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Abstract: In this research, we take a multivariate, multi-method approach to predicting the incidence
of lung cancer in the United States. We obtain public health and ambient emission data from multiple
sources in 2000–2013 to model lung cancer in the period 2013–2017. We compare several models
using four sources of predictor variables: adult smoking, state, environmental quality index, and
ambient emissions. The environmental quality index variables pertain to macro-level domains: air,
land, water, socio-demographic, and built environment. The ambient emissions consist of Cyanide
compounds, Carbon Monoxide, Carbon Disulfide, Diesel Exhaust, Nitrogen Dioxide, Tropospheric
Ozone, Coarse Particulate Matter, Fine Particulate Matter, and Sulfur Dioxide. We compare various
models and find that the best regression model has variance explained of 62 percent whereas the best
machine learning model has 64 percent variance explained with 10% less error. The most hazardous
ambient emissions are Coarse Particulate Matter, Fine Particulate Matter, Sulfur Dioxide, Carbon
Monoxide, and Tropospheric Ozone. These ambient emissions could be curtailed to improve air
quality, thus reducing the incidence of lung cancer. We interpret and discuss the implications of the
model results, including the tradeoff between transparency and accuracy. We also review limitations
of and directions for the current models in order to extend and refine them.

Keywords: adult smoking; lung cancer; united states; regression; environmental quality index;
ambient emissions; machine learning; transparency; iterative modeling

1. Introduction

Worldwide, lung (and bronchus) cancer is the most common cancer. It is the second
most common type in the United States, and cancer overall was the number two cause
of death in 2019, slightly behind heart disease (599,601 vs. 659,041) [1]. Although the
incidence of lung cancer has been decreasing steadily, it remains the leading cause of death
from cancer. In 2020 in the United States, estimated new cases were 228,820 and estimated
deaths were 135,720.

Cigarette smoking has been decreasing slowly but steadily because of public service
announcements, creative anti-smoking campaigns, and bans of smoking in many business
establishments. In 2021, however, there are estimated to be 235,760 new cases of lung
cancer in the United States, with men having a slightly higher rate than women. There
are racial disparities as well, with black men about 15% more likely to develop cancer
than white men. Lung cancer survival is better for Hispanics. Smoking raises the risk
substantially for everyone.

There is substantial variation in lung cancer rates within the United States by state.
Figure 1 shows lung cancer rates in the United States. Figure 2 shows the adult smoking
rates. As can be seen in Figures 1 and 2, the lung cancer rate cannot be attributed solely to
adult cigarette usage. Smoking is necessary, but not sufficient, for predicting lung cancer in
the United States.
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States across the US vary by their presence of polluting industries, which are known
to emit ambient emissions hazardous to human health. These ambient emissions include
both criteria pollutants, which are more tightly regulated, and hazardous air pollutants,
which are less tightly regulated. They also vary in the propensity for state governments to
define and enforce environmental protections in order to protect people from breathing
ambient emissions. Our research questions are the following:
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1. How well does smoking predict lung cancer? How well does state predict it? What
other factors should be included?

2. How does a macro-level model (environmental quality) compare to a micro-level
model (ambient air pollutants)?

3. What is the best model we can obtain in terms of explanatory power and predictive
accuracy?

The purpose of this paper is to investigate and model lung cancer, including cigarette
smoking but also other factors, in the United States from 2000 to 2017. By understanding the
different contributing factors in different models, we can examine the relative magnitude
of their contributions. By doing so, we can discuss the factors amenable to change and how
intervention could reduce their impact on lung cancer.

This paper is organized as follows. We first review the literature on lung cancer in the
United States, highlighting a variety of factors. We then model lung cancer separately by
state, cigarette smoking, environmental quality index, and ambient emissions. We then
synthesize the best linear and non-linear model from the simpler models and interpret the
results. We then discuss the implications of the model, including possible interventions to
decrease the incidence of lung cancer. We conclude with limitations and raise questions for
further research.

2. Literature Review

Many studies have analyzed the causes of lung cancer, and different approaches have
been taken: biological, epidemiological, animal studies, etc. In addition, two types (small
cell and non-small cell), which divide into five subtypes of lung cancer have been examined
individually or in combination: Small Cell Carcinoma, Combined Small Cell Carcinoma;
Adenocarcinoma, Squamous Cell Carcinoma, and Large Cell Carcinoma. Although the
different types account for different proportions of lung cancer cases, the consistently
largest contributing factor is cigarette smoking. Controlling for smoking, or excluding the
smoking factor, has also been researched in multiple ways. We choose in this paper to
include cigarette smoking, accounting for it in our models, but also examine other factors
in order to compare the magnitudes of influence among the various factors. Ultimately,
we combine a variety of factors to arrive at the model that explains the most variance,
predicting lung cancer with the greatest accuracy.

Apart from demographic differences, the other contributing factors to lung cancer all
pertain to air exposure, either deliberately inhaled (cigarette smoking) or inadvertently
inhaled, e.g., diesel exhaust inhaled from cars and trucks. The inadvertent factors include
coarse particulate matter, ground-level ozone, sulfur dioxide, and sulfates. In addition to
these widely understood factors are ones inhaled without any awareness of doing so: the
ambient emissions found in outdoor air and metals or gasses in the ground, e.g., radon
in ground soil. We also know that there are interaction effects, in that a smoker exposed
to other factors, e.g., asbestos, is particularly prone to developing lung cancer [2]. Some
research has developed models of multiple factors as additive, whereas other research
studies develop models showing them to be multiplicative, including interaction effects
between carcinogens and co-carcinogens [3,4].

Table 1 shows some of the mostly influential research studies (average number of
citations = 1593), including epidemiological and biological papers, as well as review articles
and meta-analyses. The table includes the primary variables examined, the methods used,
and the main findings.
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Table 1. Literature Review.

ID Variables Methods/Data Source(s) Findings

[5] Fine particulates, including sulfates
Regression, 14–16 year mortality
follow-up of 8111 adults in 6 US
cities/Prospective cohort study

After adjusting for smoking, mortality
strongly associated with air pollution

with fine particulates

[6]
Race and socioeconomic and

gender predictors of early-state
non-small cell lung cancer

Regressions/SEER
Higher socioeconomic status helps
survival, as does being Caucasian

or female.

[7] PM10, SO4, SO2, O3, and NO2
checked for lung cancer

6,338 nonsmoking, non-Hispanic white
SDA residents of California were

enrolled in 1977/Adventist Health
Study (AHS)

Levels of PM10, SO4, SO2, O3, NO2 far
higher for those with lung cancer,

especially in males.

[8] PM2.5 and SO2, lung cancer, lung
cancer mortality

Cox Proportional hazards
model/American cancer society, part of

cancer prevention study (CPS-II),
ongoing prospective mortality study of

1.2 M adults

PM2.5 and SO2 associated with lung
cancer; each 10 microgram/m3 increase

associated with 8% increase in lung
cancer mortality

[9] Race, gender, SE class, chemicals,
not just smoking

Datasets from SEER and
NPCR/National Cancer Institute’s

Surveillance, Epidemiology, and End
Results (SEER) Program and the
Centers for Disease Control and

Prevention’s National Program of
Cancer Registries (NPCR)

Epidemiologically and biological studies
show strong causation between smoking
and cellular mutations; racial disparities:
Black worst, then white, then other races;

lower Socio-Economic class is strongly
associated with lung cancer; not gender;

race seems to be proxy for
Socio-Economic class

[10]

carbon dioxide, ozone, cancer,
Ozone Mortality, Ozone

Hospitalization, Ozone Emergency
Room Visits, and Particulate Matter

Mortality pollution mortality

Mathematical model/Nasa and EPA
and California air resources

A climate-air pollution model showed by
cause-and-effect analysis that fossil-fuel

CO2 increases U.S. surface ozone,
carcinogens, and Coarse Particulate

matter, increasing cancer rates

[11]
asbestos fibers and ambient Coarse
Particulate Matter PM10, PM2.5 and

diesel exhaust particles

Chemicals purchased and combined
with smoke, passed through

filters/experiments

Synergistic effects in the generation of
hydroxyl radicals in smoke with

environmental asbestos fibers and
ambient PM10, PM2.5 and diesel exhaust
particles (DEP). The highest synergistic
effects were observed with the asbestos
fibers, PM2.5 and DEP, producing redox

recycling and oxidative action.

[12] Ozone and PM2.5 to predict
premature (excess) mortality

Simulations of preindustrial and
present-day (2000) concentrations

included rural
areas/epidemiology literature

Tropospheric O3 and PM2.5 contribute
substantially to global premature

mortality from lung cancer, which is 14%
higher than baseline.

[13]
Socioeconomic, Rural-Urban, and

Racial Inequalities in
US Cancer Mortality:

Stats (regression)/three national data
sources: the national mortality

database, the decennial census, and the
2009–2010 Area Resource File

Blacks experiencing higher mortality
from each cancer than whites within each

deprivation group. Socioeconomic
gradients in mortality were steeper in

non-metropolitan than in metropolitan
areas. Mortality disparities may reflect

inequalities in smoking and other
cancer-risk factors, screening,

and treatment.

[14] All of them Statistics Intersectionality of all the variables
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Table 1. Cont.

ID Variables Methods/Data Source(s) Findings

[15] PM2.5 and O3

80,285 AHSMOG-2 participants were
followed for an average of 7.5 years;

Logistic regression/Adventist Health
and Smog Study-2 (AHSMOG-2), a

cohort of health-conscious nonsmokers,
where 81% have never smoked.

Lung cancer is associated with PM2.5 in
never smokers and slightly higher if 1+

hrs./Day outdoors or 5+ years
at residence.

[16] Cancer risk index (CRI) Incidence of
cancer risk from air toxics

Statistical modelling of San Antonia
Texas; racial disparities found/Data for

CRI from National Air
Toxics Assessment [17]

Cancer risk index is all positively
correlated with the ambient diesel coarse

particulate matter. Institutional
transformations are essential to mitigate

the social-ecological divide.

[18] Radon, Lung cancer

Meta-analysis of 8 case-control studies
of indoor radon, where n =

200+/Finland (2), USA (2), Sweden (2),
China, Canada

Relative risk is 14% greater for those
exposed to indoor radon versus

the controls

[19]

Occupational lung cancer, asbestos,
arsenic, chromium, radon, silica,

beryllium, nickel, cadmium,
diesel exhaust

Review of many studies of workers in
the U.S.

Conservative estimates are that relative
risk of occupational lung cancer is 1.31

for diesel fumes, 2.0 for asbestos, and 3.69
for arsenic; several million exposed

workers in early 1980 s

[20] 24 experts in a working group Review of many studies: human,
occupational, outdoor, indoor, animal.

From many sources, respirable PM10,
PM2.5, NO2, SO2, and O3 are frequently

and substantially above safe levels.
Consistency in studies shows cellular

damage, as well as genetic and
epigenetic effects.

[21]

Demographics, cancer types,
cigarette features all lead to

mutations and other changes in
the genes

Review of smoking: all
epidemiologically and biological

studies show strong causation, and it
parallels the rise and fall of cigarette

smoking/Many sources

Prevention important and cessation
important because it causes cancer in all
demographics. Stopping smoking is the

most important cause of lung cancer.

[22]

Incidence and survival of
Small-Cell Lung Cancer among all

lung cancers by Gender and
Smoking and Stage of cancer

Analysis of the Surveillance,
Epidemiologic, and End Results

(SEER) database

Proportion of SCLC has diminished, and
survival has increased slightly, attributed

to decreasing smoking and increased
proportion of low-tar cigarettes

For environment quality, we use the environmental quality index (EQI), an umbrella
construct which consists of five environmental domains: air, land, water, built environment,
and socio-demographic [23,24]. The higher the quintile on each of these domains, the worse
the environmental quality. We include all five indices as variables because they account for
and aggregate thousands of environmental elements, hundreds of which are potentially
carcinogenic. The five domains of the EQI can be useful for spotting broad environmental
risks and crafting environmental policies / regulations. The EQI_Air domain variable
serves as an approximate aggregation of hundreds of particular metals and gasses, and thus
is an overall index, which can be computed, reported, and used as a basis for comparison
over time or area: county vs. county or state vs. state. Although the EQI_Air variable is the
domain most relevant to this paper, hazardous elements of the environment may also be
found within the other four domains.

For the sake of completeness, we include Appendix A, which shows the complete
list of 175 metals and gasses tracked by the National Air Toxics Assessment [17]. NATA
compiles ambient emissions by geographic unit (county/state) over time, and different
counties/states are managed separately, with different regulations and tracking methods.
Because of these variations, NATA states that their results “should not be used to quantify
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benefits of reduced air toxics ambient emissions” [17]. Since we cannot model the complete
list of NATA ambient emissions, we develop our own master list of the most hazardous
ambient emissions: Cyanide compounds, Carbon Monoxide, Carbon Disulfide, Diesel
Exhaust, Nitrogen Dioxide, Tropospheric Ozone, Coarse Particulate Matter, Fine Particulate
Matter, and Sulfur Dioxide. One main objective of this paper is to compare models
containing these specific ambient emissions (micro variables) versus the macro-level EQI
domains (macro variables).

3. Materials and Methods

All our data sources are publicly available, consistent with the principle of scientific
reproducibility, from which we gathered and checked for data quality. By data quality,
we mean correctness (free from errors, noise) and completeness (no missing variables or
values). We checked for correctness by checking the plots of the distributions for every
variable, looking for impossible or outlying values, which we did not find. Our data
sources were already clean, i.e., high quality in that sense. We addressed completeness by
(1) integrating data from multiple sources, and (2) imputing for missing values.

Our data sources include multiple providers because triangulation of different sources
minimizes biases, assumptions, or blind spots that a particular source may have. Combin-
ing disparate sources is likely to yield a unique combination of information, extending and
refining our established models to make them more accurate. We used the following four
data sources:

• CDC United States Cancer Statistics, 2013–2017
• County Health Ranking Organization, 2011–2013 (University of Wisconsin Population

Health Institute)
• EPA Outdoor Air Quality Data, 2006–2010
• Air Quality-Lung Cancer Data, 2000–2005 (National Cancer Institute and Environmen-

tal Protection Agency)

Because cancer takes a while to develop in human lungs, from the sustained breathing
of harmful ambient emissions to the lung cancer diagnosed years later, we sought data
sources spanning a considerable time horizon: 2000–2017. We obtained data at both the
county level and state level, aggregating counties to the state level for all fifty states, the
unit of analysis. If a state had no value for a county, it was replaced by the state average.
Some variables were obtained for two timeframes, in which case we append “_T1” or “_T2”
to distinguish them.

Our data sources for each variable are found in Table 2. The five domain-specific
county level environmental quality index (EQI) data values for the period 2000–2005—air,
land, water, built environment, and socio-demographic—are abstracted from the United
States Environmental Protection Agency profile. Complete descriptions of the datasets
used in the EQI are provided in [23].

Table 2. Variables and their Descriptions, Timeframe, Data source.

Var. Description Time Data Source

New Case of
Lung Cancer

Cancer of the Lung or Bronchus, All Ages, All
Races/Ethnicities, Male and Female. Rate per
100,000 people

2013–2017 (mean) CDC United States Cancer Statistics

Adult Smoking Percentage of adults who are current smokers
(county level) 2011–2013 (mean) County Health Ranking

Organization

Land EQI Environmental Quality Index–Land Domain 2000–2005 (mean) Air Quality-Lung Cancer Data

SocioD EQI Environmental Quality
Index–Socio-Demographic Domain 2000–2005 (mean) Air Quality-Lung Cancer Data
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Table 2. Cont.

Var. Description Time Data Source

Built EQI Environmental Quality Index–Built
Environment Domain 2000–2005 (mean) Air Quality-Lung Cancer Data

Air EQI Environmental Quality Index–Air Domain 2000–2005 (mean) Air Quality-Lung Cancer Data

Water EQI Environmental Quality Index–Water Domain 2000–2005 (mean) Air Quality-Lung Cancer Data

PM2.5_T1 Fine Particulate Matter (2.5 micrometers or
smaller) Mean of 24 h period 2000–2005 (mean) Air Quality-Lung Cancer Data

PM10_T1 Coarse Particulate Matter (10 micrometers or
smaller) based on Mean of 24 h period 2000–2005 (mean) Air Quality-Lung Cancer Data

SO2_T1 Sulfur Dioxide 2000–2005 (mean) Air Quality-Lung Cancer Data

NO2_T1 Nitrogen Dioxide 2000–2005 (mean) Air Quality-Lung Cancer Data

CO_T1 Carbon Monoxide 2000–2005 (mean) Air Quality-Lung Cancer Data

O3_T1 Tropospheric (ground level) Ozone 2000–2005 (mean) Air Quality-Lung Cancer Data

CN_T1 Cyanide compounds 2000–2005 (mean) Air Quality-Lung Cancer Data

Diesel Gaseous exhaust produced by a diesel type of
internal combustion engine 2000–2005 (mean) Air Quality-Lung Cancer Data

CS2 Carbon Disulfide 2000–2005 (mean) Air Quality-Lung Cancer Data

PM2.5_T2

Fine Particulate Matter (2.5 micrometers or
smaller), weighted annual mean (mean weighted
by calendar quarter), based on weighted
mean 24 h

2006–2010 (mean) EPA Outdoor Air Quality Data

PM10_T2

Coarse Particulate Matter (10 micrometers or
smaller), weighted annual mean (mean weighted
by calendar quarter), based on weighted
mean 24 h

2006–2010 (mean) EPA Outdoor Air Quality Data

SO2_T2 Sulfur Dioxide Mean 1 h (the annual mean of all
the 1-h measurements in the year) 2006–2010 (mean) EPA Outdoor Air Quality Data

NO2_T2 Nitrogen Dioxide Mean 1 h (the annual mean of
all the 1-h measurements in the year) 2006–2010 (mean) EPA Outdoor Air Quality Data

CO_T2 Carbon Monoxide 2nd Max 8 h (the 2nd highest
non-overlapping 8-h avg in the year) 2006–2010 (mean) EPA Outdoor Air Quality Data

O3_T2 Tropospheric Ozone 4th Max 8 h, the 4th highest
daily max 8-h average in the year 2006–2010 (mean) EPA Outdoor Air Quality Data

3.1. Data Cleaning

After examining descriptive statistics for each variable, we centered, scaled, and made
log transformations for non-normally distribution variables. This was for the purpose of
making variables consistent with the assumptions of multiple regression and for decreasing
the amount of multi-collinearity. We affix the suffix “_log” to the variable name to indicate
a log transformation, e.g., SO2_T1_log and CS2_log. We then checked for outliers and
missing values for each variable, and if the proportion of outliers and missing values was
less than 10%, replaced them with the median value of each state. If all counties of a state
were missing values, those remained NA. The final sample size is 2,862 observations.

Tables 3 and 4 show the final versions of the variables after cleaning (imputation
and/or transformation). Nitrogen Dioxide in 2006–2010 had too many nulls and was
therefore excluded from inclusion in any model.
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Table 3. Variables and Data Cleaning.

Variable Description Imputation Transformation

New Cases of Lung Cancer Cancer of the Lung/Bronchus, Rate per 100,000 people none none

Adult Smoking Percentage of adults who are current smokers none none

PM2.5_T1 Particulate Matter 2.5 in Time 1 none none

PM10_T1_log Particulate Matter 10 in Time 1 none Logarithm

SO2_T1_log Sulfur Dioxide in Time 1 none Logarithm

NO2_T1_log Nitrogen Dioxide in Time 1 none Logarithm

CO_T1_log Carbon Monoxide in Time 1 median Logarithm

EQI_Land Environmental Quality Index, Land Domain median none

EQI_SocioD Environmental Quality Index, Socio-Demographic Domain none none

EQI_Built Environmental Quality Index, Built Domain none none

O3_T1_log Tropospheric Ozone in Time 1 none Logarithm

CN_log Cyanide compounds none Logarithm

Diesel_log Diesel Exhaust none Logarithm

CS2_log Carbon Disulfide none Logarithm

EQI_Air Environmental Quality Index, Air Domain none none

EQI_Water Environmental Quality Index, Water Domain none none

PM2.5_T2 Particulate Matter 2.5 in Time 2 none none

PM10_T2 Particulate Matter 10 in Time 2 median none

SO2_T2_log Sulfur Dioxide in Time 2 none Logarithm

CO_T2 Carbon Monoxide in Time 2 none none

O3_T2 Tropospheric Ozone in Time 2 median none

NO2_T2 Nitrogen Dioxide in Time 2 ——— ———

Table 4. Descriptive Statistics.

Var. Type Variable Description Min. 1 Q Median Mean 3 Q Max.

Target Lung Cancer Lung/Bronchus
Cancer Rate 14.600 56.800 65.360 66.220 75.700 132.400

Baseline Adult Smoking Current Adult
Smokers (%) 0.000 0.173 0.207 0.210 0.243 0.425

Macro
Variables

EQI_Air Environmental Quality
Index, Air Domain −2.532 −0.349 0.177 0.147 0.692 2.508

EQI_Built Environmental Quality
Index, Built Domain −3.993 −0.408 0.177 0.119 0.672 7.283

EQI_Land Environmental Quality
Index, Land Domain −3.149 −0.395 0.207 0.078 0.672 2.095

EQI_SocioD
Environmental Quality

Index, Socio-
Demographic Domain

−3.331 −0.584 0.022 0.027 0.570 3.979

EQI_Water Environmental Quality
Index, Water Domain −1.701 −0.614 0.359 0.063 0.889 1.478
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Table 4. Cont.

Var. Type Variable Description Min. 1 Q Median Mean 3 Q Max.

Micro
Variables

CN_log Cyanide compounds −3.743 −2.118 −1.812 −1.842 −1.523 −0.022

CO_T1_log Carbon Monoxide 0.650 2.248 2.555 2.503 2.944 3.800

CO_T2 Carbon Monoxide 0.267 1.191 1.558 1.691 1.900 7.020

CS2_log Carbon Disulfide −6.900 −3.875 −3.436 −3.429 −2.975 0.361

Diesel_log Diesel Exhaust −1.773 −0.711 −0.526 −0.539 −0.356 0.495

NO2_T1_log Nitrogen Dioxide 1.306 2.383 2.657 2.632 2.905 3.818

NO2_T2 Nitrogen Dioxide 1.000 7.811 8.700 9.231 11.125 24.400

O3_T1_log Tropospheric Ozone 2.341 3.456 3.641 3.598 3.810 4.876

O3_T2 Tropospheric Ozone 0.053 0.069 0.072 0.071 0.075 0.090

PM10_T1_log Particulate Matter 10 1.030 2.129 2.452 2.406 2.692 3.678

PM10_T2 Particulate Matter 10 10.000 19.420 21.990 22.210 23.700 40.200

PM2.5_T1 Particulate Matter 2.5 2.167 7.940 10.417 9.941 11.782 16.912

PM2.5_T2 Particulate Matter 2.5 4.500 9.743 11.171 10.855 12.419 17.150

SO2_T1_log Sulfur Dioxide 0.251 1.679 2.154 2.035 2.478 3.569

SO2_T2_log Sulfur Dioxide 1.000 22.000 33.000 36.980 49.000 98.000

We show a matrix plot among the EQI variables in Figure 3 and a matrix plot among
the ambient emissions variables in Figures 4 and 5, to show the correlations at the macro-
and micro-levels. Most correlations are significant, which indicates a model is likely to be
obtained, but also that we must check for collinearity.
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3.2. Model Results and Interpretation

Our modelling approach was always the same, regardless of specific method used.
We (a) randomly partitioned the dataset into train (80%) and testing (20%) subsets, and
(b) checked for outliers, multi-collinearity, and target leakage [25]. Model accuracy was
assessed by performance on both a train partition (80%) and test partition (20%), determined
by random sampling.

We fitted several models starting with two separate layers of variables: (1) adult
smoking and (2) states. The rationale for adult smoking is because it is well-established
as the number one contributing cause of lung cancer. The rationale for geographic states
was because we expected differences by state in terms of ambient emissions, emission
regulations, cultural differences, and baseline population health. The geographic states
model contains data for forty-five states, using Alabama as the baseline dummy variable
state. The remaining five states (Alaska, Kansas, Michigan, Minnesota, and Nevada), five
territories (American Samoa, Guam, Northern Mariana Islands, Puerto Rico, Virgin Islands)
and Washington D.C. had insufficient data and were therefore excluded from analysis. We
then examined models that include (3) only the EQI domain variables and (4) only the
ambient emission variables. See Figure 6 for the regression results of the four models.

Smoking is a very strong predictor of lung cancer. For every percentage increase in
adult smoking, the number of lung cancer cases increases by 164.583 per 100,000 citizens.
The variance explained (adj. R2) is 0.3141.

The state model in Figure 6 consists of 45 US states. Figure 6 shows the states sorted
by t-value to show the relative magnitude of the impact of state. There are 30 statistically
significant states at a level of p < 0.05 with all but Georgia significant at a level of p < 0.01.
Some states have a positive coefficient estimate, indicating a positive association with
lung cancer, whereas others have a negative coefficient estimate relative to Alabama, the
arbitrary baseline state. The variance explained (adj. R2) is 0.5304.

Kentucky has the most positive coefficient, indicating that its citizens have a higher
tendency to have lung cancer: 29.893 more cases per 100,000 residents vs. Alabama. There
are seven other statistically significant, higher risk states: Arkansas, West Virginia, Illinois,
Indiana, Missouri, Mississippi, Georgia. Conversely, Utah has the most negative coefficient,
indicating a lower tendency to have lung cancer: 41.404 fewer cases per 100,000 residents
vs. Alabama. There are twenty-one other statistically significant (p < 0.05), lower risk
states: Maryland, Pennsylvania, New Jersey, Virginia, North Dakota, Iowa, Tennessee,
Hawaii, Wisconsin, South Dakota, Arizona, Montana, Texas, Washington, Nebraska, Ore-
gon, Wyoming, Idaho, New Mexico, California, and Colorado. Massachusetts is borderline
statistically significant (p = 0.077).

The macro model consists of only the five EQI variables covering different domains:
air, water, land, built, and sociodemographic. We model these by themselves to assess their
macro-level impact on lung cancer without any confounding of smoking, state, or ambient
emissions. A higher value of each of these indicates worse quality of environment [23].
Figure 6 shows the EQI domains sorted by t-statistic. Positive coefficients indicate worse
environmental quality. An EQI_Air coefficient of 6.409 indicates that for every unit of
worse air quality, there are 6.409 more lung cancer cases per 100,000 people. Water quality
is also positive and statistically significant, but lower impact: 0.846 more lung cancer cases
per 100,000 people.
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Estimate Error t-value Pr(>|t|) Signif. Estimate Error t-value Pr(>|t|) Signif.
--------- ------ ------- -------- ----- --------- ------ ------- -------- -----

Smoking (Intercept) 31.638 1.105 28.63 <0.001 *** State (Intercept) 68.9808 1.4999 45.99 <0.001 ***
adult_smoking 164.58 5.082 32.38 <0.001 *** State_KY 29.8931 1.8701 15.985 <0.001 ***

State_AR 15.1128 2.0856 7.246 <0.001 ***
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EQI_Sociod -5.682 0.395 -14.382 <0.001 *** State_NC 2.427 1.9318 1.256 0.209

State_OH 2.4727 2.006 1.233 0.218
State_NY 2.2884 2.1616 1.059 0.290
State_ME 3.2919 3.7018 0.889 0.374

Micro (Intercept) 75.809 7.915 9.578 <0.001 *** State_OK 1.1691 2.0693 0.565 0.572
PM2.5_T1 3.6628 0.226 16.178 <0.001 *** State_DE 2.9192 6.6517 0.439 0.661
SO2_T1_log 5.0407 0.845 5.964 <0.001 *** State_SC 0.6103 2.3591 0.259 0.796
PM2.5_T2 0.9416 0.27 3.491 <0.001 *** State_FL -1.3438 2.1028 -0.639 0.523
SO2_T2_log 3.9222 1.902 2.062 0.039 * State_CT -5.0308 5.8092 -0.866 0.387
CO_T1_log -0.263 0.772 -0.34 0.734 State_RI -5.1058 5.8092 -0.879 0.380
Diesel_log -0.612 1.511 -0.405 0.686 State_NH -5.3433 4.2424 -1.259 0.208
CO_T2_log -0.398 0.81 -0.491 0.623 State_VT -5.0808 3.7018 -1.373 0.170
CS2_log -0.291 0.506 -0.575 0.565 State_MA -6.8108 3.8534 -1.767 0.077 .
CN_log -1.293 1.022 -1.266 0.206 State_MD -7.5344 2.7385 -2.751 0.006 **
O3_T2 -213.8 72.06 -2.967 0.003 ** State_PA -5.8778 2.1308 -2.758 0.006 **
O3_T1_log -4.925 1.509 -3.263 0.001 ** State_NJ -8.887 3.1818 -2.793 0.005 **
NO2_T1_log -4.688 1.297 -3.616 <0.001 *** State_VA -5.5669 1.8117 -3.073 0.002 **
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Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 State_SD -10.182 2.2204 -4.586 <0.001 ***
State_AZ -19.514 3.5705 -5.465 <0.001 ***
State_MT -12.693 2.2335 -5.683 <0.001 ***
State_TX -9.675 1.696 -5.704 <0.001 ***

Residual SE df R2 adj-R2 F stat. p-value State_WA -14.236 2.4873 -5.724 <0.001 ***
------------- --- --- ------- ------ -------- State_NE -11.614 1.988 -5.842 <0.001 ***

Smoking 13.61 2287 0.314 0.3141 1049 <0.001 State_OR -15.582 2.6298 -5.925 <0.001 ***
State_WY -24.296 3.1082 -7.817 <0.001 ***

State 11.47 2244 0.54 0.5304 59.74 <0.001 State_ID -19.821 2.4873 -7.969 <0.001 ***
State_NM -23.503 2.7385 -8.582 <0.001 ***

Macro 14.55 2280 0.216 0.2146 125.9 <0.001 State_CA -22.118 2.1616 -10.23 <0.001 ***
State_CO -28.381 2.2204 -12.78 <0.001 ***

Micro 13.49 2273 0.33 0.3256 74.66 <0.001 State_UT -41.404 2.6999 -15.34 <0.001 ***  
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According to the regression coefficients, there are countervailing, counterintuitive
forces indicated by the quality of land, socio-demographic, and built domains, because
they suggest that areas with worse environmental quality in the land, socio-demographic,
and built domains have lower incidence of lung cancer. Unequal access and socio-economic
disparities could partially explain the paradoxical results. Adding higher-order terms was
attempted to resolve the paradoxical results, i.e., squared-terms: EQI_Land2, EQI_Built2,
and EQI_SocioD2. Interaction terms were also attempted: EQI_Land*EQI_Built, EQI_Land*
EQI_SocioD, and EQI_Built*SocioD. None of these higher-order terms helped the inter-
pretability of the coefficients, and they increased the variance explained only a small
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amount (0.005) while increasing the collinearity, so the higher-order terms were dropped.
The variance explained (adj. R2) is 0.2146.

Figure 6 also shows the micro-level variables, nine ambient emissions: Cyanide
compounds, Carbon Monoxide, Carbon Disulfide, Diesel Exhaust, Nitrogen Dioxide, Tro-
pospheric Ozone, Coarse Particulate Matter, Fine Particulate Matter, and Sulfur Dioxide.
Six of these have data from both timeframes: Carbon Monoxide, Nitrogen Dioxide, Tropo-
spheric Ozone, Coarse Particulate Matter, Fine Particulate Matter, and Sulfur Dioxide. Five
of the ambient emissions are statistically significant in both timeframes: Nitrogen Dioxide,
Tropospheric Ozone, Course Particulate Matter, Fine Particulate Matter, and Sulfur Dioxide.
The higher the level of Fine Particulate Matter or Sulfur Dioxide, the higher the rate of
lung cancer. Fine Particulate Matter is the most hazardous in both time periods T1 and T2.
Almost as hazardous is Sulfur Dioxide. The variance explained (adj. R2) for this model is
0.3256, which is higher than adult smoking by itself.

Paradoxically, the higher the level of Nitrogen Dioxide, Tropospheric Ozone, or Course
Particulate Matter, the lower the rate of lung cancer. Lowering the risk, paradoxically,
is Course Particulate Matter, which is particular matter up to four times as large as Fine
Particulate Matter but still respirable. Coarse Particulate Matter is not healthful, but a larger
presence of it could mean that Fine Particulate Matter levels have decreased, amounting
to an indirectly positive effect. Similarly, the negative coefficients of Nitrogen Dioxide
and Tropospheric Ozone are paradoxical as well, but more difficult to understand. These
negative coefficients may indicate countervailing, confounded effects or indirect effects.
That is, Nitrogen Dioxide and Tropospheric Ozone may not be the factors directly causing
lung cancer. According to Witschi (1988), “there is little evidence to implicate ozone
or Nitrogen Dioxide directly as pulmonary carcinogens, but that they might modify and
influence the carcinogenic process in the lung.” Overall, Nitrogen Dioxide and Tropospheric
Ozone have shown mixed associations with lung cancer, implicated only as co-carcinogens,
exacerbating lung disease [26–28]. A model testing Tropospheric Ozone and Nitrogen
Dioxide in both timeframes with interaction terms results in Figure 7.
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Figure 7. Testing for Interaction.

The coefficients of Tropospheric Ozone and Nitrogen Dioxide become positive (in both
timeframes) in their relationship to lung cancer. The interaction terms are negative, and only
the Nitrogen Dioxide interaction term is statistically significant, indicating a dampening
multiplicative effect over time. This effect from the Nitrogen Dioxide interaction disappears
when the other ambient emissions variables are added back in, so we drop it for the
sake of simplicity. We attribute the negative coefficients to complex relationships among
the various ambient emissions and possibly other variables not included in our model.
These paradoxes notwithstanding, the micro-level model is more comprehensive than the
macro-level EQI model. It seems that accounting for exposure to specific carcinogenic
ambient emissions is more accurate, capturing more of the variance, than the simpler
macro-level model.

The four models described thus far show significant explanatory and predictive power.
We consider the adult smoking and state models to be foundational because adult smoking
is obviously crucial to include, and the state model explains the most variance. We therefore
combine adult smoking and geographic state to form the foundation for all multi-layer
models. We examine the Foundation + EQI model results, grouped by variable layer (left
side) and sorted by t-statistic (right side) in Figure 8.
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estimate std-error t-value p-val signif estimate std-error t-value p-val signif
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EQI_Built -0.7878 0.3059 -2.576 0.01 * State_IL 19.6157 2.0482 9.577 <0.001 ***
EQI_Land -1.976 0.5035 -3.924 <0.001 *** State_AR 16.4441 2.1007 7.828 <0.001 ***
EQI_Sociod -2.8452 0.3602 -7.899 <0.001 *** State_IN 12.4103 2.1664 5.729 <0.001 ***
EQI_Water -0.7534 0.4213 -1.788 0.074 . State_OH 11.5067 2.0778 5.538 <0.001 ***
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State_AZ -15.56 3.4494 -4.511 <0.001 *** State_NY 11.4563 2.1763 5.264 <0.001 ***
State_CA -7.3805 2.4426 -3.022 0.003 ** State_GA 8.2569 1.7399 4.746 <0.001 ***
State_CO -13.168 2.4679 -5.336 <0.001 *** State_ME 13.9476 3.2898 4.24 <0.001 ***
State_CT 9.027 4.3835 2.059 0.04 * State_WV 8.6474 2.3051 3.751 <0.001 ***
State_DE 13.5731 6.319 2.148 0.032 * State_NC 6.7544 2.0537 3.289 0.001 **
State_FL -0.5993 2.0856 -0.287 0.774 EQI_Air 1.4472 0.4574 3.164 0.002 **
State_GA 8.2569 1.7399 4.746 <0.001 *** State_MD 7.0284 2.7239 2.58 0.01 **
State_IA 4.7056 2.0732 2.27 0.023 * State_IA 4.7056 2.0732 2.27 0.023 *
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State_IL 19.6157 2.0482 9.577 <0.001 *** State_CT 9.027 4.3835 2.059 0.04 *
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State_ME 13.9476 3.2898 4.24 <0.001 *** State_MA 5.7219 3.7602 1.522 0.128
State_MO 10.8113 1.9988 5.409 <0.001 *** State_RI 7.8822 5.5271 1.426 0.154
State_MS 1.9236 1.9638 0.979 0.327 State_SC 3.4512 2.4194 1.426 0.154
State_MT -0.8947 2.4955 -0.359 0.72 State_VA 2.3872 1.7772 1.343 0.179
State_NC 6.7544 2.0537 3.289 0.001 ** State_NE 2.9025 2.2684 1.28 0.201
State_ND 4.0208 2.4633 1.632 0.103 State_VT 4.4925 3.7753 1.19 0.234
State_NE 2.9025 2.2684 1.28 0.201 State_MS 1.9236 1.9638 0.979 0.327
State_NH 7.6989 3.9191 1.964 0.05 * State_LA 1.8331 2.0911 0.877 0.381
State_NJ 5.8296 3.0483 1.912 0.056 . State_SD 1.3804 2.3663 0.583 0.56
State_NM -20.149 2.7364 -7.363 <0.001 *** State_PA 0.5598 2.1143 0.265 0.791
State_NY 11.4563 2.1763 5.264 <0.001 *** State_TX -0.1984 1.7989 -0.11 0.912
State_OH 11.5067 2.0778 5.538 <0.001 *** State_FL -0.5993 2.0856 -0.287 0.774
State_OK 3.3987 2.1129 1.609 0.108 State_MT -0.8947 2.4955 -0.359 0.72
State_OR -3.296 2.6627 -1.238 0.216 State_OR -3.296 2.6627 -1.238 0.216
State_PA 0.5598 2.1143 0.265 0.791 State_WA -4.0972 2.479 -1.653 0.099 .
State_RI 7.8822 5.5271 1.426 0.154 EQI_Water -0.7534 0.4213 -1.788 0.074 .
State_SC 3.4512 2.4194 1.426 0.154 EQI_Built -0.7878 0.3059 -2.576 0.01 *
State_SD 1.3804 2.3663 0.583 0.56 State_ID -6.5579 2.5003 -2.623 0.009 **
State_TN -5.3121 1.9541 -2.718 0.007 ** State_TN -5.3121 1.9541 -2.718 0.007 **
State_TX -0.1984 1.7989 -0.11 0.912 State_CA -7.3805 2.4426 -3.022 0.003 **
State_UT -23.434 2.9015 -8.076 <0.001 *** EQI_Land -1.976 0.5035 -3.924 <0.001 ***
State_VA 2.3872 1.7772 1.343 0.179 State_WY -12.589 3.0009 -4.195 <0.001 ***
State_VT 4.4925 3.7753 1.19 0.234 State_AZ -15.56 3.4494 -4.511 <0.001 ***
State_WA -4.0972 2.479 -1.653 0.099 . State_CO -13.168 2.4679 -5.336 <0.001 ***
State_WI 3.9018 2.1775 1.792 0.073 . State_NM -20.149 2.7364 -7.363 <0.001 ***
State_WV 8.6474 2.3051 3.751 <0.001 *** EQI_Sociod -2.8452 0.3602 -7.899 <0.001 ***
State_WY -12.589 3.0009 -4.195 <0.001 *** State_UT -23.434 2.9015 -8.076 <0.001 ***  
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Many states are positively associated with lung cancer, with Kentucky even more
hazardous than adult smoking, according to their t-statistics. The next ten states are more
hazardous than EQI_Air: Illinois, Arkansas, Indiana, Ohio, Missouri, New York, Georgia,
Maine, West Virginia, North Carolina. Note that all of these states are in the Eastern, South,
or Midwest regions of the United States. On the other hand, environmental quality indexes
of sociodemographic, land, built environment and water domains are negatively associated
with lung cancer, which is paradoxical. This could indicate a confounding of unhealthful
environmental quality within healthful city living. For example, this could be where lower
quality environment (vehicle exhaust) is experienced near high-quality healthcare systems,
which can detect lung cancer early. Amidst those environmental domain variables are
the states negatively associated with lung cancer: Utah, New Mexico, Colorado, Arizona,
Wyoming, California, Tennessee, Idaho. Note that all but Tennessee are states in the
Western region of the United States.

3.3. Foundation + Ambient Emissions

Next, we show the model combining the foundation with the ambient emissions layer,
grouped by variable layer (left side) and sorted by t-statistic (right side) in Figure 9.

In examining the significance of ambient emissions in this model, we see that eight
of the fifteen variables are statistically significant. Six of them are from T1, the earlier
timeframe: Carbon Monoxide, Diesel Exhaust, Nitrogen Dioxide, Coarse Particulate Matter,
Fine Particulate Matter, and Sulfur Dioxide; two are from T2, the later timeframe: Coarse
Particulate Matter and Sulfur Dioxide.

Adult smoking regains first place as Kentucky slips to second place. The next two
most hazardous states, approximately the same impact as Fine Particulate Matter in T1
are Illinois and Arkansas. Then comes Coarse Particulate Matter in T2 and Sulfur Dioxide
in T1 with the following states close behind: Indiana, Missouri, and New York. Then
comes CO_T1 and the last three states: West Virginia, Ohio, and Georgia. Note that almost
all the hazardous states are in the Midwest or Southern region of the United States. The
exception is New York. On the other extreme, Utah still has the lowest rate of lung cancer
(29.138 cases fewer per 100,000). The next six least hazardous states are all in the West:
New Mexico, Wyoming, Colorado, Nebraska, California, and Washington.
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State_MT -7.1602 3.7842 -1.892 0.0586 . State_ND 6.67199 5.66553 1.178 0.2391
State_NC 3.88371 4.10673 0.946 0.3444 State_LA 4.24974 3.75471 1.132 0.2578
State_ND 6.67199 5.66553 1.178 0.2391 State_FL 3.52701 3.65219 0.966 0.3343
State_NE -11.742 4.50446 -2.607 0.0092 ** State_NC 3.88371 4.10673 0.946 0.3444
State_NH 8.18343 5.16739 1.584 0.1134 State_VT 5.15487 5.55798 0.927 0.3538
State_NJ 1.30612 4.822 0.271 0.7865 State_MS 4.31652 4.73163 0.912 0.3617
State_NM -24.084 4.48231 -5.373 <0.001 *** CO_T2_log 1.71142 1.88024 0.91 0.3628
State_NY 13.4865 4.93566 2.732 0.0063 ** State_WI 3.86977 5.15006 0.751 0.4525
State_OH 8.3583 3.88982 2.149 0.0318 * State_OK 3.18373 4.3699 0.729 0.4663
State_OK 3.18373 4.3699 0.729 0.4663 State_HI 6.32258 11.47989 0.551 0.5819
State_OR -8.2674 4.23955 -1.95 0.0513 . State_PA 2.13605 4.57223 0.467 0.6404
State_PA 2.13605 4.57223 0.467 0.6404 State_NJ 1.30612 4.822 0.271 0.7865
State_RI 11.0149 6.78364 1.624 0.1046 State_VA 0.3119 3.99625 0.078 0.9378
State_SC -1.1341 4.50879 -0.252 0.8014 CN_log -0.0336 0.9672 -0.035 0.9723
State_SD -2.1474 6.31374 -0.34 0.7338 State_IA -0.4599 4.2953 -0.107 0.9147
State_TN -4.6205 4.11888 -1.122 0.2621 State_SC -1.1341 4.50879 -0.252 0.8014
State_TX -1.9426 3.57762 -0.543 0.5872 State_SD -2.1474 6.31374 -0.34 0.7338
State_UT -29.138 4.606 -6.326 <0.001 *** State_TX -1.9426 3.57762 -0.543 0.5872
State_VA 0.3119 3.99625 0.078 0.9378 O3_T2 -65.235 94.42419 -0.691 0.4897
State_VT 5.15487 5.55798 0.927 0.3538 CS2_log -0.3756 0.45403 -0.827 0.4082
State_WA -8.9046 4.22478 -2.108 0.0352 * O3_T1_log -1.6112 1.59338 -1.011 0.312
State_WI 3.86977 5.15006 0.751 0.4525 PM2.5_T2 -0.3891 0.37187 -1.046 0.2955
State_WV 10.6203 4.53684 2.341 0.0193 * State_TN -4.6205 4.11888 -1.122 0.2621
State_WY -20.094 5.29217 -3.797 <0.001 *** State_ID -5.3952 4.14454 -1.302 0.1931
CN_log -0.0336 0.9672 -0.035 0.9723 NO2_T2 -0.3407 0.20835 -1.635 0.1022
CO_T1_log 2.59595 1.06707 2.433 0.0151 * Diesel_log -2.6965 1.4762 -1.827 0.0679 .
CO_T2_log 1.71142 1.88024 0.91 0.3628 State_MT -7.1602 3.7842 -1.892 0.0586 .
CS2_log -0.3756 0.45403 -0.827 0.4082 NO2_T1_log -2.3406 1.23652 -1.893 0.0585 .
Diesel_log -2.6965 1.4762 -1.827 0.0679 . PM10_T1_log -1.6916 0.88931 -1.902 0.0573 .
NO2_T1_log -2.3406 1.23652 -1.893 0.0585 . State_AZ -9.7873 5.02042 -1.949 0.0514 .
NO2_T2 -0.3407 0.20835 -1.635 0.1022 State_OR -8.2674 4.23955 -1.95 0.0513 .
O3_T1_log -1.6112 1.59338 -1.011 0.312 State_WA -8.9046 4.22478 -2.108 0.0352 *
O3_T2 -65.235 94.42419 -0.691 0.4897 State_CA -8.4322 3.95395 -2.133 0.0331 *
PM10_T1_log -1.6916 0.88931 -1.902 0.0573 . SO2_T2_log -10.359 4.12473 -2.511 0.0121 *
PM10_T2 0.46712 0.13923 3.355 <0.001 *** State_NE -11.742 4.50446 -2.607 0.0092 **
PM2.5_T1 1.12849 0.2682 4.208 <0.001 *** State_CO -15.812 4.22102 -3.746 <0.001 ***
PM2.5_T2 -0.3891 0.37187 -1.046 0.2955 State_WY -20.094 5.29217 -3.797 <0.001 ***
SO2_T1_log 2.38594 0.80736 2.955 0.0032 ** State_NM -24.084 4.48231 -5.373 <0.001 ***
SO2_T2_log -10.359 4.12473 -2.511 0.0121 * State_UT -29.138 4.606 -6.326 <0.001 ***  

Figure 9. Foundation + Ambient Emissions; Residual standard error: 10.62 on 2228 degrees of freedom; Multiple R‐
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Figure 9. Foundation + Ambient Emissions; Residual standard error: 10.62 on 2228 degrees of freedom; Multiple R-squared:
0.613, Adjusted R-squared: 0.6026; F-statistic: 58.82 on 60 and 2228 DF, p-value: < 2.2 × 10−16; Significance codes: 0 ‘***’
0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.
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3.4. Linear Model of All layers

Figure 10 shows the model of all layers, grouped by variable layer (left side), and
sorted by t-statistic (right side).
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State_IL 19.8691 3.51 5.661 <0.001 *** PM10_T2 0.3992 0.1375 2.902 0.003739 **
State_IN 17.1534 3.6998 4.636 <0.001 *** State_MD 13.7009 4.7951 2.857 0.004313 **
State_KY 31.9293 4.0543 7.875 <0.001 *** State_DE 20.5225 7.3016 2.811 0.004987 **
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State_MD 13.7009 4.7951 2.857 0.004313 ** State_CT 14.6266 5.6032 2.61 0.009105 **
State_ME 16.8168 6.1655 2.728 0.006431 ** State_MA 13.4109 5.4824 2.446 0.014515 *
State_MO 14.8212 4.1502 3.571 <0.001 *** State_GA 9.8252 4.0498 2.426 0.01534 *
State_MS 1.8592 4.6587 0.399 0.689863 CO_T1_log 2.3174 1.0487 2.21 0.027225 *
State_MT -0.3565 3.9104 -0.091 0.927376 State_RI 14.446 6.7136 2.152 0.031525 *
State_NC 7.9199 4.1213 1.922 0.054771 . State_VT 10.6929 5.559 1.924 0.054541 .
State_ND 9.4317 5.6653 1.665 0.096089 . State_NC 7.9199 4.1213 1.922 0.054771 .
State_NE -4.8151 4.5856 -1.05 0.293815 State_WI 9.6058 5.1348 1.871 0.061513 .
State_NH 13.5391 5.1739 2.617 0.008936 ** State_NJ 8.1284 4.8342 1.681 0.092818 .
State_NJ 8.1284 4.8342 1.681 0.092818 . State_ND 9.4317 5.6653 1.665 0.096089 .
State_NM -21.7771 4.5513 -4.785 <0.001 *** State_IA 5.4217 4.3066 1.259 0.208192
State_NY 18.6724 4.921 3.794 <0.001 *** State_PA 5.402 4.57 1.182 0.23731
State_OH 14.7687 3.939 3.749 <0.001 *** Diesel_log 2.0477 1.8274 1.121 0.262595
State_OK 4.6939 4.3189 1.087 0.277229 State_OK 4.6939 4.3189 1.087 0.277229
State_OR -1.9429 4.3338 -0.448 0.653973 State_VA 3.7396 3.9548 0.946 0.344461
State_PA 5.402 4.57 1.182 0.23731 CO_T2_log 1.3536 1.8441 0.734 0.462998
State_RI 14.446 6.7136 2.152 0.031525 * State_LA 1.9326 3.7229 0.519 0.603746
State_SC 1.297 4.4698 0.29 0.771721 CN_log 0.6101 1.2138 0.503 0.615292
State_SD 2.2212 6.2991 0.353 0.724408 State_MS 1.8592 4.6587 0.399 0.689863
State_TN -1.9697 4.1153 -0.479 0.632246 State_SD 2.2212 6.2991 0.353 0.724408
State_TX -1.066 3.5794 -0.298 0.765866 State_SC 1.297 4.4698 0.29 0.771721
State_UT -21.8187 4.652 -4.69 <0.001 *** EQI_Air 0.1761 1.0286 0.171 0.864059
State_VA 3.7396 3.9548 0.946 0.344461 State_FL 0.3678 3.6372 0.101 0.919456
State_VT 10.6929 5.559 1.924 0.054541 . State_ID -0.3112 4.2025 -0.074 0.940984
State_WA -4.3582 4.2741 -1.02 0.307986 State_MT -0.3565 3.9104 -0.091 0.927376
State_WI 9.6058 5.1348 1.871 0.061513 . O3_T2 -26.0694 92.9224 -0.281 0.779082
State_WV 13.3243 4.581 2.909 0.003667 ** State_TX -1.066 3.5794 -0.298 0.765866
State_WY -14.0493 5.3321 -2.635 0.008476 ** State_OR -1.9429 4.3338 -0.448 0.653973
EQI_Air 0.1761 1.0286 0.171 0.864059 State_TN -1.9697 4.1153 -0.479 0.632246
EQI_Built -0.6757 0.3182 -2.124 0.033816 * CS2_log -0.2893 0.451 -0.641 0.521321
EQI_Land -1.9311 0.5131 -3.764 <0.001 *** State_CA -3.6757 4.0384 -0.91 0.362828
EQI_Sociod -2.7689 0.3729 -7.425 <0.001 *** State_WA -4.3582 4.2741 -1.02 0.307986
EQI_Water -0.8067 0.4207 -1.918 0.055299 . State_NE -4.8151 4.5856 -1.05 0.293815
CN_log 0.6101 1.2138 0.503 0.615292 NO2_T1_log -1.3787 1.2237 -1.127 0.260018
CO_T1_log 2.3174 1.0487 2.21 0.027225 * O3_T1_log -2.3697 1.5794 -1.5 0.133664
CO_T2_log 1.3536 1.8441 0.734 0.462998 PM10_T1_log -1.3482 0.8772 -1.537 0.124459
CS2_log -0.2893 0.451 -0.641 0.521321 State_AZ -7.7881 5.0583 -1.54 0.123781
Diesel_log 2.0477 1.8274 1.121 0.262595 PM2.5_T2 -0.6987 0.3838 -1.82 0.068851 .
NO2_T1_log -1.3787 1.2237 -1.127 0.260018 EQI_Water -0.8067 0.4207 -1.918 0.055299 .
NO2_T2 -0.4261 0.2051 -2.077 0.037881 * SO2_T2_log -8.0709 4.0947 -1.971 0.048837 *
O3_T1_log -2.3697 1.5794 -1.5 0.133664 NO2_T2 -0.4261 0.2051 -2.077 0.037881 *
O3_T2 -26.0694 92.9224 -0.281 0.779082 EQI_Built -0.6757 0.3182 -2.124 0.033816 *
PM10_T1_log -1.3482 0.8772 -1.537 0.124459 State_CO -9.8384 4.3458 -2.264 0.023677 *
PM10_T2 0.3992 0.1375 2.902 0.003739 ** State_WY -14.0493 5.3321 -2.635 0.008476 **
PM2.5_T1 0.8435 0.2741 3.078 0.002109 ** EQI_Land -1.9311 0.5131 -3.764 <0.001 ***
PM2.5_T2 -0.6987 0.3838 -1.82 0.068851 . State_UT -21.8187 4.652 -4.69 <0.001 ***
SO2_T1_log 2.3497 0.7953 2.955 0.003164 ** State_NM -21.7771 4.5513 -4.785 <0.001 ***
SO2_T2_log -8.0709 4.0947 -1.971 0.048837 * EQI_Sociod -2.7689 0.3729 -7.425 <0.001 ***  
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Adult smoking remains the most hazardous variable in the model containing all
the layers. The most hazardous states are Kentucky, Illinois, Arkansas, Indiana, New
York, Ohio, and Missouri. Then come three ambient emissions: Fine Particulate Matter
in T1, Sulfur Dioxide in T1, and Coarse Particulate Matter in T2 with West Virginia in
their midst. Finally, the least hazardous states are Maryland, Delaware, Maine, New
Hampshire, Connecticut, Massachusetts, Georgia, and Rhode Island. All these states are in
the Northeast or Middle Atlantic regions, with the exception of Georgia, which is slightly
more hazardous than the effect of Carbon Monoxide in T1. On the other extreme, the
biggest impact for reducing the rate of lung cancer is socio-demographic EQI. The least
hazardous states are New Mexico, followed by Utah, Wyoming, and Colorado, all in the
Western region of the US. Three additional EQI domain variables are healthful: land, built,
and water with borderline significance.

The least hazardous variables of smaller impact are Nitrogen Dioxide in T2 and Sulfur
Dioxide in T2. They are most likely co-carcinogens, having a negative direct impact,
because we know they are hazardous, but indirectly have a beneficial impact on lung
cancer. In examining the significance of ambient emissions in the all-layer model, we see
that seven of the fifteen are statistically significant. Three of them are from T1, the earlier
timeframe: Carbon Monoxide, Fine Particulate Matter, Sulfur Dioxide; four are from T2,
the later timeframe: Course Particulate Matter, Sulfur Dioxide, Nitrogen Dioxide and Fine
Particulate Matter.

3.5. Model Comparison

Whether we choose the macro-, micro-, or combined model, we have a linear model
of 61–62% adjusted R-Squared predicting lung cancer. State and adult smoking are the
basis for all three models, with state having the largest impact. All the states collectively
explain 53.04% of the variance. Adult smoking by itself is the variable with the highest
impact, explaining 31.41% of the variance. Adding the macro-level EQI domain variables
increases the variance explained to 61.14% of the variance. Adding the micro-level ambient
emissions variables instead of the EQI variables increases the variance explained to 60.26%.
Including both the macro- and micro-level variables explains 61.78% of the variance. These
results suggest that (1) adult smoking is necessary but not sufficient for a good model, and
that (2) the macro-, micro-, and combined models have approximately the same power, but
achieve it in different ways.

We added several layers of variables and found that the most complete model virtually
doubled the variance explained of adult smoking by itself. We also found that macro-
variables are a good summary of environmental quality while using only five variables.
By using particular ambient emission variables, we achieved the same variance explained,
but at the cost of greater complexity. We also found that the state effect closely mirrors
the overall rate of lung cancer, regardless of model. States are an interesting, if surprising
factor, not one that intuitively comes to mind when predicting lung cancer. State does
include many risk factors, however: adult smoking rates (a cultural factor), presence of
hazardous industrial ambient emissions (a business factor), government regulation (strong
or weak), as well as environmental quality (air and other domains). In terms of ambient
emissions, their mix does vary depending on the presence or absence of Environmental
Quality Index domains. The strongly significant EQI_Air becomes less significant in the
presence of all the particular ambient emission variables. Table 5 summarizes the accuracy
metrics for all the linear regression models, both in the train and test partitions (randomly
created) of the data.
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Table 5. LR: Linear Regression; RMSE: Root Mean Squared Error; MAE: Mean Absolute Error; MAPE: Mean Absolute
Percentage Error.

ID Meth. Variable Groups
TRAIN (80%) TEST (20%)

adj. R2 RMSE MAE MAPE RMSE MAE MAPE

1 LR smoking + state + EQI + emissions 0.617 10.067 7.507 12.133 11.155 8.281 13.901

2 LR smoking + state + EQI 0.612 10.168 7.556 12.241 11.167 8.259 13.858

3 LR smoking + state + emissions 0.602 10.273 7.697 12.478 11.416 8.579 14.332

4 LR state 0.527 11.239 8.198 13.324 11.792 8.664 14.414

5 LR emissions 0.322 13.543 10.494 17.089 13.996 10.818 18.316

6 LR smoking 0.308 13.724 10.367 17.401 14.777 11.083 19.289

7 LR EQI 0.211 14.639 11.098 18.633 15.297 11.429 20.338

Model 1 has the best accuracy on five of the seven metrics, whereas model 2 has the
best on the remaining two metrics, all indicated in red boldface. In these models, we have
seen some paradoxical relationships, i.e., beta coefficients of unexpected sign. Consequently,
we tried some more advanced machine learning models to try to improve accuracy and
to resolve the paradoxical coefficients. Specifically, we fitted a Ridge Regression, Random
Forest, and Gradient Boosted Tree on smoking, state, and EQI variables, with and without
ambient emissions. Ridge Regression is worth trying because we have a large number of
predictors. Random Forest and Gradient Boosted Trees are methods known to be effective
at capturing interactions and/or non-linear relationships between predictors. They do so
by aggregating sub-models that have no or low correlation with each other. Because of
this, they tend to reduce both errors of bias and errors of variance, which increases overall
model accuracy [29,30].

The results are found in Table 6. Model 8 has the best accuracy on Root Mean Squared
Error (RMSE), the most commonly used metric for prediction, on test data. It is a simple
model in that it achieves that accuracy with only smoking, state, and EQI domain variables.
Model 9, a Support Vector Machine, does use the emissions variables but is superior only
on Mean Absolute Percentage Error (MAPE) of the train partition. Finally, model 10, a
Random Forest, uses the emissions variables and is superior on the remaining five metrics,
spanning the train and test partitions. We conclude that models 8 and 10 are the best,
according to the accuracy metrics in the test partition. We exclude model 9 because it was
superior on none of the test data metrics.

Table 6. RF: Random Forest, GBT: Gradient Boosted Tree; RR = Ridge Regression; SVM = Support Vector Machine; RMSE:
Root Mean Squared Error; MAE: Mean Absolute Error; MAPE: Mean Absolute Percentage Error.

ID Meth. Variable Groups
TRAIN (80%) TEST (20%)

adj. R2 RMSE MAE MAPE RMSE MAE MAPE

8 GBT smoking + state + EQI 0.611 10.340 7.611 12.334 9.976 7.377 12.054

9 SVM smoking + state + EQI + emissions 0.634 10.026 7.335 11.833 10.027 7.401 12.063

10 RF smoking + state + EQI + emissions 0.639 9.960 7.268 11.926 10.068 7.314 11.977

11 GBT smoking + state + EQI + emissions 0.625 10.151 7.445 12.132 10.239 7.535 12.252

12 RR smoking + state + EQI + emissions 0.600 10.486 7.741 12.667 10.314 7.822 12.881

13 RR smoking + state + EQI 0.598 10.507 7.758 12.688 10.322 7.793 12.784

14 RF smoking + state + EQI 0.584 10.684 7.814 12.932 10.383 7.627 12.570

If one is required to use a linear model, then models 1 and 2 perform well. They are
both dominated by geographic state, however, and some of the variable coefficients are
paradoxical. Consequently, we tried to resolve those paradoxes and capture non-linear
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relationships by fitting advanced machine learning models. Of those models, we arrived at
two models, 8 and 10, that perform significantly better than the linear models.

Figure 11 shows all five EQI domain variables (socio-demographic, air, built, land,
and water) among the highest importance predictors, after adult smoking and Kentucky
in a Gradient Boosted Tree (model 8). The EQI socio-demographic domain is the only
domain with impact higher than that of EQI_ Air. Figure 11 shows adult smoking and
Kentucky along with many EQI and ambient emissions: socio-demographic EQI, Fine
Particulate Matter (T1 and T2), as well as Carbon Monoxide, Tropospheric Ozone, and
Sulfur Dioxide among the highest impact predictors in a Random Forest (model 10). The
drawback to these ML models is that they are not as transparent and interpretable as linear
models 1 and 2.
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Figure 12 shows the impacts of variables in a Random Forest that includes ambient
emissions variables. It concurs with Figure 10 that two of the highest impact variables
are adult smoking and Kentucky, but also Particulate Matter 2.5 in T1 and T2. Among
the top impact variables are also: EQI sociodemographic and Carbon Monoxide (T2),
Tropospheric Ozone (T2), and Sulfur Dioxide (T1). EQI water is the second highest impact
EQI domain, whereas EQI_Air drops quite a few places, having been replaced by specific
ambient emissions.
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We conclude that there is no one conclusively best model to report. Instead, we offer a
small set of models to summarize the best, highest performing models (Table 7).

Table 7. Best performing Models: Variance Explained, Root Mean Squared Error.

Predictor Variables Linear Model (adj. R2, RMSE) Non-Linear Model (adj. R2, RMSE)

smoking + state + EQI Linear Regression (0.612, 11.167) Gradient Boosted Tree: (0.611, 9.976)
smoking + state + EQI + Emissions Linear Regression (0.617, 11.155) Random Forest (0.639, 10.068)

In Table 8, we describe the anthropogenic sources of the highest impact ambient
emissions from our best performing models: Fine Particulate Matter, Course Particulate
Matter, Sulfur Dioxide, Carbon Monoxide, and Tropospheric Ozone. These hazardous
ambient emissions come from a mix of industrial, vehicular, and residential sources. The
one common denominator is a burning of fossil fuels.

Table 8. Anthropogenic Sources of the Highest Impact Ambient Emissions.

Ambient Emission Anthropogenic Sources

Particulate Matter

Combustion of carbon-based fuels. Smokestacks; power plants, automobiles. Diesel- and
gasoline-powered motor vehicles and equipment; burning wood in residential fireplaces, wood
stoves, wildfires, agricultural and other fires. Cement dust, fly ash, oil smoke, and smog from
construction sites, unpaved roads and fields [31].

Sulfur Dioxide

Fuel combustion in mobile sources, e.g., automobiles, locomotives, ships, and other equipment;
burning of fossil fuels (coal, oil, and diesel) or other materials that contain sulfur at power plants and
other industrial facilities. Smelting of mineral ores (aluminum, copper, zinc, lead, and iron) that
contain sulfur. Eastern states have more sulfate particles than the West, mostly because of sulfur
dioxide emitted by large, coal-fired power plants [32].

Carbon Monoxide
And

Tropospheric Ozone

Burning of fossil fuels (gasoline, natural gas, oil, coal, and wood) in vehicles or machinery. Poorly
vented gas appliances (furnaces, ranges, ovens, water heaters, clothes dryers, etc.), many in the home:

• Fireplaces, wood, and gas stoves
• Coal or oil furnaces
• Space heaters or oil or kerosene heaters
• Charcoal grills, camp stoves
• Gas-powered lawn mowers and power tools
• Automobile exhaust fumes
• Portable generator
• Leaking chimneys
• Cigarettes, pipes, and cigars smoked in the home.

Carbon monoxide can also react with other gases to form Tropospheric Ozone. Carbon monoxide
detectors should be installed in everyone’s home near any garage, combustion equipment,
and bedroom.

4. Discussion and Contributions

This paper makes several innovative contributions. We combined data from multi-
ple sources in multiple timeframes with multiple methods to predict lung cancer in the
United States. We did so in a unique way: by including adult smoking of cigarettes as a
base model and then adding several variable layers: state, environmental quality index
domains, and ambient emissions. By layering variables and comparing them, we iteratively
built strong linear models (variance explained = 61–62%) and strong non-linear models
(variance explained = 61-64% with 10% less error). This is the first paper, to the best of our
knowledge, to contribute an organized iteration of linear and non-linear models in the lung
cancer literature.
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State had such a strong impact that we included it with adult smoking of cigarettes as
foundational. We found a surprisingly strong variation in the states, with general clustering
by region of the United States. States in the Eastern part of the US have significantly higher
lung cancer rates than states in the Western United States. We also found that variables
reflecting more recent and less recent exposures are both important. Ultimately, we obtain
three regression models with variance explained in the range of 61–62%, whether one
includes only macro-level variables (EQI), micro-level variables (ambient emissions), or
both. Model performance was verified to be strong on multiple metrics in both the train
and test dataset partitions.

The EQI variables present a paradox in a simple, linear model. Lower quality air
certainly contributes to lung cancer, as does water quality to a lesser degree. The other
domains—built environment, sociodemographic, and land—have a negative association
with lung cancer. These results could indicate an indirect relationship, in which the direct
impact is seemingly healthful, but the larger, indirect impact on lung cancer incidence
is a problem. This could also signal, for example, that in older, bigger cities in the East,
Midwest, or Southern regions, there is lower quality air from vehicle exhaust or HVAC
systems in old buildings, but those cities have other domains that offset the effects of the
poor quality air. Note that air and water are the environments that are shared the most,
in the public commons. Land and built domains are more privately owned, controlled,
and managed.

The model to choose depends on whether one prefers a more interpretable, linear
model or a less interpretable, higher performance model that contains linear and non-
linear relationships. It also depends on what policies are being examined, macro-level EQI
variables or micro-level ambient emissions. We found that the macro-level and micro-level
models achieve approximately the same explanatory and predictive power in the linear
model. Combining them provides an improvement, particularly in the non-linear models.

The model to choose depends also on one’s specific level of analysis and plans for
intervention. For example, if one wanted to introduce broad legislation to improve air
quality through taxation, one might prefer the macro-level model. Conversely, if a specific
technology designed to control an ambient emission is being deployed, one might prefer
the micro-level model. Is one trying to craft/adjust state regulations covering a broad
population and range of activities, e.g., industrial ambient emissions, or statewide anti-
smoking campaigns? Alternately, is one trying to intervene and strictly limit ambient
emissions, such as the ones we found most hazardous across the models: Fine Particulate
Matter, Coarse Particulate Matter, Sulfur Dioxide, and Carbon Monoxide? Finally, is one
trying to limit ambient emissions know to be co-carcinogenic, e.g., Tropospheric Ozone
and Nitrogen Dioxide, because they can facilitate and accelerate the damage of carcinogens
past the possibility of early detection and treatment?

Methodologically, we encounter a tradeoff question. How much transparency are we
willing to give up in exchange for greater accuracy in our models? This is the ongoing
dilemma of Machine Learning and Artificial Intelligence. Our machine learning models
improve by 1–2% on the variance explained (R2) and they shrink the error metrics (RMSE,
MAE, and MAPE) by approximately 10 percent. These tradeoffs need to be assessed by
policy makers according to their use cases and impacts on various stakeholders. Policy-
makers need to, at the very least, show that these models commit no ethical violation, i.e.,
no discrimination against protected classes of people (race, ethnicity, gender, etc.). Ideally,
we would be able to open the best ML/AI “black-box,” through Explainable Artificial
Intelligence (XAI) methods to understand and communicate how all linear and non-linear
relationships have been captured.
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5. Limitations and Directions for Future Research

We need to investigate the paradox in which harmful ambient emissions have a
negative regression coefficient rather than a positive one. At face value, this would indicate
a hazardous inhalable emission that is good for human health. This is clearly impossible,
and it represents a paradox in need of untangling. We also acknowledge that gender and
race also play a role in predicting the prevalence of lung cancer. Some occupations are
predominantly held by men, e.g., coal mining, where air quality is a known hazard. Future
research could incorporate data on occupational hazards, gender, and race to extend and
refine our model.

Health insurance coverage, its cost, and proximity to high quality healthcare vary
geographically. Some states have more stringent smoke-free air laws designating some
areas, e.g., workplaces, as smoke-free. Other states have more vigorous smoking cessation
programs to help smokers quit. Healthcare to treat lung cancer also varies in quality and
effectiveness by geography. Some states also have a greater proportion of industries that
emit hazardous ambient emissions or air quality regulation enforcement that may be lax.
In this study, we account for these various factors only by geographic state since that is
our level and unit of analysis. Further research could refine our models by examining
the US by county. Doing so could examine geographic proximity to high quality care
and health insurance coverage/cost by demographic variables, which vary widely within
states. Alternatively, we could subdivide into 374 Metropolitan Statistical Area (MSA)
or 955 Core-Based Statistical Area (CBSA). Analyzing at the county, MSA, or CBSA level
would be more granular.

According to U.S. Census data and Simmons National Consumer Survey (NHCS),
in 2020, 510,000 Americans smoked two or more packs per day. The cost of cigarettes
varies considerably—a pack costs $6–$10—indicating a substantial financial burden that
varies by socio-economic class. In 2020, it was reported that the average cost for a pack of
cigarettes across the US was $6.28, but higher state and local taxes increase that to $10.67
in New York City. A single pack-a-day habit in New York amounted to $3895 per year.
This of course may discourage the initiation of cigarette smoking or encourage smokers to
finally quit. Many adults have quit smoking, a difficult achievement, thus improving their
health and reducing second-hand smoke for those around them. They have also saved
their families substantial amounts of money and reduced the burden on the healthcare
system. The prevalence of cigarette smoking varies by gender, race, state, region, and
socio-economic class. These differences ought to be studied in further research, perhaps
stratified into several categories of smoker: everyday smoker, someday smoker, former
smoker, never smoker.

Finally, future research could use classification methods to predict high vs. low lung
cancer rates. This would require determination of the proper cutoff between high and low
classes. Then we could compare logistic regression vs. classification trees, random forests,
and other methods. Accuracy would be determined by sensitivity, specificity, F1 statistic,
and AUC/ROC. These models could focus on the predictor variables found to have the
highest relative impact in models 8 and 10: adult smoking, state (or other geographic
unit), EQI domains, Particulate Matter 2.5, Carbon Monoxide, Tropospheric Ozone, and
Sulfur Dioxide.

6. Conclusions

Cigarette smoking is known to contribute to lung cancer. The individual choice
whether to smoke is thus a key predictor of lung cancer, as our models show. Less well-
known is that some geographic states are positively associated with lung cancer, e.g.,
Kentucky, and other states are negatively associated, e.g., Utah. States are an interesting
bundle of factors that contribute to lung cancer because they encapsulate choices made
by individuals, businesses, industries, and government leaders. States also differ in their
environmental quality in several domains: air, water, built, land, and socio-demographic.
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Results from our best models show that all five EQI domains are highly significant.
Results from our best models show that these are the most significant ambient emissions:
Particulate Matter 2.5, Carbon Monoxide, Tropospheric Ozone, and Sulfur Dioxide. These
were found to be important over multiple timeframes. State policies, regulations, and
restrictions could make a difference in the mitigation of these ambient emissions to re-
duce the rate of lung cancer. The linear models have approximately 62% of the variance
explained and highlight many states that contribute to or protect against lung cancer. In
addition, the models show the harmful influence of Particulate Matter 2.5, Sulfur Dioxide,
Carbon Monoxide, and Particulate Matter 10, as well as the protective influence of socio-
demographic, land, and built domains of the environment. The best machine learning
model (a Random Forest) captures 64% of the variance explained, with approximately 10%
less error.

In our best linear and non-linear models, we see the importance of all five Environ-
mental Quality Index domains. We also see the impact of several ambient emissions. The
common denominator for addressing all the hazards is the need to reduce burning of
fossil fuels. As we transition from fossil fuels to renewable fuels, we will need to revisit
these models. Future research could also improve our models by including data regarding
occupational hazards, demographics, and socio-economics, as well as by subdividing state
into county or other more granular units.
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Appendix A. Emissions tracked by the National Air Toxics Assessment

1,1,1-Trichloroethane Acetaldehyde Chlorobenzilate Hexachlorobutadiene O-Toluidine

1,1,2,2-Tetrachloroethane Acetamide Chloroform Hexachlorocyclopentadiene Pah/Pom

1,1,2-Trichloroethane Acetonitrile Chloromethyl Methyl Ether Hexachloroethane Parathion

1,1-Dimethylhydrazine Acetophenone Chloroprene Hexamethylene Diisocyanate P-Dioxane

1,2,3,4,5,6-Hexachlorocyclohexane Acrolein Cobalt Hexamethylphosphoramide Pentachloronitrobenzene

1,2,4-Trichlorobenzene Acrylamide Coke Oven Emissions Hexane Pentachlorophenol

1,2-Dibromo-3-Chloropropane Acrylic Acid Cresols Hexavalent Chromium Phenol

1,2-Diphenylhydrazine Acrylonitrile Cumene Hydrazine Phosgene

1,2-Epoxybutane Allyl Chloride Cyanide Hydrochloric Acid Phosphine

1,2-Propylenimine Aniline Dibenzofuran Hydrogen Fluoride Phosphorus

1,3-Butadiene Antimony Dibutyl Phthalate Hydroquinone Phthalic Anhydride

1,3-Dichloropropene Arsenic Dichloroethyl Ether Iodomethane Polychlorinated Biphenyl

1,3-Propane Sultone Benzene Dichlorvos Isophorone P-Phenylenediamine

1,4-Dichlorobenzene Benzidine Diesel Pm10 Lead Propionaldehyde

2,2,4-Trimethylpentane Benzotrichloride Diethanolamine Maleic Anhydride Propoxur

2,4,5-Trichlorophenol Benzyl Chloride Diethyl Sulfate Manganese Propylene Dichloride

2,4,6-Trichlorophenol Beryllium Dimethyl Phthalate Mercury Propylene Oxide
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2,4-Dichlorophenoxyacetic Acid Biphenyl Dimethyl Sulfate Methanol Quinoline

2,4-Dinitrophenol Bis(2-Ethylhexyl) Phthalate Dimethylcarbamoyl Chloride Methoxychlor Quinone

2,4-Dinitrotoluene Bis(Chloromethyl) Ether Epichlorohydrin Methyl Chloride Selenium

2,4-Toluenediisocyanate Bromoform Ethyl Acrylate Methyl Isobutyl Ketone Styrene

2-Acetylaminofluorene Bromomethane Ethyl Carbamate Methyl Isocyanate Styrene Oxide

2-Chloroacetophenone Cadmium Ethyl Chloride Methyl Methacrylate Tetrachloroethylene

2-Nitropropane Calcium Cyanamide Ethylbenzene Methyl Tert-Butyl Ether Titanium Tetrachloride

3,3’-Dichlorobenzidine Captan Ethylene Dibromide Methylene Chloride Toluene

3,3’-Dimethoxybenzidine Carbaryl Ethylene Dichloride Methylhydrazine Toluene-2,4-Diamine

3,3’-Dimethylbenzidine Carbon Disulfide Ethylene Glycol N,N-Dimethylaniline Toxaphene

4,4’-Diphenylmethane Diisocyanate Carbon Tetrachloride Ethylene Oxide N,N-Dimethylformamide Trichloroethylene

4,4’-Methylenebis(2-Chloroaniline) Carbonyl Sulfide Ethylene Thiourea Naphthalene Triethylamine

4,4’-Methylenedianiline Catechol Ethylenimine Nickel Trifluralin

4,6-Dinitro-O-Cresol Chloramben Ethylidene Chloride Nitrobenzene Vinyl Acetate

4-Aminobiphenyl Chlordane Formaldehyde N-Nitrosodimethylamine Vinyl Bromide

4-Dimethylaminoazobenzene Chlorine Glycol Ethers N-Nitrosomorpholine Vinyl Chloride

4-Nitrobiphenyl Chloroacetic Acid Heptachlor N-Nitroso-N-Methylurea Vinylidene Chloride

4-Nitrophenol Chlorobenzene Hexachlorobenzene O-Anisidine Xylene
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