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Recently, reactive oxygen species (ROS), a class of highly bioactive molecules, have been extensively studied in cancers. Cancer cells
typically exhibit higher levels of basal ROS than normal cells, primarily due to their increased metabolism, oncogene activation, and
mitochondrial dysfunction. This moderate increase in ROS levels facilitates cancer initiation, development, and progression;
however, excessive ROS concentrations can lead to various types of cell death. Therefore, therapeutic strategies that either
increase intracellular ROS to toxic levels or, conversely, decrease the levels of ROS may be effective in treating cancers via ROS
regulation. Chinese herbal medicine (CHM) is a major type of natural medicine and has greatly contributed to human health.
CHMs have been increasingly used for adjuvant clinical treatment of tumors. Although their mechanism of action is unclear,
CHMs can execute a variety of anticancer effects by regulating intracellular ROS. In this review, we summarize the dual roles of
ROS in cancers, present a comprehensive analysis of and update the role of CHM—especially its active compounds and
ingredients—in the prevention and treatment of cancers via ROS regulation and emphasize precautions and strategies for the
use of CHM in future research and clinical trials.

1. Introduction

Reactive oxygen species (ROS) and the oxidative stress that
they produce have historically been considered mutagenic
and carcinogenic because they can damage macromolecules
such as DNA, lipids, and proteins, leading to genomic insta-
bility and changes in cell growth [1, 2]. Thus, ROS can
contribute to malignant transformation and drive tumor ini-
tiation, development, and progression. Therefore, antioxi-
dants are usually thought to be beneficial for both the
prevention and treatment of cancer because they can quench
ROS and reduce oxidative stress [1]. However, many clinical
studies have shown that antioxidant supplements do not
reduce the risk of cancer or prevent tumor growth, sometimes
even exerting the opposite effects [3, 4]. Then, the protumori-
genic effect of antioxidants, as well as their promotion of

tumor distant metastasis, was confirmed in mouse models of
cancer [5, 6]. This finding emphasized the positive role of
ROS in tumor inhibition from the opposite perspective. In this
context, the biological functions of ROS in cancer are rather
contradictory and ambiguous [7]. As two-faced molecules,
ROS not only are associated with deleterious effects but
are also signaling molecules involved in multiple cellular
signaling pathways important for the fate of both normal
and tumor cells [8]. Thus, developing approaches for the
rational use of ROS in antitumor applications is very chal-
lenging but worthwhile.

Chinese herbal medicine (CHM) has been used in China
for approximately three thousand years and has contributed
greatly to human health. In addition, as the main compo-
nents of natural products, CHM has been regarded as an
important source for novel lead compounds for the discovery
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of modern drugs, including anticancer drugs [9]. Currently,
an increasing number of cancer patients are using CHM
and its derivatives as complementary and alternative drugs;
indeed, these medicines display synergistic effects when com-
bined with conventional chemotherapy, radiation therapy,
and even molecular targeted agents. Moreover, some have
been suggested to have distinctive advantages in treating cer-
tain tumors [10]. A few clinical studies have reported that
CHMs can alleviate the symptoms of diseases, improve the
quality of life, and prolong the survival of cancer patients
[11, 12]. However, the underlyingmechanisms remain largely
unknown. Many active compounds and ingredients in CHM
can exert multiple antitumor effects accompanied by changes
in cellular ROS. In this article, we comprehensively reviewed
the dual roles of ROS in cancers and the ROS-mediated roles
of CHM in cancer progression and treatment.

2. Generation and Biological Functions of ROS

2.1. Generation of ROS. ROS are broadly defined as oxygen-
containing chemical molecules with highly reactive proper-
ties and mainly include superoxide anions (O2

⋅-), hydrogen
peroxide (H2O2), and hydroxyl radicals (OH⋅) [8, 13]. These
molecules are by-products of aerobic metabolism and are
mainly derived from mitochondria, peroxisomes, and the
endoplasmic reticulum (ER), among which mitochondria
are the major source—approximately 2% of the oxygen con-
sumed by mitochondria is used to form the superoxide anion
[14, 15]. In the process of mitochondrial oxidative phosphor-
ylation, electrons leaking from the electron transport chain
(ETC) may react with molecular oxygen to produce O2

⋅-, a
reaction that is primarily mediated by coenzyme Q, ubiqui-
none, and respiratory complexes I, II, and III [16]. O2

⋅- is
the precursor form of most other ROS species which can be
rapidly converted to H2O2 by the corresponding superoxide
dismutase (SOD). Further, H2O2 can be converted to OH⋅

by Fenton chemical reactions in the presence of a metal (iron
or copper) (Figure 1). In addition to mitochondria, NADPH
oxidases (NOXs) are another prominent source of superox-
ide that can catalyze the formation of O2

⋅- from O2 and
NADPH (Figure 1). Besides, ROS are formed in the cyto-
plasm by enzymatic reactions involving peroxisomes,
xanthine oxidase, cytochrome P450, lipoxygenases (LOXs),
and cyclooxygenases.

Intracellular ROS levels are tightly controlled via diverse,
complex synthesis and degradation pathways; this tight
control is crucial for cellular homeostasis (Figure 1). The
ROS-detoxifying system mainly comprises both enzymatic
and nonenzymatic antioxidants [7, 17]. Enzymatic antioxi-
dants include SOD, catalase (CAT), glutathione peroxidase
(GPX), peroxiredoxin (PRX), and thioredoxin (TRX); non-
enzymatic antioxidants include glutathione (GSH), flavo-
noids, and vitamins A, C, and E [18]. As described above,
SOD can rapidly catalyze the conversion of O2⋅- to H2O2,
which can be further converted to water by the PRX system,
the GPX system, and CAT. SOD has three isoforms in
mammals: cytoplasmic Cu/ZnSOD (SOD1), mitochondrial
MnSOD (SOD2), and extracellular Cu/ZnSOD (SOD3), all
of which require specific catalytic metals (Cu or Mn) for

activation [19]. PRXs are considered ideal H2O2 scavengers
due to their abundant expression and broad distribution in
cellular compartments such as the cytosol, the ER, mitochon-
dria, and peroxisomes. During the metabolism of H2O2, PRX
is oxidized and subsequently reduced by TRX, which is then
reduced by thioredoxin reductase (TrxR) via the transfer of
electrons from NADPH [20]. In addition to PRXs, GPXs
are important scavengers. GPX catalyzes the reduction of
H2O2, leading to the oxidation of GSH to glutathione disul-
fide (GSSG) that can be reduced back to GSH by glutathione
reductase (GR) with NADPH as an electron donor [21].

In addition to antioxidant enzymes, the transcription factor
nuclear factor erythrocyte 2-related factor 2 (Nrf2) plays a vital
role in regulating the intracellular redox status [17]. Under
physiological conditions, Nrf2 is located in the cytoplasm and
remains at a low level under the control of Kelch-like ECH-
associated protein 1 (KEAP-1). KEAP binds and specifically
degrades Nrf2 via the ubiquitin-proteasome pathway. Under
oxidative stress, Nrf2 dissociates fromKEAP and is translocated
to the nucleus. Then, activated antioxidant response elements
(AREs), such as GSH, TRX, and PRX, decrease the intracellular
ROS levels and protect against cell death [22] (Figure 1).

2.2. Biological Functions of ROS. A canonical mechanism by
which ROS participate in the regulation of redox signaling
is through the oxidative modification of cysteine residues in
proteins [16]. During the redox process, reactive cysteine
thiol (Cys-SH) can be oxidized by H2O2 to reversible sulfenic
acids (Cys-SOH), resulting in allosteric and functional
changes within the protein [8]. This process is reversible;
Cys-SOH can be reduced to its original state and restored
its function by the TRX and GRX [8, 18]. Meanwhile,
Cys-SOH can be further oxidized by continuously elevated
ROS to form irreversible oxidation products, such as sulfinic
or sulfonic species, causing permanent oxidative damage to
proteins. This accounts for the double-sided nature of ROS
and to a large extent, depending on its intracellular concen-
tration and duration of exposure.

ROS involve a series of biological effects that are
concentration-dependent. At low to moderate levels, ROS func-
tion as a second messenger and are involved in mediating cell
proliferation and differentiation and the activation of stress-
responsive survival pathways by regulating various cytokine
receptors, serine/threonine kinase receptors, and G protein-
coupled receptors [23, 24]. In contrast, due to their strong oxi-
dizing capacity, ROS at a high level can react with intracellular
macromolecules such as phospholipids, nucleic acids, and pro-
teins to produce cytotoxicity. ROS have been linked to many
diseases, such as cancers and diabetes [25]. The tight modula-
tion of both ROS-producing pathways and ROS-detoxifying
pathways may be required for the control of these diseases [26].

3. ROS and Cancer

The dual properties of ROS described above are simulta-
neously utilized by normal cells and cancer cells to support
cell growth and survival. However, most cancer cells have
higher levels of ROS than normal cells due to their enhanced
glucose metabolism (the Warburg effect), mitochondrial
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dysfunction, and oncogenic activity [18, 27]. On one hand,
this property enables the activation of central protumori-
genic signaling pathways. On the other hand, the resulting
oxidative stress may also exert potential antitumor effects
[8]. In the next sections, we discuss how ROS can either pro-
mote or inhibit cancer progression, providing the clues for
anticancer therapies based on redox regulation.

3.1. Pros of ROS in Cancer. Moderately increased levels of
ROS are a pivotal driving factor of tumor initiation,

development, and progression [24, 26] (Figure 1). In the initial
stage of tumor formation, ROS may function as a direct DNA
mutagen, induce genomic instability, damage mitochondrial
DNA, and activate various signaling cascades to triggermalig-
nant transformation [28–31]. In addition to causing signifi-
cant genetic changes, ROS may alter the expression of
oncogenes or tumor suppressor genes bymediating epigenetic
modifications such as methylation or acetylation, thereby
promoting carcinogenesis [32]. Conversely, these events
may, in turn, promote ROS production and accumulation,
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Figure 1: Production, regulation, and biological effects of ROS. Mitochondria and NOXs are the main sources of O2
⋅-. O2

⋅- is formed by
molecular oxygen that receives one single electron leaking from mitochondrial ETC or from NOXs. O2

⋅- is then rapidly converted into
H2O2 by the corresponding SODs. H2O2 can be converted into H2O through intracellular antioxidants such as PRX, GPX, and CAT.
When the H2O2 level is uncontrollably increased, OH⋅ is further formed via the Fenton reaction with metal ions, thereby damaging
biological macromolecules such as DNA, lipids, and proteins. In addition, H2O2 is a major signaling molecule participating in cellular
physiological and pathological processes. The effects of ROS depend on their intracellular concentration. Normal cells typically have lower
concentrations of ROS due to their normal metabolism; in normal cells, ROS act as signaling molecules to maintain homeostasis, such as
by limiting cellular proliferation, differentiation, and survival. The increased metabolic activity of cancer cells produces high
concentrations of ROS, leading to a series of tumor-promoting events, such as DNA damage, genomic instability, oncogene activation,
sustained proliferation, and survival. Elevated ROS concentrations also result in the protective growth of cancer cells with enhanced
antioxidant capacity to maintain tumor-promoting signaling. Increasing ROS levels to the toxicity threshold, such as by treatment with
exogenous ROS inducers or antioxidant inhibitors, causes oxidative damage to cells and, inevitably, cell death.
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leading to further oxidative DNA damage and the malignant
deterioration of cells to aid tumor formation [28, 32].

Existing tumors exhibit several noticeable characteristics,
including sustained proliferation, apoptosis resistance, angio-
genesis, invasion and metastasis, and tumor-promoting
inflammation [33]. ROS are involved in all of these processes,
which are conducive to tumor survival and development.
ROS regulate the activities of many proteins and signaling
pathways, thereby facilitating tumor cell proliferation and
death evasion. For example, ROS can transiently inactivate
tumor suppressors such as phosphatase and tensin homo-
logue (PTEN) [34], protein tyrosine phosphatases (PTPs)
[35], and MAPK phosphatases [36] by oxidative modula-
tion, thereby stimulating the prosurvival PI3K/AKT and
MAPK/ERK signaling pathways. Importantly, multiple tran-
scription factors, such as activator protein 1 (AP-1), nuclear
factor-κB (NF-κB), Nrf2, and hypoxia-inducible factor-1α
(HIF-1α), which are involved in the control of genes in
cell proliferation, are also regulated by increased levels of
ROS [37].

Tumor-associated neovasculature formation, or angio-
genesis, provides oxygen and nutrients for the continued
growth of cancer cells and is a key step in tumor growth
and metastasis [38]. A wealth of evidence has shown that
ROS play an essential role in tumor angiogenesis through
mediating the following events. ROS, especially H2O2 derived
from NOXs, selectively promote endothelial cell (EC) prolif-
eration and survival [39] and prevent apoptosis. Further-
more, ROS-mediated cadherin/catenin phosphorylation
leads to the disassembly of EC junctions and promotes cell
migration [40, 41]. Additionally, ROS activate VEGF signal-
ing via multiple pathways, including through the induction
of the principal regulator HIF-1α, which increases VEGF
and VEGFR expression [42], and, as mentioned before,
through the induction of the PI3K/Akt andMAPK pathways,
which activates angiogenic signaling cascades for the upreg-
ulation of VEGFR expression. Consistent with this pattern,
an increase in the level of extracellular SOD may also sup-
press the hypoxic accumulation of HIF-1α and its down-
stream target gene VEGF in several different types of cancer
cells [43, 44].

Metastasis is a ubiquitous event in cancer development
and encompasses a wide array of cellular changes, including
the loss of cell-to-cell adhesion, the survival of cells upon
matrix detachment, and the ability of cells to migrate and
penetrate the basement membrane; ROS are involved in
all of these processes [16, 45]. Indeed, ROS generated from
NOXs are necessary for invadopodium formation and func-
tion in Src-transformed cell lines [46]. Similarly, ROS enable
the direct oxidation of the protein tyrosine kinase Src, thereby
enhancing the invasive potential, anchorage-independent
growth, and survival of Src-transformed cells [47]. Further-
more, H2O2 has been demonstrated to activate FAK in a PI3
kinase-dependent manner to accelerate cell migration [48].
ROS also participate in the abnormal activation of many
proteolytic enzymes, such as MMP, uPA, and cathepsins,
facilitating cell migration [49, 50]. Several tumor invasion sig-
naling pathways upstream of MMPs and uPAs, such as the
MAPK, PI3K/Akt, and PKC pathways and those modulated

by defined transcription factors (AP-1 and NF-κB), are mod-
ulated by ROS [50, 51]. Besides, ROS may induce the expres-
sion of transcription factors such as Snail and HIF-1α [52],
leading to epithelial to mesenchymal transition (EMT), an
aggressive behavior favoring cancer metastasis and involved
in drug resistance[53, 54].

3.2. Cons of ROS in Cancer. As stated earlier, cancer cells
exhibit higher levels of ROS than normal cells, which contrib-
utes to tumor formation and development. However, exces-
sive high levels of ROS can block cell cycle and induce
different types of cell death, including apoptosis, autophagic
cell death, ferroptosis and necroptosis. Due to space limita-
tions, we focus on the first three types of cell death.

Apoptosis is the most common form of programmed
cell death (PCD) in multicellular organisms with typical
morphological and biochemical features. Also, apoptosis is
a highly regulated process in which cells undergo self-
destruction. The two well-known signaling mechanisms
are the extrinsic death receptor pathway and the intrinsic
mitochondrial pathway. ROS have been demonstrated to
be implicated in the activation of both [55, 56]. ROS can
activate the transmembrane death receptors such as Fas,
TRAIL-R1/2, and TNF-R1 and then recruit the adaptor pro-
teins FADD and procaspase-8/-10 to form death-inducing
signaling complexes (DISCs), subsequently triggering the cas-
pase activation and apoptosis [55]. Besides, ROS have been
shown to posttranscriptionally inhibit c-FLIP, which sup-
presses DISC formation, thus causing the activation of the
extrinsic apoptosis pathway [57]. Alternatively, ROS may
activate ASK1 by oxidizing Trx, resulting in the subsequent
induction of apoptosis throughMAPKs such as JNK/p38 [58].

In the intrinsic apoptosis pathway, ROS at an elevated
level destroy mitochondrial membranes, causing the release
of cytochrome c from mitochondria and the induction apo-
ptosis [18, 59]. Cytochrome c forms an apoptotic complex
with apoptotic protein activating factor 1 (Apaf-1) and pre-
caspase 9, resulting in the activation of caspase-9, followed
by the induction of effector molecules such as caspase-3/7
[60]. The substantial loss of cytochrome c frommitochondria
further increases ROS generation due to the disruption of the
mitochondrial ETC [55]. Furthermore, ROS have been
shown to regulate the activities of both antiapoptotic (Bcl-2,
Bcl-X, and Bcl-wl) and proapoptotic (Bad, Bak, Bax, Bid,
and Bim) Bcl-2 family proteins, which play an essential role
in regulating the intrinsic pathway of apoptosis [61, 62].

In addition, ROS may act as upstream signaling mole-
cules through the ER pathway, another important intrinsic
apoptosis pathway. ROS at an excessive level trigger protein
misfolding, leading to the unfolded protein response (UPR)
and the induction of CHOP, thereby initiating apoptosis by
regulating the expression of Bcl-2 family genes [63]. More-
over, ROS can stimulate the release of Ca2+ in the ER lumen
[64]. Due to the proximity of mitochondria to the ER, when a
large amount of Ca2+ is released from the ER, a substantial
amount of Ca2+ is absorbed by mitochondria, causing Ca2+

overload in mitochondria. This leads to stimulating the
opening of mitochondrial permeability transition pores
(MPTPs) leading to the release of ATP and cytochrome c,
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which further enhance apoptosis and increase ROS genera-
tion [65, 66]. Besides, ER stress-mediated apoptosis is partly
controlled by the ASK-1/JNK cascade, which is directly regu-
lated by ROS, as mentioned above.

Autophagy (macroautophagy), which is considered a
cell survival mechanism to maintain cellular homeostasis,
is multistep characterized by the formation of double-
membrane autophagosomes by which cells utilize lysosomes
to degrade and recycle their damaged organelles and macro-
molecules [67]. However, depending on the context, autoph-
agy can function as a cell death mechanism and a tumor
suppressor mechanism [68]. Many anticancer agents can
induce autophagy in cancer cells. Some of them can induce
ROS-dependent autophagy leading to cell death (autophagic
cell death) [20, 69, 70].

ROS appear to be a key regulator of autophagy under dif-
ferent conditions and are involved in both the protective and
toxic effects of autophagy [71]. Currently, several significant
mechanisms by which ROS affect autophagy have been
revealed. Under starvation conditions, H2O2 can oxidize
and inactivate ATG4, thereby contributing to the increased
formation of LC3-associated autophagosomes [72]. ROS
may directly trigger the oxidation of ATM to induce AMPK
phosphorylation, which inhibits mTORC1 activation and
phosphorylates the ULK1 complex to induce autophagy
[73–75]. Also, AMPK can be phosphorylated by its upstream
kinase AMPK kinase (AMPKK), leading to the induction of
autophagy. In an alternative mechanism, H2O2 activates
Bcl-2/E1B interacting protein 3 (BNIP3) to suppress the
activity of mTOR and abolish the interaction between
Beclin-1 and Bcl-2, causing Beclin-1 release and autophagy
induction [76, 77]. Besides, ROS can modulate autophagy
by affecting the activity of various transcription factors such
as NF-κB, resulting in the expression of autophagy-
associated genes (BECN1/ATG6 or SQSTM1/p62) in cancer
cells [78, 79].

In contrast, autophagy can reduce ROS levels through the
NRF/KEAP1 and P62 pathways [80]. In response to ROS,
P62 is activated and thus interacts with KEAP1 to contribute
to the suppression of NRF2 degradation and the promotion
of its activation, which, in turn, can activate antioxidant
defense genes such as GPX, SOD, and TRX [79, 81]. This
process contributes to the regulation of autophagy.

Ferroptosis, first named by Dixon et al. in 2012, is emerg-
ing as a new form of PCD characterized by the accumulation
of cellular ROS in an iron-dependent manner [82, 83].
Ferroptosis is primarily caused by an imbalance in the pro-
duction and degradation of intracellular lipid ROS and can
cause iron-dependent oxidative cell death through a reduc-
tion in antioxidant capacity and an accumulation of lipid
ROS. Many compounds can induce ferroptosis to kill cancer
cells in a manner mainly related to the metabolism of amino
acids/GSH, lipids, and iron and the regulation of P53 [84].

Erastin can inhibit the activity of the cysteine-glutamate
antiporter (system XC

-), reduce cystine uptake, and lead to
the associated depletion of intracellular GSH, in turn causing
toxic lipid ROS accumulation and ferroptosis [82, 85].
Inhibition of glutathione peroxidase 4 (GPX4), a GSH-
dependent enzyme required for the elimination of lipid

ROS, can trigger ferroptosis even at regular cellular cysteine
and GSH levels [86]. Other lipophilic antioxidants, such as
Trolox, ferrostatin-1, and liproxstatin-1, can inhibit ferropto-
sis [82, 87]. Intracellular iron is another essential regulator of
lipid ROS production and ferroptosis induction. In the pres-
ence of iron, lipid hydroperoxides are converted into toxic
lipid free radicals, leading to lipid oxidative damage and cell
death [88, 89]. Indeed, various iron chelators such as deferox-
amine and ciclopirox can abolish ferroptotic cell death caused
by systemXC

- inhibitors, GPx4 inhibitors, and GSH depletion
[83]. Consistent with this observation, silencing TFRC, thus
inhibiting the transport of iron into the cytoplasm, can
antagonize erastin-induced ferroptosis [90]. Additionally,
PKC-mediated HSPB1 phosphorylation inhibits ferroptosis
by reducing the production of iron-dependent lipid ROS,
but inhibition of HSF1-HSPB1 pathway activity and HSPB1
phosphorylation increases the anticancer activity of erastin
[91]. Together, these results demonstrate the importance of
lipid ROS and iron in promoting ferroptosis.

Recent studies have revealed a new mechanism by which
P53 acts as a tumor suppressor gene to inhibit tumors by
inducing ferroptotic cell death. Jiang et al. demonstrated that
P53 could downregulate the expression of SLC7A11, thereby
preventing system XC

- from absorbing cystine, resulting in
decreased cystine-dependent GPX activity and cellular anti-
oxidant capacity, in turn leading to ROS-induced ferroptosis
and tumor suppression [92]. Indeed, this finding is contrary
to those of many other reports showing that P53 can reduce
cellular levels of ROS. When ROS levels are low, P53 may
prevent the accumulation of ROS from promoting cell sur-
vival, whereas when ROS levels are excessive, P53 may evoke
cell death via ferroptosis. Currently, P53 is reported to exert a
complex and dynamic regulatory effect on ROS, but the role
of this regulation in tumors needs further study [93].

4. Anticancer Effects of CHM via ROS

As described above, ROS have dual roles in tumor suppression
and tumor promotion depending on their concentrations.
Moreover, most cancer cells have higher basal levels of ROS
than normal cells, which is beneficial for their survival and
development. In response to their high basal levels of ROS,
the antioxidant capacity of cancer cells is upregulated to main-
tain redox balance and prevent ROS levels from excessively
increasing to induce cell death [8, 26]. However, this effect is
very limited in tumor cells. Therefore, either increasing or
reducing ROS can be an effective strategy in cancer therapy
by disrupting redox balance in tumor cells [17, 20]. CHM has
a long history of treating various diseases and is becoming an
integral part of comprehensive cancer treatment in China.
According to the literature, CHM plays a significant role
in cancer therapy through several aspects: reducing inflam-
matory and infectious complications surrounding the
tumors, protecting normal tissues from the possible damage
caused by chemo/radiotherapy, enhancing the potency of
chemo/radiotherapy and molecular targeted therapies,
improving immunity and body resistance to disease, improv-
ing general condition and quality of life, and prolonging the
survival of advanced cancer patients [94]. However, in most
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cases, the chemical and pharmacological mechanisms of CHM
are ambiguous. The majority of researches on the molecular
mechanism of CHM were carried out with an active monomer
or crude extract of a single herb, and results indicate that the
anticancer activities of diverse CHMs are associated with
ROS regulation. Therefore, we summarize current data regard-
ing the ROS-related anticancer effects of CHM on the preven-
tion and therapy of cancers. Some typical Chinese herbal
compounds and ingredients are discussed. For additional
examples, please see the Tables 1 and 2.

4.1. Antioxidant Effects of CHM in Cancer Progression.
Carcinogenesis is a multistep process in which various genetic
and epigenetic events occur through the stimulation of
numerous inflammatory mediators and ROS production,
resulting in the conversion of normal cells into cancer cells
[1]. Many carcinogens, such as irradiation, UV light, and
toxins, are also exogenous ROS inducers that accelerate the
malignant transformation and promote tumor progression
by increasing intracellular oxidative damage and activating
cancer-promoting signals. Thus, approaches to enhance the
antioxidant enzyme system or reduce ROS generation can be
used to prevent tumorigenesis and slow tumor progression
(Figure 2). There is a beneficial inverse relationship between
the consumption of fruits and vegetables and the risk of lung
cancer, due to the high antioxidant content of these foods [95,
96]. Increasing types of CHM-derived bioactive ingredients
or crude extracts have been shown to suppress chronic inflam-
mation of tissues and prevent carcinogenesis. This effect, to a
certain extent, is attributed to the fact that such CHMs are
homologous to food and are rich in antioxidants such as sapo-
nins, flavonoids, and polysaccharides, which can reduce the
oxidative damage caused by excess ROS in normal cells [97].

Studies have shown that the overproduction of ROS
induced Cr(VI)-mediated carcinogenesis. Quercetin, one of
the most abundant dietary flavonoids in fruits, vegetables,
and many CHMs such asHippophae fructus (Sha Ji) and Lycii
fructus (Gou Qi Zi), has potent antioxidant and chemopre-
ventive properties [98]. Quercetin can protect human normal
lung epithelial cells (BEAS-2B) from Cr(VI)-mediated carci-
nogenesis by targeting miR-21 and PDCD4 signaling, reduc-
ing ROS production [98]. Purslane polysaccharides (PPs), a
principal bioactive constituent of the Portulaca oleracea L.
(Ma Chi Xian), possess a wide range of antioxidant, immu-
nomodulatory, and antitumor activities. Methylnitronitroso-
guanidine (MNNG) is a carcinogen and mutagen commonly
used in experiments. A recent study showed that PPs provide
dose-dependent protection against MNNG-mediated oxida-
tive damage by increasing the activity of SOD, CAT, and
GSH-Px in gastric cancer rats [99].

During tumor growth, ROS are continuously accumu-
lated by the stimulation of various growth factors and
hypoxia-inducing factors in the microenvironment, which
in turn accelerates the progression of the tumor andmaintain
typical hallmarks of cancer. Some CHMs can inhibit tumor
growth and progress by reducing ROS production in vitro
and in vivo using a mouse model. Forsythia suspensa
(Lian Qiao), one of the most fundamental medicinal herbs
in China, has extensive pharmacological activities and is

generally used to treat infectious diseases of the respiratory
system. In the past decades, its antineoplastic activity has
attracted more attention. Forsythia fructus aqueous extract
(FAE), as the primary bioactive ingredient of Forsythia
suspensa, has shown distinct anticancer properties both
in vitro and in vivo. FAE can inhibit proliferation and
angiogenesis of melanoma cells by antioxidant and anti-
inflammatory mechanisms such as in reducing ROS, malon-
dialdehyde (MDA), and IL-6 levels and in increasing GSH,
Nrf2, and HO-1 expression [100]. Similarly, andrographolide
(AP), a bioactive compound present in the medicinal plant
Andrographis paniculata (Chuan Xin Lian), possesses several
beneficial properties, including anti-inflammation, antioxi-
dation, and antitumor activities. AP can antagonize TNF-α-
induced IL-8 release by inhibiting the NOX/ROS/NF-κB
and Src/MAPKs/AP-1 signaling pathways, subsequently
suppressing angiogenesis in colorectal cancer cells [101].
Isoliquiritin (ISL) is a natural chalcone flavonoid derived
from licorice compounds and has antioxidant and antitumor
properties. Previous studies have demonstrated that ISL
may selectively inhibit prostate cancer cell proliferation by
decreasing ROS levels, thus blocking AMPK and ERK signal-
ing [102]; furthermore, this compound can suppress the
invasion and metastasis of prostate cancer cells possibly via
decreased JNK/AP-1 signaling [103]. Abnormal cell energy
metabolism is one of the core hallmarks of cancer [33]. Res-
veratrol (RSV) is a polyphenolic compound present in many
types of fruits, vegetables, and Chinese medical herbs.
Numerous studies have shown that it has a variety of biolog-
ical and pharmacological activities, such as antioxidant, anti-
inflammatory, antiaging, and antitumor. RSV can inhibit
invasion and migration by suppressing ROS/miR-21-medi-
ated activation and glycolysis in pancreatic stellate cells
(PSCs) [104].

In addition, ROS are involved in the antitumor activity of
many chemotherapeutic agents, small molecular targeted
drugs, and radiation therapy, as well as their side effects
[105, 106]. The rational use of the antioxidant effects of
CHMs can relieve the toxic side effects of chemo- and radio-
therapy on normal cells by eliminating excessive ROS. Sulfo-
raphane is a component of cruciferous vegetables and some
Chinese medicinal plants [107]. Studies have shown that sul-
foraphane is a powerful natural antioxidant to prevent, delay,
and improve some side effects of chemotherapy. Sulforaph-
ane can result in the high expression of HO-1 by activating
the KEAP1/NRF2/ARE signaling pathway, which protects
myocardial cells from doxorubicin-induced oxidative injury
and protects the gastric mucosa against H. pylori-induced
oxidative damage [107, 108]. Ginseng is often used alone or
in combination with other herbs for the adjuvant treatment
of tumors [109]. Ginsenoside is the main pharmacologically
active ingredient of ginseng in exerting anticancer activity.
As the primary active component, ginsenoside Rg3 can
mitigate doxorubicin-induced cardiotoxicity by ameliorating
mitochondrial function, improving calcium handling, and
decreasing ROS production [109]. Furthermore, Rg3 inhibits
gemcitabine-induced resistance by eliminating ROS, down-
regulating NF-κB and HIF-1α-mediated PTX3 activity
[110]. Ginsenoside Rg1 is another ingredient of ginseng and
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was found to alleviate cisplatin-induced hepatotoxicity via
restraining the binding of Keap1 to Nrf2, partly via p62 accu-
mulation, and enhancing Nrf2-related antioxidant activity
[111]. Schisandra sphenanthera extract has a protective effect
against cisplatin-induced nephrotoxicity by activating the
Nrf2-mediated defense response, thus increasing GSH levels
and reducing ROS levels [112]. Astragalus has a long history
of treating immunodeficiency diseases in China and beyond
and is often used to reduce side effects caused by chemother-
apy [113]. Astragaloside IV (As-IV) is a natural saponin
extracted from Astragalus membranaceus, which has antiox-
idant, anti-inflammatory, and antiapoptotic effects. Studies
showed that As-IV markedly ameliorates BLM-induced
pulmonary fibrosis in mice, an effect associated with its
antagonism of bleomycin-induced oxidative stress and
inflammatory responses, increasing SOD activity and total
antioxidant capacity in lung tissue and reducing ROS,
MDA, and IL-1β levels [113].

Notably, some compounds or ingredients of CHM are
generally considered to be antioxidants but can induce pro-
oxidant effects similar to those of antioxidant supplements
such as vitamin C [114]. These substances exhibit antioxi-
dant activity at low concentrations but induce ROS produc-
tion and cytotoxicity at high concentrations [115]. For
example, the previously mentioned antioxidant ISL initially
decreased the levels of ROS in HepG2 cells in a time-
dependent manner; along with this effect, the activity of the
Nrf2-mediated antioxidant enzyme system also declined to
maintain the new redox balance. However, the intracellular
ROS level was significantly higher after 6 h of ISL treatment,
an effect attributed to reduced antioxidant capacity, and the
sensitivity of cancer cells to X-ray irradiation was thus
increased [115]. Epigallocatechin gallate (EGCG) is a pheno-
lic compound in green tea extract and has anticancer activi-

ties in vivo and in vitro [116]. EGCG can decrease lipid
peroxidation in hepatocytes and enhance antioxidant capac-
ity. However, high concentrations of EGCG destroy the
mitochondrial membrane and generate intracellular oxida-
tive stress [117]. Thus, whether EGCG exhibits antioxidant
or prooxidant activity depends on the cellular stress condi-
tions, cell type, and EGCG concentration [116, 118].
CHM-derived compounds such as quercetin, curcumin, and
resveratrol were found to exhibit similar features [3, 119].

To sum up, the antioxidant effects of CHMs described
above and the examples listed in Table 1 exhibit diverse anti-
cancer effects, including reducing inflammatory mediators,
inhibiting tumor proliferation, inducing antiangiogenesis,
suppressing metastasis, inhibiting glycolysis, overcoming
drug resistance, and countering the side effects of chemo-
and radiotherapy. These effects were mainly achieved by
the regulation of several ROS-related transcription factors
such as NRF2, NF-κB, COX-2, STAT3, and HIF-1a and by
enhancing the capacity of antioxidant enzymes such as
GSH, SOD, and HO-1.

4.2. Prooxidant Effects of CHM in Cancer Progression. Since
the levels of ROS in tumor cells are higher than those in nor-
mal cells, tumor cells are potentially more vulnerable to the
accumulation of ROS. The strategy of increasing intracellular
ROS levels by increasing ROS production and/or inhibiting
the antioxidant capacity enables the ROS level to reach the
toxic threshold in cancer cells before it does in normal cells,
thereby selectively killing tumor cells without causing visible
damage to normal cells (Figure 2).

Many CHM compounds can promote the production of
intracellular ROS to induce various types of programmed cell
death and enhance the efficacy of chemo- and radiotherapy.
Scutellaria (Huang Qin) is one of the most commonly used
CHMs in China and its surrounding areas and has a practical
effect on infectious diseases caused by bacteria and viruses
[120]. As a principal bioactive constituent of Scutellaria,
wogonin has apparent anticancer effects against different
types of cancer cells. It can induce mitochondrial apopto-
sis by activating PLCγ1 via H2O2 signaling in malignant
T cells, resulting in Ca2+ overload in mitochondria [120].
Furthermore, wogonin enhanced TRAIL-induced apoptosis
through ROS-mediated downregulation of the cFLIPL and
IAP proteins [121]. In addition, levistolide A (LA), a natural
compound isolated from the Chinese herb Ligusticum chuan-
xiong Hort., can trigger ER stress-induced apoptosis by acti-
vating the ROS-mediated PERK/eIF2α/CHOP axis [122].
Besides, LA synergizes with vinorelbine against tumors and
induces cell cycle G2/M arrest and apoptosis; interestingly,
it can reverse P-glycoprotein-mediated multidrug resistance
in breast cancer cells [123]. Other classical compounds of
CHM that target the apoptotic signaling pathway have been
reviewed [9]. Sanguinarine (SNG) is a benzophenanthridine
alkaloid that is predominantly extracted from Chelidonium
majus (Bai Qu Cai), a well-known CHM mainly used for
digestive and respiratory inflammatory diseases and malig-
nant tumors. SNG has diverse biological activities, such as
antimicrobial, anti-inflammatory, and antitumor properties.
Our previous study has shown that SNG successfully
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Figure 2: Treatment strategy based on redox regulation. Compared
to normal cells, cancer cells have increased levels of basal ROS,
resulting in the maintenance of tumor-promoting signaling in
these cells. Therefore, strategies for reducing ROS by using
antioxidants to prevent carcinogenesis or delay tumor growth are
theoretically feasible (however, most current clinical results are
not supported). However, strategies for increasing ROS to toxic
levels by using ROS inducers and/or inhibiting ROS scavengers
can result in the specific killing of cancer cells (such approaches
seem more promising than ROS reduction strategies).
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inhibited the proliferation of specific lung cancer cells
expressing stem cell characteristics, possibly by downregulat-
ing WNT/β-catenin signaling [124]. SNG can not only
induce apoptotic cell death but also trigger autophagic cell
death by the ROS-dependent activation of ERK1/2 in malig-
nant glioma cells [125]. Besides, this compound can upregu-
late NOX3 and then elevate ROS levels, resulting in
EGFRT790M degradation to overcome tyrosine kinase inhibi-
tor (TKI) resistance [126]. Artesunate is a derivative of the
natural compound artemisinin, which is known for its anti-
malarial agents, with well-understood pharmacokinetics.
ART specifically induces PCD in different cancer types in a
manner initiated by ROS generation [127]. Recent studies
have found that ART specifically induces ferroptotic cell
death in pancreatic cancer cells in a ROS- and iron-
dependent manner and that this induction can be blocked
by the ferroptosis inhibitor ferrostatin-1 [128]. Interestingly,
dihydroartemisinin (DAT), another artemisinin derivative
with high bioavailability, enhances the sensitivity of cancer
cells to ferroptosis inducers in a lysosome-dependent, but
autophagy-independent manner. Importantly, DAT can fur-
ther improve the ferroptosis-resistant cancer cell lines more
sensitive to ferroptotic death, which suggests that the combi-
nation of DAT and ferroptosis inducers is an effective anti-
cancer method [129].

In addition to directly inducing ROS production, inhibit-
ing the activity of antioxidant enzymes to increase ROS levels
is another potentially more effective approach to kill cancer
cells. Cancer cells tend to have higher antioxidant capacity
than normal cells to adapt to elevated levels of ROS, which
promotes cancer cell resistance to exogenous ROS-inducing
agents [119]. Many antioxidants, such as GSH, TRX, and
SOD, and Nrf2 activity aid tumorigenesis and confer che-
moresistance and are present at high levels in various tumor
types [130–133].

Piperlongumine (PL) is a natural constituent of the long
pepper fruit (Piper longum), which is extensively used in
digestive diseases such as gastrointestinal cancer. PL can
selectively kill a variety of tumor cells and enhance
cisplatin-mediated anticancer activity [134, 135]. Its antican-
cer effects are mainly attributed to the silencing of the GSTP1
gene, thus reducing GSH content [136]. Isoforretin A (IsoA)
is a novel ent-kaurane constituent isolated from a traditional
Chinese medicinal herb of the Isodon genus and has multiple
anticancer effects both in vitro and in vivo. IsoA inhibits Trx1
activity by covalently binding to the Cys32/Cys35 residues in
the Trx1 activation site, resulting in ROS accumulation and
causing DNA damage and apoptosis in tumor cells. It can
be a potential novel agent for cancer therapy [137]. Consis-
tent with this effect, both shikonin [138, 139] and partheno-
lide [140] can inhibit TrxR, interfere with redox balance, and
eventually lead to ROS-mediated tumor cell death. Brusatol
(BR), the main active ingredient of the Brucea javanica plant,
has many anticancer properties [141]. BR is a potent inhibi-
tor of Nrf2 and can degrade Nrf2 by ubiquitination to sup-
press the Nrf2-dependent protective response and thus
sensitize lung cancer cells to cisplatin [142]. Moreover, the
combination of BR and UVA irradiation increases ROS-
induced cell cycle arrest and cellular apoptosis and inhibits

melanoma growth by regulating the AKT-Nrf2 pathway in
cancer cells [143].

Summarizing the above examples of prooxidant CHM
and those listed in Table 2, contrary to the antioxidant effects
of CHM, it can be concluded that the prooxidant effects of
CHM in cancer cells are achieved by enhancing ROS produc-
tion and/or inhibiting antioxidant capacity, thereby activat-
ing ROS-dependent killing patterns on cancer cells. So far,
the killing model of prooxidant CHM is mainly induced by
apoptosis, which is primarily achieved by the regulation of
ROS-related apoptotic upstream signaling pathway, such as
MAPK/JNK/p38, JAK/STAT, PI3K/AKT, and ER stress
pathways, followed by activation of apoptotic executive mol-
ecules, such as BAX/BCL-2, caspase family, and PARP-1.
Other than this, CHMs also induce autophagic cell death,
necroptosis, and ferroptosis in uncommon ways, but under-
lying molecular mechanisms remain unclear. Of note, ferrop-
tosis, as a newly discovered type of cell death, possibly
provides a promising choice for the application of CHM in
cancer therapy, especially in the case of many conventional
agents with apoptosis resistance.

5. Discussion

Cancer cells exhibit higher levels of ROS than normal cells
[18, 27, 144]. ROS promote tumorigenesis via malignant
transformation, sustained proliferation, angiogenesis, inva-
sion, and metastasis. On the other hand, ROS at elevated
levels can increase the vulnerability of cancer cells to various
inducers. Considering the dual nature of ROS and the
complexity of tumors themselves, exploring approaches to
rationally utilize CHM to regulate ROS may maximize the
anticancer functions of CHM.

The first strategy is to exploit the antioxidant properties
of CHMs to reduce excessive intracellular ROS and to antag-
onize ROS-induced protumorigenic effects on normal cells.
However, many clinical trials have inconsistently concluded
that antioxidant supplements are beneficial for preventing
tumors; furthermore, the long-term use of certain antioxi-
dant supplements may even increase the incidence of some
tumors and overall mortality [3, 145]. Moreover, recent stud-
ies have shown that antioxidants can promote carcinoma
proliferation and distant metastasis in vivo [6, 146]. In terms
of cancer treatment, antioxidant supplements may reduce the
side effects of chemo- and radiotherapy in some cases but
may also antagonize the positive effects of these treatments
[17, 147, 148]. Therefore, although the abovementioned anti-
oxidant CHM compounds or their active ingredients have
shown an initial positive effect in tumor prevention and have
been shown as an adjuvant treatment in preclinical studies,
cautionmust be taken in their long-term application. Antiox-
idant CHMs are different from antioxidant supplements due
to the fact that they are natural products with a complex
combination of active ingredients. The properties of antioxi-
dant CHMs are closer to those of fruits and vegetables rich in
antioxidants. Thus, the use of CHMs rich in antioxidants
rather than a single antioxidant compound might have better
effects in tumor prevention. However, further systematic
studies are needed.
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Compared to ROS reduction strategies, which have a
controversial role in application to tumors, ROS promotion
strategies have shown better anticancer effects and clinical
prospects. Such strategies can be implemented by using an
agent that either increases ROS production or reduces anti-
oxidant capacity or results in a combination of both effects.
Various chemotherapeutic drugs, molecular targeted drugs,
radiotherapy, and photodynamic therapy have been shown
to kill tumor cells by increasing intracellular ROS levels
[56, 104, 149, 150]. To date, some novel ROS inducers
(such as ARQ501 and elesclomol), as well as antioxidase sys-
tem drugs (such as the SOD1 inhibitor ATN-224 and the
GSH inhibitors buthionine sulfoximine (BSO) and phenethyl
isothiocyanate (PEITC)), have also been under clinical tri-
als (see http://clinicaltrials.gov/). Many CHM-derived active
constituents act as ROS generators to exert anticancer effects.
Importantly, the intracellular level of ROS should be carefully
controlled when using ROS-generating CHMs. If the levels of
ROS are not sufficiently increased to the toxicity threshold,
downstream oncogenes, such as PI3K, HIFs, NF-κB, and
MAPK, may be activated to promote cancer development.
Conversely, increasing the ROS levels too far over the cyto-
toxic level will lead to nonspecific damage to normal cells,
thereby injuring sensitive vital organs such as the heart, liver,
and kidneys [8]. Indeed, tumor cells maintain elevated anti-
oxidant system activity to prevent oxidative damage from
cytotoxic ROS; thus, ROS generators are not always useful.
However, the use of antioxidant inhibitors in combination
with ROS inducers may be a promising method in anticancer
therapy because this approach can decrease the adaptability
of tumor cells to both agents [20, 26]. Compounds such as
curcumin [151] and triptolide [152] can simultaneously
induce ROS generation and inhibit antioxidant defense,
causing cancer cell death and enhancing the efficacy of
chemotherapy. This pleiotropic effect may be beneficial in
overcoming the resistance of cancer cells to conventional
single-target drugs [149]. However, due to the bimodal
nature of ROS and CHM, identifying the specific types of
ROS and antioxidant molecules that are uniquely required
for tumor growth and survival and determining the mecha-
nisms targeted by the specific CHM in different types of
tumors are important. Currently, the advent of newmolecular
tools for the localization, quantification, and real-time detec-
tion of ROS is expected to further deepen our understanding
of redox, to advance ROS-based treatment strategies, and to
generate great opportunities for the development of antican-
cer drugs from CHMs.

6. Conclusions

In summary, we describe how ROS are generated and elimi-
nated within cells and the complicated dual roles of ROS in
cancers. ROS not only are indiscriminate damaging mole-
cules but also function as specific secondary messengers,
involved in various physiological and pathological responses.
This is the current focus on the debate in the field of redox
biology and accounts for inconsistency with clinical and
experimental studies on ROS. Traditional Chinese medicine
is an ancient practice medicine with potential advantages in

cancer treatment. We selected and summarized the original
researches of CHM based on ROS regulation with relatively
precise molecular mechanisms. CHMs exert antitumor
effects through antioxidant activities, including inhibition
of inflammation; prevention of carcinogenesis; inhibition of
tumor proliferation, growth, and metastasis; and reduction
of side effects of chemo- and radiotherapy; on the other hand,
CHMs primarily induce multiple cell death to kill cancer cells
selectively by promoting oxidation, cause DNA damage and
enhance the efficacy of chemo/radiotherapy and molecular
targeted agents, and reverse drug resistance of cancer cells.
Taken together, CHM plays a vital role in the prevention
and treatment of tumor initiation, development, and progres-
sion.Moreover, it is a promising strategy to develop low-toxic
and effective antitumor agents from CHMs based on the reg-
ulation ROS. Notably, the majority of current mechanistic
researches are based on the reductionist approach, which
may not adequately clarify the efficacy of herbal medicines,
especially for the traditional Chinese compound formulas,
themost common way used in the clinic. Therefore, a system-
atic biological method may be more appropriate and efficient
for the development of effective therapies; additionally, more
well-designed clinical trials and transformational experimen-
tal studies are also vitally needed to confirm the efficacy of
CHMs in humans.
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