancer type were extracted and five quantile values were cal-
culated for plotting boxplots. Patient frequencies and per-
centiles of tumor expression were calculated by customized
R scripts.

ID/cancer-type mapping. For mRNA, RefSeq IDs were
extracted from the NCBI-maintained ID mapping (ftp:
//ftp.ncbi.nlm.nih.gov/refseq/H sapiens/mRNA Prot/),
and the list of UniProtKB reviewed entries for
human was downloaded from UniProtKB re-
source (ftp://ftp.uniprot.org/pub/databases/uniprot/
current release/knowledgebase/idmapping/by organism/).
miRBase IDs for miRNA were also downloaded from the
miRBase resource (http://www.mirbase.org/ftp.shtml), and
HGNC symbols and Ensembl ID list were retrieved from
HGNC site (http://www.genenames.org/cgi-bin/statistics).
Annotation and differential expression analysis results
from DESeq2 for all datasets were loaded into a relational
database to facilitate interpretation of significant dysregu-
lation of genes in cancer, and cancer types were unified by
Disease Ontology DOIDs as described for BioMuta.

RESULTS

Data summary

Out of 7 373 923 total variants pooled from eight sources,
4 684 236 pass all QC and filtration steps to make it into
the final BioMuta database. These variants occur in 18 269
genes and encompass 2599 different cancer terms across all
resources, which are then mapped to 77 DO Cancer Slim
terms. We find 2 304 757 entries predicted to be damag-
ing by PolyPhen, and 980 447 occurring at a PTM site. 326
(Manual curation) and 1098 (Literature mining) additional
entries were added through manual literature review.

Similarly, of 18 596 UniProtKB/Swiss-Prot accessions
identified to be expressed in cancer samples, 17 537 genes
were reported to be differentially expressed in cancer, which
were deemed significant with an associated P < 0.05 (cor-
rected for multiple testing) for at least one cancer type. 710
miRNAs were differentially expressed, which were signifi-
cant.

Interface

Both BioMuta and BioXpress have web-based interfaces
(Figures 2 and 3), although the underlying data are avail-
able for direct download and accessible through APIs which
are fully documented. Web interfaces allow users to directly
query the data and represent results in visual form. Both
resources offer basic and advanced search options, and also
enable users to link internally between resources and exter-
nally (i.e. PubMed) as available.

ftp://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/mRNA_Prot/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/idmapping/by_organism/
http://www.mirbase.org/ftp.shtml
http://www.genenames.org/cgi-bin/statistics
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Figure 2. Interface of BioMuta. Two types of search engines are included in the interface of BioMuta (basic search for any gene name or accession, and
advanced search for combined search of up to four search terms). After clicking ‘search,’ an interactive interim results page populates showing all possible
genes matching the search criteria. After users select and click on the UniProtKB ID of their preferred gene, the detailed results page loads, displaying
a figure and a table with information about all related SNVs and cancer types for this gene. APIs are integrated and users can obtain search results in
JSON format by providing specific URLs. In addition to the search function, whole BioMuta datasets are downloadable, available from the tool home and
archive pages.

BioMuta v3.0. The BioMuta basic search is a gene-centric
search, requiring only the input of a single gene preferably
in the format of HGNC approved gene symbol, UniPro-
tKB accession, or RefSeq Gene ID. After submission of
search term, an interim results page will load displaying
all database hits to the specified query. From this page, the
user can click the hyperlinked UniProtKB accession to navi-
gate to the detailed results page for that particular accession
record. Results pages have two primary components: charts
and hit table. The default chart for BioMuta search dis-
plays the frequency of nsSNVs for the queried gene for each
cancer type in which it is observed to be mutated. Hover-
text displays additional information including the full can-
cer name, corresponding DOID, and variant count for the
queried gene in that cancer. The second chart displays the
frequency of nsSNVs for the queried gene along the length
of the encoded protein. The hit table contains a variety of
identifiers and annotations as described in the methods sec-
tion above, and hyperlinks to relevant BioXpress entries and
other external resources as appropriate.

The BioMuta advanced search allows the user to search
specific terms by field and to combine search terms using
AND/OR junctions to form a logical query. Up to four
search terms may be combined to form such a logical query.

BioXpress v2.0. Similar to BioMuta, the BioXpress basic
search is a gene or miRNA transcript-centric search where
preferred search terms for mRNA search are HGNC ap-
proved symbol, UniProtKB accession or RefSeq gene IDs.
For miRNA search, one can use miRNA alias, RefSeq, En-
sembl, or miRBase accessions. Query submission will redi-
rect the user directly to the results page, organized into
the same basic chart and table components as described
for BioMuta. The default chart for BioXpress transcript
search displays the frequencies of patients following each
expression trend (over- or under-expression) for the queried
transcript across all relevant cancer types wherein patients
with log2 fold change (log2FC) values greater than zero
are considered to follow an over-expression trend, less than
zero to follow an under-expression trend. The second chart
shows the proportion of patients whose individual expres-
sion trend matches the significant trend reported for the
queried transcript across different cancer types, with two
colored series denoting different thresholds. The third chart
shows a box plot of tumor sample expression, including ex-
pression from those samples with matched normal data and
all unpaired tumor samples from TCGA. In addition to ex-
pression values and various statistics, the hit table contains
a variety of identifiers and hyperlinks to relevant BioMuta
entries and other external resources as appropriate.
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Figure 3. Interface of BioXpress. Two types of search engines are included in the interface of BioXpress (search by individual gene/miRNA, and search
by cancer type). For both searches, the results page for a queried gene/miRNA loads after clicking the ‘search’ button. In this page, a figure and a table
displays information about either the expression trend of a single gene/miRNA in cancer patients (for gene/miRNA search) or the expression trend of the
top 20 transcripts in one particular cancer type (for cancer type search), along with the results from differential expression analysis. APIs, whole dataset
downloads, and documentation are also available.

Alternatively, the advanced cancer type search allows
users to combine multiple search terms including cancer
and transcript type in a single query, while simultaneously
filtering hits by trend and significance threshold. The de-
fault view for the cancer type search shows the significance
of patient expression for the top 20 transcripts matching the
queried cancer type and meeting other search criteria.

DISCUSSION

Comparison to existing resources

Compared to several similar cancer or disease variant
databases, BioMuta hosts a drastically greater number of
variants due in part to the diversity of studies integrated into
the single resource (Supplemental Table S4). The increased
number of variants in BioMuta is also due to our policy of
not strictly requiring literature citation, but rather using ci-
tation and other annotations as indicators of involvement
in cancer. The number of samples in BioXpress is neither

the greatest nor least among comparable resources, but it
is important to note that all entries in BioXpress were gen-
erated by RNA-seq (not microarray) and represent tissue
samples (not cell lines) (Supplemental Table S5). This is an
intentional design element reflecting the paradigm shift to-
ward RNA-seq strategies in the gene expression field. The
greatest relative strength of both BioMuta and BioXpress is
the unification by a central cancer disease ontology and the
supplement of diverse functional annotations.

Please see Table 1 for more information.

Update features

New and updated data. Both previous versions of
BioMuta and BioXpress were drafted prior to the com-
pletion of the TCGA project. We have now retrieved and
analyzed a complete dump of all relevant data generated
during the span of the TCGA project, resulting in more
samples analyzed for certain cancer types and also contain-
ing certain entirely new cancer types. For BioXpress, the
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Table 1. Summary and statistics of variants, expressed genes, and expressed miRNAs in current versions of BioMuta and BioXpress

BioMuta version/statistics BioMuta v3.0
Reviewed UniProtKB accessions hit 18 269
Disease Ontology terms mapped 77
Number of nsSNVs reported in cancer 4 684 236
Number of predicted damaging mutations 2 304 757
Number of mutations affecting PTM sites 980 447

BioXpress version/statistics BioXpress v2.0
Reviewed UniProtKB accessions hit 18 596
Disease Ontology terms mapped 33
Number of differentially expressed miRNAs 710
Number of differentially expressed genes 17 537
Number of patients with paired data analyzed for miRNA 575
Number of patients with paired data analyzed for gene 667

TCGA update alone has expanded the number of cancer
types available for search from 27 to 33, and major effort
was undertaken to include miRNA expression findings
alongside the original updated set of mRNA expression.
This involved substantial integration and mapping efforts
to cross-map miRNA-seq data from TCGA and ICGC to
HGNC, RefSeq, miRBase, Ensembl and Disease Ontology
(DOID) terms as described above. For both resources,
through a collaboration with a text-mining lab, we have
also added over 1000 semi-automatically identified vari-
ants, with links to original publication PMIDs, and have
a pilot set of similarly identified PMIDs for both mRNA
and miRNA expression.

New pipeline for BioXpress. A substantial overhaul of the
BioXpress pipeline including provision of QC measures has
increased the quality and usability of this resource. We have
re-analyzed data using a newer version of differential ex-
pression software (now DESeq2), and are planning to com-
pare multiple analyses in future updates. We have defined
a stricter set of criteria for interpretation of differential ex-
pression results, while making all analysis results (despite
reported significance) available to the users for their own
interpretation.

General usability. Although all entities are mapped to
DOID terms, in this update, we also maintain the original
terms provided by the primary data resources for the expres-
sion subset and allow search by either. All search options
have expanded dramatically through the implementation
of the BioMuta advanced search, allowing users to query
essentially any field and value in the underlying database.
Existing visualizations have been streamlined and updated,
and in some cases new charts have been added to better rep-
resent database content and trends therein. Major updates
to help documentation have occurred to enhance usability,
and the backend has been optimized for ease of mainte-
nance, scalability and performance.

Sustainability and future plans

Recently awarded funds will ensure the continued develop-
ment of these resources for the next several years, as well
as increasing exposure through collaborative research, pri-
marily with members of the Early Detection Research Net-
work (EDRN). This type of community-driven, sustainable

development adheres to the mission of NCI’s Informatics
Technology for Cancer Research (ITCR), and is expected
to result in provision of BioMuta and BioXpress as robust
cancer variation and expression databases with active user
engagement. For both resources, scripts are being stream-
lined and rewritten to allow easy maintenance and addition
of new functionality, and interface pages will have embed-
ded RDF. The next version of BioMuta is expected to ex-
pand to contain non-coding variants from whole genome
sequencing experiments, and the next update to BioXpress
will include additional RNA-seq samples as well as an inte-
grated subset of BGEE (49) data. Pilots are actively under-
way to formalize a semi-automatic protocol to increase the
number of literature citations in both databases.

CONCLUSIONS

As data continues to amass in volume, researchers will need
to devise better ways to compute or digest, store, dissemi-
nate, and maintain it. Both BioMuta and BioXpress address
several facets of this big data crunch by curating cancer re-
lated datasets covering SNVs and differential expression,
making them consumable to a broad range of audiences,
and engaging with users to guide development in a useful
and sustainable approach. These datasets are compact, easy
to use, have valuable annotations, and can be downloaded
in bulk or accessed through web or API interfaces. Both
knowledgebases can be used in complementary studies and
represent valuable tool for cancer research.

DATA AVAILABILITY

BioMuta and BioXpress are hosted on the High-
performance Integrated Virtual Environment
(HIVE) server at the George Washington Univer-
sity, available through an open access web por-
tal at http://hive.biochemistry.gwu.edu/biomuta and
http://hive.biochemistry.gwu.edu/biomuta, respectively.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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