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The pathological processes of cancer are complex. Current methods used for
chemotherapy have various limitations, such as cytotoxicity, multi-drug resistance,
stem-like cells growth, and lack of specificity. Several types of nanomaterials are used
for cancer treatment. Nanomaterials 1–100 nm in size have special optical, magnetic, and
electrical characteristics. Nanomaterials have been fabricated for cancer treatments to
overcome cytotoxicity and low specificity, and improve drug capacity and bioavailability.
Despite the increasing number of related studies, few nanodrugs have been approved for
clinical use. To improve translation of these materials, studies of targeted drug delivery
using nanocarriers are needed. Cytotoxicity, enhanced permeability and retention effects,
and the protective role of the protein corona remain to be addressed. This mini-review
summarizes new nanomaterials manufactured in studies and in clinical use, analyses
current barriers preventing their translation to clinical use, and describes the effective
application of nanomaterials in cancer treatment.

Keywords: nanomaterial, cancer treatment, tumor microenvironment, drug delivery, chemotherapy,
bioavailability, nanodrug
INTRODUCTION

Cancer is a common, complex, and heterogeneous disease. As the population ages, cancer is
becoming a leading cause of morbidity and mortality worldwide, with approximately 9.5 million
cancer-related deaths annually (1). Therefore, studies aimed at developing treatments for cancer are
urgently needed. Surgery, chemotherapy, and radiotherapy are the three main treatments for cancer
but often lead to unsatisfactory outcomes and side effects (2, 3). With increasing advances in
oncology research, more effective therapies have become available to overcome these limitations,
such as immunotherapy, gene therapy, photothermal therapy (PTT), photodynamic therapy (PDT),
chemodynamic therapies (CDT), sonodynamic therapy (SDT) and nanomaterial-based
chemotherapy (4–9). Among them, nanomaterial-based chemotherapy is a promising therapy for
cancer because of its low toxicity, high specificity, and excellent bioavailability (10).

Medical nanotechnology is one of the most promising frontiers in cancer. Typical nanomaterials
are 1–100 nm in size and exhibit a high surface to volume ratio, unique fluorescence properties,
enhanced permeability, and outstanding biocompatibility (11, 12). These properties offer several
advantages in cancer treatment. The high surface to volume ratio facilitates the assembly of
biomolecules, which can improve the specificity of chemical drugs, thereby increasing the efficacy of
targeted therapy and reducing its toxicity (10).
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PDTandPTTarepromising approaches for improving the effects
of cancer treatment; bothmethods are related to optical interference.
The materials used in PDT and PTT have obtained wide interest in
recent years. The temperature of the targeted region can be elevated
by the photothermal conversion efficiency of PTT to promote cancer
cell death. In contrast, in PDT, photosensitizers and certain
wavelengths of light are utilized to produce singlet oxygen, leading
to the death of cancer cells (13). Because of their excellent
fluorescence properties, various nanomaterials are utilized in PDT
andPTT (14). In tumor site, toxicROSwas generated by endogenous
H2O2and therefore cancer cellswere killed in the absence of external
O2 (15). This is one of the unique advantages of CDT. So far, CDT
nanodrugs with mitochondria-targeting displayed outstanding
spatial specificity and anti-tumor effect (9).

Nanoparticles are a better choice for cancer treatment
compared to microparticles because nanoparticles are more
biodegradable than microparticles (16). Nanoparticles are not
small enough to penetrate into normal blood vessels because they
have a dense extracellular matrix. As tumor grows, lymphatic
drainage was inhibited by immature vasculatures generated by
tumor-induced angiogenesis (17). The suppressed lymphatic
drainage makes it possible for nanoparticles to penetrate targeted
cells. This phenomenon is known as “enhanced permeability and
retention effect” (EPR) and the passive targeting of nanoparticles is
largely dependent on EPR effect (18).

The superparamagnetic behavior of nanomaterials facilitates
the diagnosis and treatment of cancer. For example,
superparamagnet ic i ron oxide nanopart ic les o ffer
unique advantages. They are small, display high targeting
specificity, and show a powerful ability to evade the immune
system, thereby exhibiting potential for cancer treatment (19).
ADVANCES IN NANOTECHNOLOGY FOR
TARGETED DELIVERY

Cancer treatment based on nanomaterials shows advantages over
using free drugs, particularly for targeted delivery. Compared to
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free drugs, targeted delivery exhibits reduced toxicity, decreased
degradation, increased half-life, and enhanced capacity (20, 21).
Recent advances have been made in nanomaterial-based targeted
drug delivery systems, including in active or passive targeting.
Active targeting is achieved using antibodies or small molecule-
conjugated nanoparticles, whereas passive targeting occurs
through enhanced permeability and retention effects. Active
targeting displays great potential and acted as an alternative
strategy to passive targeting and the ability of tumor localization
in active targeting was improved by increased efficiency and
retention (22). Compared with traditional chemical therapies,
nanomaterial-based drugs display increased specificity,
improved bioavailability, lower cytotoxicity, better loading
capacity, and a longer half-life. To date, many nanomaterials
for cancer treatment have been developed based on remarkable
advances in nanoscience, technology, and cancer pathology.
However, few nanomaterial-based drugs have been intensively
studied and utilized in clinical practice. Nanomaterials can be
broadly classified into several categories (Figure 1).
NANOMATERIALS IN CANCER THERAPY

Several well-studied nanoparticles are listed in Supplementary
Table 1 (23–28). Chemical drugs can be delivered and
sustainably released to target sites by Polymeric nanoparticles
(PNPs) (10 to 1000 nm) (29). Nanoparticle components have
evolved over the past few decades; they were initially
manufactured from non-biodegradable polymers, including
polymethyl methacrylate and polyacrylates (30, 31). Because
they cause chronic inflammation and toxicity, one challenge to
using these types of PNPs is their timely removal. To overcome
this difficulty, biodegradable polymers such as polylactic acid,
poly (lactic-co-glycolic acid), and poly (amino acids) have been
fabricated (32), which exhibit excellent advantages depending on
their structures and properties. PNPs protect drugs from
degradation, improve loading ability, and increase stability
(33). However, metal nanomaterials are not considered for
A B D
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FIGURE 1 | Categories of nanomaterials used in cancer therapy. (A) Nanoparticles. (B) Liposomes. (C) Solid lipid nanoparticles. (D) Nanostructured lipid carriers.
(E) Nanoemulsions. (F) Dendrimers. (G) Graphene. (H) Metallic nanoparticles. PEG, poly (ethylene glycol).
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cancer treatment because renal and brain toxicity and
denaturation of enzymes may be caused by excessive heavy
metal element in-take (34, 35).

Drug delivery plays an important role in cancer therapy, and
non-conjugated polymers with intrinsic luminescence show its
special advantage in drug delivery (36). Drug delivery are
including passive and active targeting (Figure 2A). A crucial
issue is the size of the drug. It is difficult for drugs to infiltrate the
dense extracellular matrix. However, tumor induced
angiogenesis promoted generation of numerous immature
vasculatures and inhibited lymphatic drainage (37). Because
these immature vasculatures are “leaky”, nanoparticles are
small enough to penetrate the target sites. It is convenient to
attach targeting peptides to the surface of PNPs because of
excellent surface to volume ratio. Polysorbates surfactant effect
can promote solubilization and fluidization. Coating polymers
with polysorbates can improve bioavailability, thereby
promoting the interaction of PNPs with endothelial cell
membranes of the blood-brain barrier and facilitating
endocytosis (38, 39). Compared with conventional chemical
drugs, PNPS can deliver anticancer drugs to target sites and
react to ultrasound. Theragnostics is a novel strategy that
includes both diagnosis and therapy, in which fluorescent
PNPs play a crucial role. In recent years, fluorescent PNPs
with complex structures have been used as theragnostic
materials. Fluorescent PNPs are typically composed of
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biocompatible biopolymers, fluorescent proteins, and organic
dyes (40). Moreover, the anticancer effect of nanomedicine is
strengthened by hydrophobic interactions or p–p bonds
according to fluorescence assays (41). Radionuclides, such as I-
125, can be stored in the stable core by electrophilic aromatic
substitution of nanoparticles (42, 43). In addition, a self-
assembling protein nanoparticle (11 nm) was developed and
showed stability and biocompatibility in vivo, revealing its
potential for drug delivery in cancer therapy (44). Ultrasound-
sensitive PNPs are effective for cancer diagnosis and therapy.
Side effects were reduced by using ultrasound in nanoparticle
fabrication to overcome “obstacles” (such as endothelial blood
vessels, tissue endothelium, and blood-brain barrier) associated
with the traversing ability of cancer treatments, thus enhancing
drug delivery (45–47). Ultrasound displays a thermal effect and
can be utilized to trigger the controlled release of chemical drugs
(48). However, some degraded PNPs are toxic; therefore, their
fabrication and properties are still to be improved (49).
MONOCLONAL ANTIBODY
NANOPARTICLES

Because of their anticancer effect and specific targeting ability,
monoclonal antibodies (mAbs) are widely used in targeted
treatment. More recently, mAbs have been utilized in
A B

C

FIGURE 2 | Cancer therapy approaches depending on nanomaterials. (A) Targeting cancer cells by passive targeting or active targeting. (B) Targeting TME, such
as anti-angiogenesis, stromal cell and extracellular matrix. Bevacizumab was loaded in liposome and conjugated with VEGF to suppress angiogenesis. HAase was
fabricated onto NP surface and penetration ability of NP was increased. c IFN-g as an immune regulator delivered by liposomes activated immune cells in cancer
immunotherapy. HAase, hyaluronidase; IFN-g, Interferon gamma; NP, nanoparticle; TME, tumor microenvironment; VEGF, vascular endothelial growth factor.
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anticancer nanoplatforms and as frontlines in the fight against
cancer. Cytotoxic drugs are conjugated with mAbs to strengthen
the therapeutic efficacy of anticancer drugs, known as antibody-
drug conjugates. According to the specific antigens expressed in
cancer cells, less toxicity and higher specificity can be achieved
(50). Different antibody-drug conjugate systems display
enhanced therapeutic efficacy in breast cancer (26, 51). Based
on these effects of antibody-drug conjugates, trastuzumab
nanoparticles are promising and widely studied nanoplatforms
for cancer treatment (52–54).
LIPID-BASED NANOMATERIALS

Liposomes, solid lipid nanoparticles (SLNs), and nanostructured
lipid carriers are three main categories of lipid-based
nanomaterials. Liposomes (20 nm to >1 mm) were the first
microcosmic phospholipid bilayer nanosystem (55). Both
hydrophilic and hydrophobic drugs can be delivered
depending on the liposome structure (56). Drugs are shielded
from degradation by the central cavity of liposomes (57).
Liposomes may be phagocytized by the mononuclear
phagocyte system, known as human guards; therefore,
liposome membranes should be modified to prolong their half-
life (58). This can be achieved through polyethylene glycol
conjugation. For example, PEG-l iposomes carrying
doxorubicin (DOX) were developed and applied to treat
Kaposi sarcoma (59). Liposomes are widely applied in co-
delivery and controlled release and have been combined with
chemical drugs. How to load drugs and control release must be
considered when designing liposome nanocarriers. Drug efficacy
is affected by bioavailability in cancer chemotherapy, and DOX
liposomes have a lower bioavailability than free DOX, suggesting
that bioavailability should be improved during liposome design
(60). A new PEGylated liposome carrying cobimetinib and ncl-
240 displayed an enhanced cytotoxic effect through synergistic
effects, leading to higher efficacy (61). Moreover, liposomes
loaded with floxuridine and irinotecan exhibited better effects
on advanced solid tumors, whereas a new liposome containing
multilayer siRNA molecules and that co-delivered DOX
displayed better DOX efficacy, decreasing the tumor mass in
breast cancer (62, 63). Notably, specific liposomes can release
drugs depending on the pH value, as cancerous regions are more
acidic compared to healthy tissues (64). pH-sensitive cationic
liposomes were prepared using a pH-sensitive material. The
release of sorafenib was increased at pH 6.5 (65). In summary,
liposomes exhibit low immunogenicity, low cytotoxicity, and
high biodegradability (66). However, the disadvantages of
liposomes include their rapid removal by the mononuclear
phagocyte system, low stability, and obstacles in membrane
transfer. Therefore, the application of liposomes remains limited.

SLNs have been acted as alternative carriers to liposomes.
Because of the rigid confinement of the scale, SLNs (1–100 nm)
are known as “zero-dimensional” nanomaterials compared with
other larger nanomaterials. SLNs contain solid materials, in
contrast to liposomes. Examples of these materials include
Frontiers in Oncology | www.frontiersin.org 4
solid lipids, emulsifiers, and water. PEGylated lipids,
triglycerides, and fatty acids are utilized in SLNs (20). The
outer layer and delivery function of SLNs are similar but show
some differences from conventional liposomes. Some SLNs have
a micelle-like structure rather than a contiguous bilayer, with
drugs packaged in the core (67). Compared with liposomes, SLNs
show higher stability and longer release. However, because of
their crystalline structure, SLNs exhibit some limitations, such as
inherently low incorporation rates and an unpredictable gelation
tendency (68). Nanostructured lipid carriers (NLCs) have been
fabricated to overcome the drawbacks of SLNs and termed as the
second lifetime of lipid nanoparticles. Compared with SLNs,
NLCs exhibit a higher loading capacity and show a less
inclination of gelation (69). NLCs have received considerable
attention in recent years because many drugs used in cancer
therapy are lipophilic and can be administered through various
routes (oral, parenteral, inhalational, and ocular) (70). NLCs are
manufactured as systems that carry both liquid and solid lipids.
Over the past two decades, the stability and loading capacity of
NLCs have evolved.
NANOEMULSIONS

Nanoemulsions (NEs) are colloidal nanoparticles with an
aqueous phase, emulsifying agents, and oil (71). NEs are
widely utilized drug nanocarriers. They have a lipophilic
surface and solid spheres; three typical NE types are water-in-
oil NE systems, oil-in-water NE systems, and bi-continuous NE
(71). Compared with most lipid-based nanomaterials, NEs show
the advantages of optical clarity, excellent biodegradability, and
improved molecule release profiles (72). In contrast to
conventional delivery vehicles, nanoemulsions are superior in
efficacy and stability, and a serial of routes they can use to
administer (73, 74). Intranasal route was used to carry small
interfering RNA to the brain by nanoemulsions. In glioblastoma,
CD73 small interfering RNA was successfully carried to the brain
for gene silencing in a cationic nanoemulsion and show its great
potential in drug delivery (75). Co-delivery using NEs can be
performed to improve the effects and bioavailability of drugs. A
previous study showed that an NE carrier containing paclitaxel
(PTX) and Spirulina polysaccharides displayed improved
anticancer effects by regulating the TLR4/NF-kB signaling
pathways (76). An NE system composed of rapamycin and
bevacizumab was developed. Increased inhibition of tumor
migration and angiogenesis and improved cytotoxicity against
cancer cel ls were observed in advanced melanoma
(77) (Figure 2B).

NEs can also be used in immune therapies. A modified NE
loaded with interferon-g inhibited the viability of MCF-7 breast
cancer cells and enhanced the activity of phagocytes. These
results indicate the potential of these NEs for cancer therapy
(78) (Figure 2C). A new NE carried baicalein and paclitaxel was
produced enhanced oxidative stress and decreased glutathione
levels in MCF-7/Tax cells, providing a suitable approach for
increasing the sensitivity of cells to paclitaxel (74, 79). Compared
July 2022 | Volume 12 | Article 930125
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to conventional paclitaxel production, baicalein-paclitaxel NE
displayed higher anticancer efficacy in vivo (74, 79). These
studies indicate that applying elaborately fabricated NEs is
useful for managing multi-drug resistance.

NEs are transitioning to clinical application but require many
improvements, despite their potential advantages. A high
temperature and pressure are typically needed to fabricate NEs,
for which few materials are suitable. It is difficult to commercially
manufacture NEs. Moreover, compared to other conventional
production methods, homogenizers and microfluidizers are
often used to prepare NEs, making the process more energy-
efficient. Further studies of NE metabolism are needed to
evaluate the safety of NEs in clinical applications (72).
DENDRIMERS

Dendrimers (1–15 nm) exhibit an architecture with highly
branched surfaces (80, 81). Dendrimer molecules are
composed of three parts: a central core, branches, and an
exterior surface. A few dendrimers have been investigated for
cancer therapy, including polyamidoamine (PAMAM),
po l y p r opy l e n im in e , 5 - am ino l e vu l i n i c a c i d , a nd
triethanolamine (82).

Depending on their unique structure, dendrimers exert
specific functions, such as adjustable branches, outstanding
solubility, and excellent bioavailability. Cationic dendrimers
can form complexes with nucleic acids because of their
positively charged surfaces. Hence, dendrimers can be utilized
as efficacious nucleic acid nanocarriers. PAMAM and
polypropylenimine have been extensively investigated. A
PAMAM dendrimer composed of two parts was developed for
simultaneously monitoring cancer cells and managing multi-
drug resistance through fluorescence imaging. The first part was
a carbon dot/DOX complex and the other part was composed of
five PAMAM dendrimers with cyclic arginine-glycine-aspartic
acid and d-a-tocopheryl polyethylene glycol 1000 succinate
(TPGS). These two parts were combined via electrostatic
interactions to obtain a PAMAM dendrimer. The carbon dots
produced fluorescence, and arginine-glycine-aspartic acid
ligands targeting avb3 integrin receptors induced targeting
specificity; TPGS showed a remarkable ability to inhibit cancer
cells (83).

Dendrimers are also useful for co-delivery. Tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL) is an
important factor in the apoptotic pathway. In addition, colon
cancer is typically treated using DOX. TRAIL and DOX plasmids
were carried in a dendrimer nanocarrier, which showed
enhanced anticancer effects compared to modified carriers
containing the TRAIL or DOX plasmids alone (84). Depending
on the dendrimer, a PAMAN nanocarrier was prepared and used
to treat liver cancer. PAMAN dendrimers without decoration
exhibit inefficient cellular internalization, low transfection
efficiency, and unstable encapsulation; however, the
competitive characteristics of nanomaterials exhibit many
advantages in combination therapy (85, 86).
Frontiers in Oncology | www.frontiersin.org 5
GRAPHENE

Because of its important mechanical and electronic
characteristics, graphene has been widely studied in cancer
therapy (87). Based on their composition, structure, and
characteristics, single-layer and multi-layer graphene, graphene
oxide (GO), and reduced graphene oxide have been defined (88).
Graphene shows unique mechanical and electrochemical
advantages. Optical transmittance, high density, and
hydrophobicity are outstanding properties (89, 90). In
addition, high drug-carrying ability and thermal conductivity
are important properties in cancer theragnostic (91, 92).
However, the poor solubility of graphene causes toxicity and
prevents its manufacture (93). Hence, more bioavailable
graphene-based nanomaterials are needed. A classical GO
molecule is composed of functional oxygen groups, carbonyl
groups, and epoxy groups (94). GO and the reduced derivative of
GO display improved biological effects compared to graphene.
Powerful hydrophilicity contributes to dispersions in aqueous
solvents, avoiding aggregation induced by van der Waals and
hydrophobic interactions (95). Additionally, nanosheets are a
versatile platform on which hydrophilic functional groups can be
combined with various materials, offering many advantages in
targeted therapy and cancer diagnosis (96).

Direct immunogenicity is exhibited in graphene compared to in
other nanomaterials, and the extent of the immunostimulatory
capability can be modulated by changing the lateral size (97).
Macrophages and dendritic cells can be activated by graphene,
revealing their potential for cancer therapy. TNF-a was remarkably
increased by 6-armed GO in RAW264.7 macrophages without
altering IL-1b and IL-6 levels (98). Graphene can also suppress
some cancer cells. Treatment of human osteosarcoma cells and
normal osteoblasts with GO displayed significant cytotoxicity
against osteosarcoma, and the apoptosis rate of osteosarcoma cells
was remarkably higher than that of hFOB1.19 normal osteoblast
cells (99). Cancer stem cells (CSCs) are cancer cells with self-
renewability and high tumorigenic potency; these cells are
associated with multi-drug resistance and interact with the TME
(100). Hence, damage to CSCs is vital for preventing malignancy.
GO can distinctively target CSCs and suppress several pivotal
signaling pathways, such as Notch and STAT signaling.
Moreover, GO can induce CSC differentiation (101). This effect
was named as differentiation-based nanotherapy. However, the anti-
CSC phenomenon are still to be evaluated.
NANOMATERIALS FOR CANCER
IMMUNOTHERAPY

Nanomaterials exhibit great potential in promoting the efficacy
of cancer immunotherapy. Cancer immunotherapy include two
aspects: cancer vaccines and TME modulation. Cancer vaccines
are developed to present cancer antigen to DCs and promote
robust effector T-cell response, while TME modulation aims to
expand the ability of cytotoxic T cells for killing cancer cells (102,
103). Moreover, nanomaterials preloaded with targeting ligands
July 2022 | Volume 12 | Article 930125
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can be taken up by specific cells (104). Interestingly, a recent
research reported that a D-enantiomeric supermolecule
nanoparticle was fabricated and its p53-dependent
antiproliferative activity was exhibited and therefore antitumor
immunity was enhanced (105). Immunotherapy will be benefited
from delivery of tumor antigens by nanomaterials and the
immune response can be also modulated by nanomaterials
because of their specific characteristics (106, 107). Of note, the
stimulator of interferon genes pathway was activated by the
PC7A nanoparticles and therefore contribute a robust response
in anti-tumor immunotherapy (108).
BIOINFORMATICS IN
CANCER RESEARCH

Recently, bioinformatics gained lots of interest in the medicine
and especially in the field of cancer research. The best cancer
therapy depends largely on the right identification of the origin
of cancers. With the developments of bioinformatics, machine
learning methods have been used to predict the origin of cancer,
depending on the mRNA expression, or miRNA expression. An
interesting publication showed that tissue specific miRNA and
DNA methylation markers have been used to detect the origin of
cancer and classifiers based on DNA methylation are more
powerful than miRNA-based classifiers (109). Moreover,
multimodal deep learning was successfully used in the
identification of choroidal neovascularization activity (110).
The above classifiers and relevant biomarkers (such as mRNA)
will promote the specific therapy of cancer in the future.
DISCUSSION

Nanomaterials display different properties, such as composition,
structure, and immunogenicity. Cancer treatment based on these
nanomaterials have been widely studied. Diverse modification
can be obtained on nanomaterials and anti-tumor drugs can be
preloaded into nanocarriers. Both the characteristics of the
nanoplatform and agents are of vital importance. The efficacy,
Frontiers in Oncology | www.frontiersin.org 6
targeting ability, and biocompatibility are based on the
modification of the nanomaterials. Drugs, peptide and small
molecules can be carried by nanomaterials in targeted delivery
and non-targeted delivery. In this mini-review, we focused on the
properties of common nanomaterials and evolution of their
applications in cancer treatment. Of note, we summarized the
categories of nanomaterials used in cancer therapy and diverse
cancer therapy approaches depending on nanomaterials.
Nanoplatforms can also be designed to target the TME
environment. With further studies of the pathophysiology of
cancer genesis and multi-drug resistance germination, additional
nanomaterial-based therapies will be explored. Although
extensive research has been conducted, few nanomaterial-based
therapies are currently in clinical use, and thus further studies are
needed to address this issue. Overall, the development of
nanobiotechnology will lead to progress in clinical translation.
Nanomaterial-based drugs can lead to beneficial effects in
patients with cancer.
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