
Sensors 2011, 11, 1277-1296; doi:10.3390/s110201277 

 

sensors 
ISSN 1424-8220 

www.mdpi.com/journal/sensors 

Article 

Energy-Efficiency Analysis of a Distributed Queuing Medium 

Access Control Protocol for Biomedical Wireless Sensor 

Networks in Saturation Conditions 

Begonya Otal 
1
, Luis Alonso 

2
 and Christos Verikoukis 

3,
*  

1
 Institute of Biomedical Research August Pi Sunyer (IDIBAPS), Barcelona, Spain;  

E-Mail: botal@clinic.ub.es 
2
 Technical University of Catalonia (UPC), Castelldefels, Spain; E-Mail: luisg@tsc.upc.edu 

3
 Telecommunications Technological Centre of Catalonia (CTTC), Castelldefels, Spain 

* Author to whom correspondence should be addressed; E-Mail: cveri@cttc.es;  

Tel.: +34-93-6452911; Fax: +34-93-6452901. 

Received: 15 December 2010; in revised form: 4 January 2011 / Accepted: 19 January 2011 /  

Published: 25 January 2011 

 

Abstract: The aging population and the high quality of life expectations in our society lead 

to the need of more efficient and affordable healthcare solutions. For this reason, this paper 

aims for the optimization of Medium Access Control (MAC) protocols for biomedical 

wireless sensor networks or wireless Body Sensor Networks (BSNs). The hereby presented 

schemes always have in mind the efficient management of channel resources and the 

overall minimization of sensors’ energy consumption in order to prolong sensors’ battery 

life. The fact that the IEEE 802.15.4 MAC does not fully satisfy BSN requirements 

highlights the need for the design of new scalable MAC solutions, which guarantee  

low-power consumption to the maximum number of body sensors in high density areas 

(i.e., in saturation conditions). In order to emphasize IEEE 802.15.4 MAC limitations, this 

article presents a detailed overview of this de facto standard for Wireless Sensor Networks 

(WSNs), which serves as a link for the introduction and initial description of our here 

proposed Distributed Queuing (DQ) MAC protocol for BSN scenarios. Within this 

framework, an extensive DQ MAC energy-consumption analysis in saturation conditions is 

presented to be able to evaluate its performance in relation to IEEE 802.5.4 MAC in highly 

dense BSNs. The obtained results show that the proposed scheme outperforms  

IEEE 802.15.4 MAC in average energy consumption per information bit, thus providing a 

better overall performance that scales appropriately to BSNs under high traffic conditions. 
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These benefits are obtained by eliminating back-off periods and collisions in data packet 

transmissions, while minimizing the control overhead.  

Keywords: body sensor networks; distributed queuing; energy-efficiency; medium access 

control; power consumption 

 

1. Introduction  

The release of IEEE 802.15.4 for Low Rate Wireless Personal Area Networks (LR-WPAN) [1] 

represents a milestone in Wireless Sensor Networks (WSNs), and is the current standard of choice for 

most Body Sensor Networks (BSNs) studied scenarios. It targets low data rate, low power 

consumption and low cost wireless networking and offers device level wireless connectivity. It is 

expected to be used in a wide variety of embedded applications, including home automation, industrial 

sensing, environmental control and medical monitoring. In these applications, numerous embedded 

devices running on batteries are distributed in an area communicating via wireless radios. The key 

concern is thereby that of extremely low power consumption, since it is often infeasible to replace or 

recharge batteries for the devices on a regular basis.  

Similar to all IEEE 802 wireless standards, the IEEE 802.15.4 standard standardizes only the 

physical (PHY) and medium access control (MAC) layers [1]. Here we concentrate however on MAC 

layer protocols, which play a significant role in determining the efficiency of wireless channel 

bandwidth sharing an energy cost of communication. In the IEEE 802.15.4 MAC layer, a central 

controller in a LR-WPAN, called the Personal Area Network (PAN) coordinator, builds the network in 

its personal operating space. The standard supports three topologies: star, peer-to-peer and cluster-tree. 

The star topology communication is established between devices and the PAN coordinator; in the  

peer-to-peer topology any device can communicate with each other device within its range; and in the 

cluster-tree topology, most devices can communicate with each other within the cluster, but only some 

of them may connect to the infrastructure. The standard identifies two channel access mechanisms: 

(i) Beacon-enabled networks use a slotted Carrier Sense Multiple Access mechanism with Collision 

Avoidance (CSMA/CA), and the slot boundaries of each device are aligned with the slot 

boundaries of the PAN coordinator. The communication is then controlled by the PAN coordinator, 

which transmits regular beacons for device synchronization and network association control. The 

PAN coordinator defines the start and the end of the superframe by transmitting a periodic beacon. 

The length of the beacon period and hence the duty cycle of the system can be defined by the user 

between certain limits as specified in the standard [1]. There are 16 time slots in a superframe. 

Among them, there are at most seven Guaranteed Time Slots (GTS) that form the Contention Free 

Period (CFP), and the others are Contention Access Period (CAP). The advantage of this mode is 

that the coordinator can communicate at will with all nodes. The disadvantage is that nodes must 

wake up to receive the beacon.  

(ii) In non-beacon mode, a network node can send data to the coordinator at will, using a simpler 

unslotted CSMA/CA, if required. If the channel is idle, following a random back-off, the  
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transmission is performed. If a busy channel is detected, the device shall wait for another random 

period before trying to access the channel again. To receive data from the coordinator the node 

must power up and poll the coordinator. To achieve the required node lifetime the polling 

frequency must be predetermined by power reserves and expected data quantity. The advantage of 

the non-beacon mode is that the node’s receiver does not have to regularly power-up to receive the 

beacon. The disadvantage is that the coordinator cannot communicate at will with the node but 

must wait to be invited by the node to communicate.  

We focus here on single-hop beacon-enabled star-based BSNs, where a BAN coordinator is elected. 

That is, from now on we refer to a BAN instead of a PAN, while using either the IEEE 802.15.4 MAC 

or our newly proposed Distributed Queuing (DQ) MAC. In a ward BSN as portrayed in Figure 1, the 

BAN coordinator can be, for example, a bedside monitoring system, with several ward-patients 

wearing body sensors. Single-hop communication from body sensors to BAN coordinator (uplink), 

from BAN coordinator to body sensors (downlink), or even from body sensor to body sensor (ad hoc) 

is possible. In the following, we model the uplink communication, which occurs more often than 

downlink or ad hoc communication for regular patient monitoring BSNs in hospital environments (see 

Figure 1). That is, we consider hereby that a single-hop star-based (uplink) setting is more directly 

suitable than an ad hoc or multi-hop setting for current BSNs, since we think of healthcare scenarios in 

which most wearable medical body sensors report to a single medical care unit in the nearby with more  

energy-resources (see next Section 1.1). Further, it might be pointed out that a multi-hop scenario may 

be too energy-hungry for some specific body sensors (e.g., the ones close to the care unit) and thus 

jeopardize their own medical data transmissions. It is therefore assumed that the single-hop star-based 

topology is the most energy-efficient, because this does not put body sensor’s own medical data 

transmission at risk, avoiding unnecessary battery replacements.  

Figure 1. A star-based BSN in a potential medical scenario. 
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In a IEEE 802.15.4 star-based BSN, the beacon-enabled mode appears to allow for the greatest 

energy efficiency. Indeed, it allows the transceiver to be completely switched off up to 15/16 of the 

time when nothing is transmitted/received, while still allowing the transceiver to be associated to the 

network and able to transmit or receive a packet at any time [2]. The beacon mode introduces the  

so-called superframe structure (Figure 2). 

Figure 2. IEEE 802.15.4 MAC superframe structure in beacon-enabled mode (active). 
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As previously mentioned, the superframe structure starts with the beacon, which is a small 

synchronization packet sent by the BAN coordinator, carrying service information for the BSN 

maintenance and notifying body sensors about pending data in the downlink. The inter-beacon period 

is partially or entirely occupied by the superframe, divided into 16 slots. The number of slots at the tail 

of the superframe may be used as GTS, i.e., they can be dedicated to specific body sensors with no 

contention (see Figure 2, CFP). This functionality targets very low latency applications, but does not 

scale properly to highly dense BSNs (i.e., saturation conditions), since the number of dedicated slots 

would not be sufficient to accommodate more than seven body sensors at a time. In such conditions, it 

is better to use the contention access mode, where the sparse data is statistically multiplexed. In the 

contention access period, distributed channel accesses in the uplink are coordinated by a slotted 

CSMA/CA mechanism, while indirect transmission is used in the downlink. As we will see later, the 

CSMA/CA mechanism has a significant impact on the overall energy and performance of the uplink. 

According to the slotted CSMA/CA algorithm in [2], a node must sense the channel free at least twice 

before being able to transmit, this corresponds to the decrement of the so-called contention windows. 

The first sense must be delayed by a random delay chosen between 0 and 2
BE–1

, where BE is the  

back-off exponent. This randomness serves to reduce the probability of collision when two nodes 

simultaneously sense the channel, assess it free and decide to transmit at the same time. When the 

channel is sensed busy, transmission may not occur and the next channel sense is scheduled after a 

new random delay computed with an incremented back-off exponent. If the latter has been 

incremented twice and the channel is not sensed to be free, a transmission failure is notified and the 

procedure is aborted. When a packet collides or is corrupted, it can be retransmitted after a new 

contention procedure. The contention procedure starts immediately after the end of the beacon 
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transmission (see Figure 2, CAP). All channel senses or transmissions must be aligned with the CSMA 

slot boundaries that are separated by a fixed period. 

1.1. IEEE 802.15.4 Suitability for BSNs in Medical Applications 

From the traffic point of view, we can broadly group the BSN medical applications into three 

categories: real time low data rate, best-effort low data rate, and real time high data rate. The first 

category includes EEG (Electroencephalography), ECG (Electrocardiogram), blood analysis, etc. The 

second category consists of supervisors, control and alarms, etc. The third category covers EMG 

(Electromyography) and endoscope. All of these medical signals have very strict requirements in terms 

of accuracy, reliability and latency, since some of them are life critical. ECG is an electrical recording 

of voltage in the heart in the form of continuous strip graph, which has a prime function in screening 

and diagnosis of cardiovascular diseases [3].  

In healthcare scenarios, where different patients are treated simultaneously, the traffic generated by 

the body sensors deployed in a hospital room can also be classified in two different types: periodic and 

aperiodic. Periodic traffic contains the routine check-up values for the patients and physical status of 

the room. Usually, these values do not have strict timeliness requirements. Therefore, normal 

contention access method (CSMA/CA) may be used for such traffic. However, the aperiodic traffic, 

which is generated on the basis of some unexpected event, occurred with the patients or within the 

room, is very critical and needs guaranteed access to the channel and bandwidth as they must report 

before a worse case situation happens (i.e., strict latency requirements). Examples for such traffic are; 

(i) a dramatically increase/decrease in the blood pressure; or, (ii) a heart-attack to the patient; or,  

(iii) an unexpected temperature change in the room. GTS services can be used for such traffic.  

It looks straightforward to implement IEEE 802.15.4 in such scenarios, but following limitations of 

the protocol must be figured out before attempting this. The first and foremost problem with the  

current GTS allocation is the bandwidth under utilization. Most of the time, a device uses only a small 

portion of the allocated GTS slots, the major portion remains unused resulting in an empty hole in the 

CFP, which represents a waste of the already scarce radio resources. As shown in Figure 2, the 

protocol explicitly supports only seven GTS allocations. In the medical field, where one illness usually 

boost-ups other illnesses, many devices should be able to reach the coordinator via such guaranteed 

services. Besides, the current protocol only supports first come first serve based GTS allocation and 

does not take into account the traffic specification, delay requirements, and the energy resources. In 

medical scenarios, many critical events may occur at a time, and some of them are more critical and 

need most urgent response. With the current protocol, the device can request for all seven GTS slots, 

even if it is not really needed. Such unbalanced slot distribution can block other needful devices to take 

such timeliness advantages. Moreover, the protocol uses GTS expiration on the basis of some constant 

factors and the assigned GTS slots are broadcasted for the constant number of times in the 

superframes. Such restrictions also cause unnecessary energy consumption and CFP slots blockage for 

longer time. Even if CFP is not present in the superframe, the beacons transmitted by the coordinator 

always use unnecessarily one byte of the CFP, resulting in certain energy inefficiency. Last but not 

least, the current IEEE 802.15.4 superframe structure contains a constant size CAP. For most urgent 

scenarios, we may need flexible size CAP rather than the fixed one. 
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1.2. IEEE 802.15.4 Limitations on Energy Consumption 

The performance evaluation study in [4] reveals some of the key throughput-energy-delay tradeoffs 

in the IEEE 802.15.4 MAC. The authors provide an analysis comparing the energy costs of beacon and 

non-beacon modes for synchronization, showing that the optimum choice depends upon the 

combination of duty cycles and data rates. In [5], a Markov chain model of the IEEE 802.15.4 MAC is 

proposed, where each state is based on the counter values as the 802.11 model in [6]. Both models 

describe the behavior of the protocols using the probability that the device is in the channel accessing 

states. However, in the IEEE 802.15.4 MAC, this probability is not suitable for describing the 

behaviors because the channel sensing should be performed twice before entering accessing states.  

In[7], Park et al. propose a new Markov chain model of IEEE 802.15.4 and analyze the throughput 

and energy consumption in saturation conditions. The proposed model utilizes the probability of a 

device in the channel sensing states instead of in the channel accessing states. A similar approach for 

evaluating the performance of slotted IEEE 802.15.4 was followed by Pollin et al. in [8]. The model 

and analysis are similar in form to Bianchi’s [6], but here the key approximation in their model is the 

independence of the carrier sensing probability, which determines when nodes become active to listen 

to the channel.  

Both analytical models in [7] and [8] show how the gross saturation throughput, expressed as the 

number of occupied slots for successful packet transmissions of size L (ignoring protocol over-head), 

drastically decreases as the number of sensors in the network increases. Energy consumption per 

information bit is also obtained through both of these models, presenting their worst results for a high 

number of nodes (e.g., 20–40 nodes). Information bit is here defined as the payload bit in the data 

packet, i.e., non-control bit.  

It is therefore deduced that the IEEE 802.15.4 MAC may jeopardize the deployment and scalability 

of BSNs, not only in terms of throughput, but especially in terms of energy consumption. Thus, the 

IEEE 802.15.4 MAC performance should be improved, targeting at low power consumption MAC 

protocols that scale up within BSN scenarios, while fulfilling medical application requirements. We 

observe that Distributed Queuing (DQ) MAC protocols [9-11] present a large number of advantages 

with respect to CSMA-based wireless communications systems. Therefore, we further analyze and 

optimize this DQ MAC scheme in order to prove its performance within BSN scenarios, and to 

improve the radio channel utilization taking the 802.14.5 MAC standard as a reference.  

Please note that the introduction of energy-aware radio activation polices into a DQ MAC 

mechanism, as also an energy-consumption analysis in non-saturation conditions was already 

introduced in [12]. An optimization design and evaluation of the here characterized DQ MAC protocol 

in terms of quality-of-service was presented in [13] under different healthcare scenarios. The aim  

of [13] was to study a novel cross-layer fuzzy-rule based scheduling algorithm, which allowed packet 

transmissions to be scheduled taking into account the channel quality among body sensors, each sensor 

specific medical constraints and their residual battery lifetime.  

In the next sections, we further analyze the potential benefits of DQ MAC in terms of energy 

efficiency per information bit in BSNs under saturation conditions. That is, analytical results of 

average energy consumption per information bit are presented in order to get a measure of the 
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obtainable benefits of using this DQ MAC proposal compared to IEEE 802.15.4 MAC in extensive 

healthcare scenarios with a raising number of body sensors in the same area (i.e., high density area). 

2. An Energy-Saving DQ MAC Protocol for BSNs 

The Distributed Queuing Random Access Protocol (DQRAP) is a random access protocol based on 

a queuing system shared among nodes. It was proposed for the first time in 1992 by Xu and  

Campbell [9,10]. Starting from a previous protocol called DQDB (Distributed Queuing Dual Bus), 

they developed the DQRAP protocol for a TDMA environment proposing an analytical model and 

showing, by means of computer simulations, how the protocol approaches the performance of the 

theoretical optimum system M/M/1. DQRAP divides the TDMA slot into a ―reservation subslot‖ or 

―control subslot‖, that is further divided into access minislots, and a data subslot. The basic idea of 

DQRAP is to concentrate user accesses in the control subslot, while the data subslot is devoted to 

collision free data transmission. The DQRAP provides a collision resolution tree algorithm that results 

stable for every traffic load even over the system transmission capacity. One of the most interesting 

features of the DQRAP protocol is its capacity to behave like an ALOHA-type protocol for light traffic 

load and to smoothly switch to a reservation system as the traffic load increases, reducing 

automatically collisions. Moreover, it must be taken into account that the protocol is fair as all nodes 

get, on average, the same service from the system. An interesting property of the DQRAP comes from 

the distributed queue adoption. Nodes can estimate the system load simply considering the number of 

busy positions in each queue. The load estimation is important information in a network environment.  

In 2003, based on their previous research works, Alonso et al. [11] presented the Distributed 

Queuing Collision Avoidance (DQCA), which is a distributed high-performance medium access 

protocol designed for WLAN environments. The protocol behaves as a random access mechanism 

under low traffic conditions and switches smoothly and automatically to a reservation scheme when 

traffic load grows. DQCA has the following main features: 

 It eliminates back-off periods and collisions in data packet transmissions. 

 It performs independently of the number of stations transmitting in the system.  

 It does not suffer from instability under all traffic conditions like slotted Aloha and keeps 

maximum achieved transmission rate if arrival rate keeps growing.  

Crucial success of BSNs is the availability of small, lightweight, low-cost body sensors. Even more 

important for medical applications, the body sensors must consume low power to eliminate frequent 

battery replacement, at the same time that high reliability is guaranteed [13]. The preceding  

IEEE 802.15.4 MAC has all the aforementioned weaknesses when employed in BSNs for medical 

applications. However, the DQ MAC family introduces a range of advantages that we would like to 

further analyze from the energy-consumption perspective under BSNs in saturation conditions (i.e., 

high density area). 

2.1. Energy-Saving DQ MAC Superframe 

The proposed DQ MAC mechanism is a distributed always-stable high performance protocol, which 

behaves as a random access mechanism for low traffic load and switches smoothly and automatically 
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to a reservation scheme when traffic load grows. The key feature of the proposed protocol is that it 

eliminates collisions and back-off periods in data packet transmissions. Figure 3 portrays the general 

superframe format of a DQ MAC mechanism. In our proposal for a star-based wireless BSN, the 

complete DQ MAC superframe structure comprises two differential parts: 

(i)  From body sensors to BAN coordinator (uplink). This is through a CAP, specifically for body 

sensors’ access requests, and a CFP, exclusively for collision-free data transmissions; 

(ii)  From BAN coordinator to body sensors (downlink). The BAN coordinator uses the feedback 

frame in order to acknowledge the previous data transmission and to broadcast control 

information to all body sensors in the BSN, so that they can follow independently the protocol 

rules (see [9-11]).  

Figure 4 depicts in more detail the superframe format of our adapted energy-saving DQ MAC first 

proposal for BSNs in healthcare environments.  

Figure 3. General superframe structure of a DQ MAC scheme. 

 

Figure 4. Energy-saving DQ MAC Superframe for BSNs.  
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DQ MAC Contention Access Period (CAP) 

The CAP is further divided into m access minislots. Within these access minislots, Access Requests 

Sequences (ARS) of duration tARS are sent to gather a position within the CFP. ARS are the minimum 

signal required for the BAN coordinator to detect channel access. That means, the PHY level only 

needs to detect three different states (empty, success, collision), but in principle no information bits are 

required [9,10], though it is implementation dependant.  

DQ MAC Contention Free Period (CFP) 

Immediately after the CAP, the CFP allows contention free data transmissions within the contention 

free data slot of variable duration tDATA or variable length (i.e., payload length) (see Figure 4). 

DQ MAC Feedback Frame 

Following the contention free data slot, we define here taw as the maximum time to wait for an 

acknowledgement (ACK) of duration tACK, as in IEEE 802.15.4 [1]. Bear in mind that the DQ MAC 

superframe is bounded by the hereby named Feedback Packet (FBP), of fixed duration tFBP, contained 

in the depicted feedback frame (see Figure 3). Similar to IEEE 802.15.4 MAC superframe format, one 

of the main uses of the FBP is to synchronize the attached body sensors to the BAN coordinator. The 

FBP always contains relevant MAC control information, which is essential for the right functioning of 

all the attached body sensors to the BSN using the DQ MAC protocol. In our energy-saving DQ MAC 

superframe proposal, the FBP is preceded by a novel synchronization preamble (PRE), which follows 

immediately after taw elapses. The functionality of PRE is to enable power management solutions and 

energy-aware radio activation policies among the different time intervals in order to prolong body 

sensors’ battery lifetime. At the end of the DQ MAC superframe, an Inter Frame Space (IFS) is added 

to allow the MAC layer to process the data received from the PHY layer. 

All in all, the main differences of this new energy-saving DQ MAC superframe format with respect 

to the previous DQ MAC ones are the following: 

(1) A preamble (PRE) is newly introduced within the broadcasted feedback frame, concretely 

between the ACK and the FPB, to enable synchronization after power-sleep modus (i.e., either idle or 

shutdown, see [2]). The intuitive reasoning is the following: (i) The feedback frame is an aggregation 

of an ACK and the FBP in order to save PHY header overhead and therefore energy-consumption at 

reception. That is, the ACK is essential only to the body sensor, who transmitted in the previous 

contention free data slot. Hence, body sensors can prolong their power-sleep modus until the 

immediate reception of the FBP. (ii) The precise position of the PRE between the ACK and the FBP is 

mainly due to scalability in terms of energy-efficiency. This means that in a future system design or 

downlink multicast applications, several ACKs or any other type of info, may be aggregated just 

before the preamble—PRE. Body sensors within the DQ MAC system not being addressed in this 

multicast/aggregated communication shall only receive the FBP. That is the reason why a preamble is 

suitable in this explicit position.  

(2) FBP is here of fixed length (i.e., independent of the number of sensors in the BSN) and contains 

two brand new fields for specific energy-saving purposes; the Modulation and Coding Scheme (MCS) 

and Length of the packet transmitting in the next contention free data slot. This facilitates independent 
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energy-aware radio activation policies; so that body sensors can calculate the time they can remain in 

power-sleep modus. Further, the MCS field is also thought for future multi-rate medical applications in 

BSNs (i.e., scalability).  

Note that the FBP always contains a specific field named QDR (Queuing Discipline Rules), which 

contains the updating information regarding the aforementioned ARS. That is, the QDR field contains 

the state of each of the access minislots, which can be empty, success, or collision. Two bits are 

necessary to encode the state of each access minislot, so 2 m  is the total number of bits devoted to the 

QDR field. (see [9,10]). Additionally, there is the possibility to transmit data packets of variable length 

(tDATA), using the same frame structure, at the same time that energy-saving benefits are maintained. 

2.2. DQ MAC Data Transaction in a Star-Based BSN 

Three types of direct data transfer transactions may exist in a stand-alone BSN. The first one is the 

data transfer from any body sensor to the BAN coordinator. The second type of transaction is the data 

transfer from the BAN coordinator to body sensors. The third transaction is the data transfer between 

two peer body sensors. In a star-based topology, only two of these transactions are used, because data 

may be exchanged only between the BAN coordinator and a body sensor. Hereby we choose to model 

and further study the single-hop star-based topology, because; 

(i) it is the most feasible topology in current BSN medical applications scenarios (see [3]).  

(ii) it is the most suitable topology using DQ MAC. That is to say that a DQ MAC scheme already 

requires a centralized architecture [9], in spite of the distributed and independent behavior of all 

body sensors in the BSN. 

(iii) it is the most energy-efficient topology within direct short-range communication between body 

sensors and the BAN coordinator, taking single body sensor battery life-time into account. 

Body sensors in medical applications are especially stringent in terms of power consumption. The 

replacement of batteries may cost more than the devices themselves, like for example in implantable 

devices. It is not only very cumbersome, but also practically impossible to replace the batteries in some 

applications at once. In a single-hop star-based BSN, body sensors save energy resources, because all 

data transmissions are directly to the BAN coordinator (within low-power range), which is elected 

considering its superiority in terms of power resources. That is, since no multi-hop data transmission is 

allowed, body sensors can manage their power consumption considering their own residual battery 

lifetime. That is the reason why a well-designed single-hop star-based BSN is more reasonable for 

short-range medical applications. 

Data Transfer from a Body Sensor to a BAN Coordinator in a BSN 

Our here referred DQ MAC protocol is based on two distributed queues. Note that for clarity 

reasons; only a brief explanation is included here. A more detailed description can be found in [9,10],  

(i) the Collision Resolution Queue (CRQ); and  

(ii) the Data Transmission Queue (DTQ).  

The CRQ is devoted to the collision resolution algorithm (for resolving ARS collisions) and the 

DTQ to collision-free data packet transmission scheduling. Both queues are simply represented by four 
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integer numbers, recorded at every body sensor (i.e., distributed queues), which correspond to the 

specific sensor position and the total number of sensors in each queue. Every body sensor updates 

these four numbers upon synchronization through the PRE and reception of the FBP. The information 

contained in the QDR field carries this specific information, see Figure 4 [9]. Thereafter, every body 

sensor applies a set of rules to actualize its position in the CRQ and DTQ queues accordingly. At the 

appropriate time, a body sensor transmits whether a ARS within the CAP or its data packet within the 

CFP to the BAN coordinator. The BAN coordinator acknowledges the successful reception of the data 

packet by transmitting ACK. This sequence is summarized in more detail in the illustration of Figure 5.  

Figure 5. Communication between a body sensor and the BAN coordinator. 
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Further, Figure 6 specifically depicts a state-of-the-art DQ MAC data transfer from a body sensor to 

a BAN coordinator in a BSN, following DQ MAC protocol rules regarding CRQ and DTQ, after 

updating the state of the queues thanks to the information in the QDR field in FBP.  

As aforementioned, a body sensor willing to transmit a packet must first synchronize with the BSN 

through the FBP broadcasted by the BAN coordinator to update the state of the system queues (CRQ & 

DTQ). Note that when both queues are empty, the protocol uses an exception of slotted-Aloha  

(see [9]). However, if CRQ is empty—but DTQ is not—the body sensor sends an ARS—randomly 

selecting one of the access minislots—to grant its access into DTQ. If its ARS collides with any of 

another body sensor in the selected access minislot, these body sensors involved therein occupy the 

same position in CRQ (following the order of the selected minislot position), and wait for a future 

frame to compete for a free access minislot again to grant its access into a DTQ exclusive position. 

New body sensors, with a packet to send, are not allowed to enter the system until CRQ is empty (i.e., 

all current collisions are resolved). When a body sensor selects successfully a free access minislot 

(known at the reception of the FBP), it takes immediately a place in DTQ up. If DTQ is now empty, it 

may be in the first position of DTQ, thus transmitting directly in the next DQ MAC superframe data slot.  
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Figure 6. DQ MAC flow chart for energy-saving BSNs based on original DQRAP algorithm. 
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Note that a body sensor is just allowed to send an ARS in a random-selected minislot if and only if 

CRQ is empty. If CRQ is not empty, this body sensor has to wait until the next superframe and recheck 

again CRQ condition via the FBP. Therefore, the inherent behaviour of the protocol avoids new ARSs 

entering the system, if there are still old ARS to be resolved. That is, CRQ only has new entries, 

whenever it becomes empty. 
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3. Energy Consumption Analysis in Saturation Conditions 

Like other different types of sensors, body sensors are limited in stored energy, computational 

capacity and memory. New MAC protocols and algorithms must be designed with special attention to 

these aspects and above all to their limited and sometimes non-renewable power storage. Significant 

power is consumed at a body sensor when it either transmits or receives a packet. Here we proceed to 

evaluate body sensors’ energy consumption in a star-based BSN using DQ MAC with respect to  

IEEE 802.15.4 MAC in saturation conditions (i.e., highly dense BSNs), in which we suppose there are 

always sensors transmitting, and CRQ and DTQ are never empty (see Figure 6). That is, we assume a 

specific window size at a time for evaluating CRQ inner ARS resolution.  

The DQ MAC energy consumption per information bit in saturation conditions εbit (i.e., efficiency) 

is here calculated as the average energy consumption to transmit one DQ MAC superframe ESuperframe 

over the payload packet length in bits Lbit of a superframe, considering all body sensors always have 

packets to send. Thus, the total energy consumption per information bit εbit in saturation conditions for 

the whole superframe transmission can be expressed as follows: 

,
Superframe

bit

bit

E

L
    (1) 

where Lbit corresponds to the payload length in bits of the data packet transmitted in the  

collision-free data slot and ESuperframe is defined as the energy consumption of the whole DQ MAC 

superframe from a body sensor perspective, taking uplink and downlink into consideration  

(see Figure 4). 

To calculate the body sensor energy consumption for the whole DQ MAC superframe duration 

ESuperframe (see Figure 4), let us first define the following: 

(i) EARS, and EDATA, as the energy consumption for ARS and data frame transmissions; and,  

(ii) EACK, and EFBP, as the energy consumption for ACK and FBP frame receptions, respectively.  

These energies can be obtained as:  

_

_

,

,

,

( ) .

ARS ARS tx ARS

DATA DATA tx DATA

ACK ACK rx

FBP PRE FBP rx

E mt P

E t P

E t P

E t t P







 

 (2) 

where Ptx_DATA is the power consumption in transmission mode for a data frame, which according to 

Chipcon specifications [14] could differ from the power consumption of transmitting ARS (Ptx_ARS), 

since in IEEE 802.15.4 MAC different transmission modes are allowed. Additionally, Prx is the power 

consumption in receiving mode. Further, Equation (2) also contains the average time the transceiver is 

in each of these four energy-consumption states corresponding to the DQ MAC superframe duration (see 

Figure 4), tARS for ARS transmissions, tDATA for data transmission, tACK for ACK reception, and, tPRE, 

tFBP for PRE synchronization and FBP reception, as aforementioned.  

  



Sensors 2011, 11                            

 

 

1290 

Thus, here ESuperframe is computed as: 

( ) .Superframe ARS DATA ACK FBP aw ACK IFS idleE E E E E t t t P        (3) 

Therefore, DQ MAC energy consumption efficiency εbit is expressed in Joules per information bit 

(J/bit). Note that Pidle corresponds to the state when a body sensor is neither transmitting nor receiving 

bits. That is to say, that a body sensor is not active or it is in idle mode. Typically, in general WSNs, 

the power consumed during receiving mode is larger than in transmitting mode [2]. The figures of the 

power consumptions utilized here in our case study are listed in Table 1 and based on Chipcon 

specifications [14]. For the sake of simplicity, in our calculations, we consider that both power 

consumptions in transmission mode (i.e., Ptx_DATA and Ptx_ARS) have the same value, although they 

could differ from each other based on hardware specifications [14].  

Table 1. IEEE 802.15.4 Transceiver Power Consumption (–25 dBm). 

_tx ARSP  _tx DATAP  
rxP  

idleP  

15 mW 15 mW 35.23 mW 712 μW 

 

The reference scenario is defined by a set of parameters provided in Table 2, whose fields 

correspond to IEEE 802.15.4 MAC default values [1].  

Table 2. IEEE 802.15.4 MAC & DQ MAC Parameter Values. 

Parameter Value Parameter Value 

PHY header 6 bytes ACK 11 bytes 

MAC header 9 bytes Beacon 11 bytes 

Data payload 8 to 120 bytes awt  864 μs 

Data rate 250 Kb/s IFSt  192 μs 

DQ MAC 

Preamble 4 bytes m 3 

FBP 11 bytes 
ARSt  128 μs 

 

Notice that the maximum Packet Service Data Unit (PSDU) the PHY layer shall be able to receive a 

packet in the IEEE 802.15.4 MAC standard is 127 bytes [1]. That is the reason why we study several 

lengths up to 118 bytes (aprox.120 bytes), assuming the minimum MAC overhead length of 9 bytes as 

indicated in Table 2. Further, in our DQ MAC protocol, the number of access minislots m is also 3, as 

in [9-11]. As previously said, the duration of the ARS (tARS) could be reduced to a very small value 

(i.e., between 2 μs and 10 μs), since no data information is needed to be carried through [9,10]. For our 

calculations though, we use 128 μs as ARS duration value in order to consider the worst-case scenario. 

This is equivalent to the duration of the Preamble sequence in IEEE 802.15.4 MAC and might be fare 

with a feasible hardware prototype implementation. Figure 7 characterizes the energy consumption per 

information bit of DQ MAC mechanism for BSNs derived from Equation (1) and the parameter values 

of Table 1 and Table 2. As expected, DQ MAC energy consumption per information bit decreases 

rapidly at increasing the payload length, due to the smaller relative overhead. DQ MAC mechanism 
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maximum energy consumption is obtained for small-sized packets and reaches its maximum  

of 3.5 × 10
−7

 J/bit of the overall normalized energy consumption.  

Figure 7. Energy consumption per information bit of DQ MAC protocol for BSNs. 

 

Following DQ MAC protocol specific rules, a body sensor is just allowed to send an ARS in a 

random-selected minislot, if and only if CRQ is empty. Unless CRQ is empty, this body sensor has to 

wait until the next superframe and recheck again CRQ condition via FBP (see Figure 6). Therefore, the 

inherent behaviour of the protocol avoids new ARSs entering the system, if there are still old ARS to 

be resolved. That is, CRQ only has new entries, whenever it becomes empty. In this particular 

scenario, we modelled a non-empty CRQ per window size, assuming on average m ARSs 

transmissions at a time in the process of CRQ becoming empty. That is in practice independently of 

which access minislot has been used, but in theory, we assume that there is no empty access minislot 

within that transmission. This assumption is valid in this specific conditions and scenario, since in [9], 

there is an example (for highly dense networks) where it can be seen that in stable conditions, with  

m = 3, after the third round trip, most devices have already entered DTQ. There, it is also proved the 

small difference between using m = 3 or m = 16 (a bigger number of minislots), showing that the delay 

to resolve collisions is minimal independently of the number of minislots. The specific rules of 

DQRAP (original DQ MAC) are explained in more detail in [9,10]. It is assumed that all blocked 

stations are supposed to transmit immediately whenever CRQ becomes empty, here synchronized via 

the FBP, and thereafter the protocol follows with the same behaviour. DQ MAC assures that the speed 

of contention resolution in the CRQ subsystem is faster than the speed of data transmission, thus 

guaranteeing that the CRQ subsystem will not block input traffic to the whole system [9,10]. 

DQ MAC Energy Consumption Performance Evaluation 

To get example figures, a scenario with an increasing number of always-active body sensors in a 

star-based BSN in saturation has been selected. The next Figure 8 depicts the achievable estimated 
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energy consumption improvement per information bit of DQ MAC mechanism versus IEEE 802.15.4 

MAC protocol, derived from expressions (1) and [7], respectively. All IEEE 802.15.4 MAC curves are 

as a function of the payload length (in bytes) and the number of body sensors in the BSN. In saturation 

conditions, the IEEE 802.15.4 MAC shall deal with a certain level of data collisions, which steadily 

increases with the number of body sensors in the network. This results in a progressive reduction of the 

energy efficiency of the IEEE 802.15.4 MAC. In contrast, when evaluating DQ MAC protocol energy 

consumption per information bit in the same saturation conditions, we observed that DQ MAC energy 

efficiency is independent of the number of body sensors in the BSN, similar to the previous throughput 

analysis (see [9-11]) That is, because of the inherent behavior of DQ MAC of eliminating back-off 

periods and collisions in data transmissions by means of the distributed queuing system. This means, 

that in saturation conditions, DTQ is always non-empty, and collisions are gradually being resolved in 

the CRQ. As a result, no collisions are produced in the information data part of DQ MAC superframe 

(see Figure 4), and therefore no energy per information bit is wasted due to unwilling collisions. Like 

in the previous studied case, the reference scenario is defined by a set of parameters provided in  

Table 1 and Table 2, whose fields correspond to IEEE 802.15.4 MAC default values [1].  

Figure 8. Achievable estimated energy consumption improvement per information bit of 

DQ MAC vs. IEEE 802.15.4 MAC. 

 

All data transmissions are supposed to be successful, except from the ones that fail anyway due to 

channel conditions, such as fading or Doppler Effect. Thus, although the collision resolution 

mechanism requires some energy consumption, the complete elimination of data collisions represents a 

remarkable enhancement in the overall network. That is:  

 up to 98% improvement with respect to IEEE 802.15.4 MAC for a 40 body-sensor network size. 

 up to 92% improvement with respect to IEEE 802.15.4 MAC for a 20 body-sensor network size. 

 up to 77% improvement with respect to IEEE 802.15.4 MAC for a 10 body-sensor network size. 

 up to 52% improvement with respect to IEEE 802.15.4 MAC for a 5 body-sensor network size.  
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4. Overall MAC Overhead Comparison in Saturation Conditions 

Previously, we have compared the energy consumption per information bit of IEEE 802.15.4 MAC 

analytical model in [7] versus our proposed DQ MAC analytical scheme in saturation conditions. Next, 

we evaluate the overall MAC superframe overhead in terms of energy consumption based on the 

analysis in [2]. As sketched in both superframe structures of IEEE 802.15.4 MAC and DQ MAC in 

Figure 9, the IEEE 802.15.4 MAC introduces significant overhead, which has consequential impact on 

the overall energy consumption in saturation conditions. Please be aware that all depicted MAC fields 

follow IEEE 802.15.4 MAC values specified in Table 2 [1]. As aforementioned, to be fair in the 

comparison both IEEE 802.15.4 MAC and DQ MAC data packet lengths are the same, and the beacon 

and FBP fields have the same value respectively in their MAC superframes, i.e., 11 bytes. In the 

following, we assume that body sensors attempt to transmit a single packet per superframe. Let us here 

assess the overall MAC overhead of the whole superframe structure in saturation conditions (i.e., there 

is always a packet to be transmitted). To do so, in Figure 9 we clearly distinguished among the 

different power consumption states: transmit, receive and idle, like aforementioned in the previous 

studied scenario. In the IEEE 802.15.4 MAC superframe, a body sensor first listens to the beacon, after 

having preemptively turned on its radio in receive mode. After the beacon is received, the body sensor 

can enter in idle mode. The contention procedure requires at least two channel senses for CCA, which 

requires turning the receiver on. Within the CCAs, the receiver can return to the idle state. Once the 

channel is assessed clear twice, the transmission can start. If the packet is well received, a short ACK 

is fed back to the body sensor (in receiving mode) after a minimum time taw when it is in idle state. 

Figure 9. Energy consumption per information bit of DQ MAC protocol for BSNs. 
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Figure 9 also shows our here proposed DQ MAC procedure, whose relative overhead compared to 

that of IEEE 802.15.4 is remarkably lower in saturation conditions. To compute the whole MAC 

overhead in DQ MAC in saturation conditions, we assume a body sensor is transmitting in the 

collision-free data slot, while its ARS has already been transmitted in a previous DQ MAC superframe. 

That is, in saturation conditions we compute the DQ MAC superframe energy-consumption per 

information bit.  
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To lower power consumption in future designs, it is valuable to know the power breakdown of both 

DQ MAC and IEEE 802.15.4 MAC superframe structures. Figure 10 presents the power breakdown 

between the different phases of the DQ MAC and IEEE 802.15.4 MAC considering their illustrations 

in Figure 9 and specified values in Table 2. We notice that the effective transmission in DQ MAC uses 

already more than 50% of the total energy consumption, which is an improvement with respect to 

IEEE 802.15.4, as analyzed in [2]. Less than 15% is spent during DQ MAC contention taking radio 

wake up polices into account. The ACK mechanism uses more than 15% of the energy, mainly 

because of the necessity of activating the receiver during the acknowledgement waiting-time taw. For 

listening to the FBP, around 10% of the energy is used, compared to the 20% of energy spent in  

IEEE 802.15.4 in beacon mode. The rest is used for Inter-frame Space (IFS) purposes (i.e., 

processing). Please note that all our analysis take radio wake up policies into account, for both DQ 

MAC and IEEE 802.15.4 MAC protocols. 

Figure 10. Breakdown of energy consumption. 

 

5. Conclusions 

In this article, we proposed a better conditioned energy-saving frame format of an enhanced 

Distributed Queuing Medium Access Protocol (DQ MAC) for Body Sensor Networks (BSN) in 

healthcare scenarios. Further, we have presented an analytical evaluation of this enhanced DQ MAC 

protocol for a star-based BSN until reaching saturation conditions (i.e., high density area). It has been 

shown that our here proposed DQ MAC mechanism outperforms IEEE 802.15.4 MAC in terms of 

overall energy-consumption per information bit. All in all, we have shown that our proposed DQ MAC 

protocol represents a remarkable improvement of the overall network energy efficiency, which scales 

well for very dense BSNs and it is particularly suitable in medical scenarios.  
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