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Abstract

The system efficiency of pumping units in the middle and late stages of oil recovery is char-

acterized by several factors, complex data and poor regulation. Further, the main control

factors that affect system efficiency in different blocks vary greatly; therefore, it is necessary

to obtain the block characteristics to effectively improve system efficiency. The k-means

algorithm is simple and efficient, but it assumes that all factors have the same amount of

influence on the output value. This cannot reflect the obvious difference in the influence of

several factors in the block on the efficiency. Moreover, the algorithm is sensitive to the

selection of the initial cluster centre point, so each calculation result that reflects the effi-

ciency characteristics of the block system cannot be unified. To solve the aforementioned

problems affecting the k-means algorithm, the correlation coefficient of all the factors was

first calculated, followed by extracting the system efficiency of the positive and negative indi-

cators of standardization. Next, the moisture value was calculated to obtain the weight of

each factor used as a coefficient to calculate the Euclidean distance. Finally, the initial cen-

tre point selection of the k-means algorithm problem was solved by combining the dbscan

and weighted k-means algorithm. Taking an oil production block in the Daqing Oilfield as the

research object, the k-means and improved algorithm are used to analyse the main control

factors influencing mechanical production efficiency. The clustering results of the two algo-

rithms have the characteristics of overlapping blocks, but the improved algorithm’s cluster-

ing findings are as follows: this block features motor utilization, pump efficiency and daily

fluid production, which are positively correlated with system efficiency. Further, low-effi-

ciency wells are characterized by the fact that the pump diameter, power consumption,

water content, daily fluid production, oil pressure and casing pressure are significantly lower

than the block average; high-efficiency wells are characterized by pump depths lower than

the block average. For this block, it is possible to reduce the depth of the lower pump and

increase the water-injection effect to increase the output under conditions of meeting the

submergence degree, which can effectively improve the system efficiency.
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Introduction

In most areas of China, the average efficiency of pumping unit wells is 12–23%. In the United

States, the average efficiency of pumping unit wells is relatively higher, but it does not exceed

45% [1]. It is clear that there is still significant room for improvement in pumping unit system

efficiency, especially in China. The primary reason for the low efficiency of pumping well sys-

tems is that the load changes greatly during the energy-transfer process from the motor to the

pump during operation, which induces a large amount of loss [2, 3]. Further, many factors

influence the efficiency of pumping unit systems in the middle and late stages of oil produc-

tion; the data surrounding this is complex and uncharacterized, resulting in poor system effi-

ciency control. With the rapid development of digital oilfields, a large amount of monitoring

data has become available regarding mechanical production management systems [4]. Data

mining technology can extract unknown hidden correlations that have potential application

value from a large amount of noisy practical data, and convert this data into useful information

[5, 6]. At present, AI technology has developed into various fields [7, 8], data mining technol-

ogy has gradually matured, and the application frequency of rough set theory, neural network,

and cluster analysis is extremely high [9–11]. At present, many scholars have applied data min-

ing technology to the oilfield industry, mainly in many aspects such as water injection optimi-

zation, production forecasting, and enhanced oil recovery in the oil industry [12–15]. Among

many data mining techniques, cluster analysis method as an effective data analysis method has

achieved good application in reservoir description and downhole condition diagnosis of oil-

field development [16]. However, cluster analysis is less applied in the efficiency of block

pumping unit system. The K-means clustering algorithm is more suitable for the efficiency

analysis of the oil pumping unit system due to its simplicity and linear time complexity [17,

18]. Therefore, it is of great significance to apply the clustering algorithm effectively to improve

the efficiency of the block pumping unit system.

The k-means algorithm is sensitive to the selection of the initial cluster centre point, and

uses Euclidean distance to measure the similarity between clusters, which does not reflect the

characteristics of the data itself. At present, many scholars have proposed improvements to the

k-means algorithm. The Rk-means algorithm, proposed by Lei [19], uses an improved Max-

Min initialization method to overcome the sensitivity to the initial cluster centre, and can auto-

matically segment and merge clusters. Reda [20] combined the random forest and wk-means

algorithm to build a hybrid framework that can overcome the shortcomings of misuse and

anomaly detection. Manoharan [21] proposed an optimized k-means centre of gravity initiali-

zation method; the algorithm uses the divide-and-conquer method to find the initial centre

and attribute the data to the appropriate cluster. The improvement of the existing k-means

algorithm is mostly to overcome the sensitivity of clustering centers. For complex oilfield data

and multiple factors, the existing algorithms still have certain limitations.

The contribution of this paper is to improve k-means based on the characteristics of oilfield

data. When determining the optimal number of clusters, this study considers the differences

between clusters and the similarities within clusters of the k-means algorithm, and eliminates

the effect of the number of clusters and sample size on the calculation results. It is proposed

that the weighted Euclidean distance be used to calculate the distance between the data sample

and the cluster centre, which can better combine the characteristics of the data itself. Because

most of the cluster centres are distributed in the range of high data object density, the Dbscan

algorithm is used to extract the initial cluster centres. Using the weighted k-means algorithm

combined with density clustering, the block oilfield data is clustered and analysed, and the

block pumping well characteristics are extracted, providing an effective basis for subsequent

analysis, solve the sensitive problem of cluster center. This paper uses an improved algorithm
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to analyze the ground part and downhole part of the block oilfield data, then compares the

application effects of the k-means algorithm and the improved algorithm in the block oilfield

data, and makes a visual comparison, it proves that the improved algorithm is more suitable

for cluster analysis of block oil fields. Based on the improved algorithm to excavate the effi-

ciency characteristics of the block pumping unit system, and analyze from three aspects:

motor parameters, downhole parameters and operating parameters, combine analysis to find

out the obvious characteristics of low-efficiency wells and high-efficiency wells, and summa-

rized measures to improve the efficiency of the block system. This result is of great significance

to the research on improving the efficiency of the block pumping unit system.

Parameter selection and data collection on the efficiency of

pumping units

Parameter selection

The formula for calculating the power of the pumping unit is as follows:

Z ¼
Q½fwrw þ ð1 � fwÞro� Ha þ

ðFa � FbÞ�106

½fwrwþð1� fwÞro�g

h i
g

86400P1

� 100% ð1Þ

where η is the efficiency of the pumping well system; P1 is the motor input power; Q is the

daily production of the oil well; Ha is the liquid depth; g is the gravitational acceleration; Fa is

the oil pressure; Fb is the casing pressure; fw is the moisture content; ρw is the water density;

and ρo is the oil density.

The aforementioned equation can directly obtain the efficiency of the pumping unit. It can

be seen that the factors that directly influence the efficiency of the pumping unit system are the

daily output of the oil well, the input power of the motor, the density of the pumped liquid, the

water content, the depth of the dynamic liquid surface and the oil pressure at the wellhead.

However, the indirect factors affecting the efficiency of beam pumping units are not addressed.

Some scholars have studied the factors that influence the efficiency of the pumping unit system

from both the surface and the downhole [22, 23] perspectives–the factors that affect pump effi-

ciency include pump depth, pump diameter, sinking degree, daily liquid production and crude

oil density; the factors that affect the power of the polished rod of the pumping unit include

rated power, active power and current. However, the factors on the surface and downhole por-

tions influence each other, so several factors must be considered comprehensively. For exam-

ple, the depth of the dynamic liquid level is equal to the difference between the pump depth

and the sinking degree; therefore, the latter two are indirect factors that affect the efficiency of

the system. Further, the degree of balance will affect the system efficiency of the pumping unit

to a certain extent–the degree of balance is determined by the maximum current of the

upstroke and the maximum current of the downstroke. Therefore, the up- and down-stroke

current are also indirect factors affecting the efficiency of the pumping unit systems. This

study combines motor data and downhole data, dividing the factors that affect the efficiency of

the pumping unit system into three categories: motor parameters, operating parameters and

downhole parameters. The specific parameters are listed in Table 1.

Data collection

The data collected here is the production data of a certain block of an oil production plant in

Daqing (see Table 2 for details). It can be seen that the values of the original data are quite dif-

ferent, and they include direct and indirect factors that influence system efficiency. This data
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must be standardized before performing cluster analysis to obtain more accurate and objective

results.

Establishing a weighted k-means model combined with Dbscan

K-means algorithm

The k-means algorithm is one of the ten classic data mining algorithms, and is a distance-

based clustering algorithm. It is simple, efficient and does not require range constraints on the

data. It can obtain more accurate clustering results for mutually independent data. The flow of

the k-means algorithm is as follows:

Step 1: Input the data set X, the number of clusters K, and randomly select k data objects

from the data set X as the initial cluster centres;

Step 2: Using formula (2), calculate the distance from each sample xm in the dataset to the

cluster centre point ci;

disðxm; ciÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxm � ciÞ
2

q

ð2Þ

Step 3: Find the minimum distance from each object xm to the cluster centre ci, and classify

xm into the same class as ci;

Table 1. Selection parameters for block system efficiency research.

Motor parameters Operating parameters Downhole parameters

Characteristic attributes Letter code Unit Characteristic attributes Letter code Unit Characteristic attributes Letter code Unit

Upstroke maximum current Iu A Stroke s m Liquid depth Ha m

Downstroke maximum current Id A Frequency n min-1 Pump setting depth Hb m

Motor input power P1 KW Moisture content fw % Submergence L m

Power consumption pe KW Daily fluid production Q m3/d Pump diameter Fb mm

Motor utilization ηd % Casing pressure Fb MPa Pump efficiency ηb %

Oil pressure Fa MPa

https://doi.org/10.1371/journal.pone.0248840.t001

Table 2. Statistical value of 16 indicators in the block.

Min Max Mean SD

Fa 0.1 0.4 0.4 0.1

Fb 0 0.4 0.4 0.1

Q 2.8 39.4 42 19.6

fw 80.4 95.5 95.1 2.3

L 5.8 238.1 239.5 85

s 2 3 3.1 0.5

n 2 6 5.9 1.3

Fb 38 70 63.7 9.5

Hb 633.7 955.1 945.9 60.6

Ha 153.3 706.6 706.4 79.9

Iu 11 41 43.7 15.2

Id 10 38 40.6 13.3

P1 18.5 37 36.5 9.6

ηb 6.2 47.5 48.8 16.2

ηd 6.8 26.8 28.6 11.1

Pe 2.3 9.3 9.9 3.5

https://doi.org/10.1371/journal.pone.0248840.t002
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Step 4: Use formula (3) to recalculate and update the cluster centre of each cluster, where N
is the number of samples in the k-th cluster;

c0i ¼

XN

i¼1

xi

N
ð3Þ

Step 5: Repeat steps 2–4 until all cluster centres no longer change or the maximum number

of runs is reached.

Weighted k-means algorithm combined with density clustering

While the k-means algorithm has the advantages of simplicity and efficiency, it also has disad-

vantages such as difficulty in selecting the K value, an inability to reflect the characteristics of

the data and the randomized selection of the initial clustering centre, resulting in different

clustering results. This article has made some improvements to the k-means algorithm to miti-

gate the abovementioned shortcomings, as follows.

Selection of the number of clusters. When determining the number of clusters, to mini-

mize the sum of squared errors between groups, it is necessary to make the differences between

groups as large as possible. The sum of squared errors within the group (λsse-wc) reflects the

similarity within the group; the sum of squared errors between groups (λsse-bc) reflects the dif-

ferences between different groups. To eliminate the influence of the number of clusters and

sample size on the calculation results, the formula for determining a reasonable number of

clusters can be written as follows:

q ¼
lsse� bc
K � 1

=
lsse� we
n � K

ð4Þ

where q is the coefficient for determining the number of clusters; λsse-bc is the sum of squared

errors between groups; λsse-wc is the sum of squares of errors within the group; K is the number

of clusters; and n is the sample size.

Weight calculation. The k-means algorithm assumes that all factors have the same influ-

ence on the output value. However, practically, there are obvious differences in the effects of

many factors on efficiency, so an additional coefficient is used in the calculation of the Euclid-

ean distance in the improved algorithm.

First, the different factors are standardized through the homogenization of heterogeneous

indicators, that is, the influence of many factors on the output value is divided into positive

and negative indicators. Second, the entropy of the standardized values is calculated. The

larger the entropy value, the higher the disorder of the information, that is, the smaller the util-

ity of the information. The information utility of each indicator depends on the difference

between the entropy value of the indicator and 1; the weight of each factor in the comprehen-

sive evaluation is the proportion of its information utility value to the total utility value of all

factors. The specific formula for this is as follows:

X0ij ¼
Xij � minðx1j; . . . ; xnjÞ

maxðx1j; . . . ; xnjÞ � minðx1j; . . . ; xnjÞ

" #

ð5Þ

X}

ij ¼
maxðx1j; . . . ; xnjÞ � Xij

maxðx1j; . . . ; xnjÞ � minðx1j; . . . ; xnjÞ

" #

ð6Þ
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Pij ¼
Xij

Xn

i¼1

Xij
ð7Þ

ej ¼ � k
Xn

i¼1

PijlnðPijÞ ð8Þ

gj ¼
1 � ej
m � Ee

ð9Þ

Wj ¼
gj

Xm

j¼1

gj

ð10Þ

where Xij is the value of the j-th index of the i-th oil well, (i = 1,2. . .,n,j = 1,2,. . .,m); X0ij is the

normalized data for positive indicators; X00ij is the normalized data of the negative index, X0ij and

X00ij are still denoted as Xij; Pij is the proportion of the i-th sample value under the j-th index; ej

is the moisture value of the j-th index, Ee ¼
Xm

j¼1

ej; gj is the coefficient of variance for the j-th

index, 0�gj�1,
Xm

j¼1

gj ¼ 1; and Wj is the weight of the j-th index

Selection of the initial cluster centre. For the iterative clustering k-means algorithm,

when the initial cluster centre and the final cluster centre differ significantly, the number of

iterations of the algorithm will increase. Therefore, it is very important to select a suitable ini-

tial cluster centre. The k-means algorithm randomly selects the initial clustering centres; how-

ever, most of the clustering centres of the dataset are distributed in the higher data density

range. If the randomly selected initial cluster centres are distributed at the boundary, inaccu-

rate results may be produced. Therefore, when using the density-clustering algorithm to select

a suitable initial clustering centre for the improved clustering algorithm, k objects with higher

density will be selected to replace the randomly selected initial clustering centre. The specific

steps to accomplish this are as follows:

Step 1: For any point in a given dataset, calculate the weighted Euclidean distance to the

remaining points and sort them in ascending order to obtain the distance set M. Set MinPts to

k, and use the k-th distance of the distance set M as the k-distance of the point. Calculate the

k-distance of all points to form the k-distance set, and draw an image of the k-distance set to

find the point with the most intense change, that is, the required neighbourhood radius ε.

Step 2: In all data samples, if there are no less than Minpts objects in the ε-neighbourhood

of a point, that point is the core object, and the core object set Xi is generated in this manner.

Step 3: Find all the points with reachable density points from any core point in the core

object set to generate clusters. This process is repeated until all the core points are visited.

Step 4: Find the average value of the i(1�i�k) cluster as the temporary cluster centre ci, and

use formula (11) to calculate the weighted Euclidean distance from each sample xm to ci in the
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i-th cluster;

disðxm; ciÞ ¼Wj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxm � ciÞ
2

q

ð11Þ

Step 5: The point closest to the temporary cluster centre is the centre point in the cluster,

that is, the initial cluster centre point.

Step 6: Repeat steps 4 and 5 until k initial cluster centres are found.

Model logic block diagram. According to the principle of the improved k-means algo-

rithm, a clustering analysis process was developed–as shown in Fig 1 –and the weighted k-

means clustering analysis algorithm program combined with density clustering was compiled

according to the aforementioned flowchart to perform cluster analysis on the block oil well

parameter observation set.

For cluster analysis, determining the number of clusters is very important. This article com-

prehensively considers several important factors such as similarities within groups, differences

between groups, the number of clusters and sample size to determine a reasonable number of

clusters. To reflect the characteristics of the data itself, this paper uses entropy to weight the

Euclidean distance, such that each factor can integrate its own value and the weight in the

block for distance calculation and cluster analysis. In fact, the cluster centres are usually dis-

tributed in the range of the high density of data objects; therefore, this study uses density clus-

tering to determine the initial cluster centres. By combining density clustering and the

weighted k-means algorithm, it is expected that the dataset can be better clustered into several

categories based on its own data characteristics.

Analysis of the results

Determining the number of clusters

The ideal number of clusters for the block oil field is 3–5, based on the clustering of low-effi-

ciency wells, normal wells and high-efficiency wells. If the number of clusters is too small, they

do not sufficiently reflect the characteristics of the block data. If the number of clusters is too

large, the characteristics are too detailed, making interpretation cumbersome. According to

formula (4), the k value should range between 1 and 10, facilitating the drawing of a graph, as

shown in Fig 2. It is clear from the formula that the larger the ratio, the better. From the figure,

it can be seen that when the k value is 4, the coefficient curve has the highest peak point, that

Fig 1. Improved k-means algorithm flow chart.

https://doi.org/10.1371/journal.pone.0248840.g001
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is, it is determined that the cluster number coefficient that has the maximum value. The num-

ber of classes is four.

To determine the optimal number of clusters, the clustering results with k values of 2, 4 and

5 were analysed and compared. The data of each well and each month is treated as a single

data row and the percentage of system efficiency of different cluster numbers is compared

with the original data. This is shown in the pie chart in Fig 3. The average value of the system

efficiency in this block is 9.5%, and the average value of the system efficiency after the cluster-

ing calculation is 0 after dimensionless processing. As can be seen from the figure, in the origi-

nal data, the system efficiency is between 7.5% and 11.5% in normal wells, which account for

28.6% of all wells; those with efficiencies above 11.5% are collectively referred to as high-effi-

ciency wells, which account for 31.34% of the total; and those with efficiencies below 7.5% are

collectively referred to as inefficient wells, which account for 40.06% of the total. When the k

value is 2, the wells are only divided into high-efficiency and low-efficiency groups, accounting

for 43.38% and 56.62% of the total, respectively, which does not meet the assumption for clus-

ter analysis in this block. When the k value is 5, the two groups for the system efficiency

dimensionless quantities of -0.231 can be collectively called normal wells, which account for

3.53% of the total; and the two groups with efficiencies of 0.696 and 0.484 can be collectively

referred to as high-efficiency wells, which account for 54.62% of the total, the proportion of

inefficient wells is 41.85%, in terms of proportion, it cannot be the number of block data clus-

ters. When the k value is 4, the two groups for the system efficiency dimensionless quantities

of -0.164 and -0.166 can be collectively called normal wells. Normal wells account for 29.97%

of the total, low-efficiency wells account for 42.6% and high-efficiency wells account for

27.64%. The proportion of high-efficiency wells is close to that in the original data. Consider-

ing the proportions and determining the cluster number coefficient q, the optimal number of

clusters in the block is determined to be 4.

Fig 2. Selection of the best k value.

https://doi.org/10.1371/journal.pone.0248840.g002
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Weight calculation

First, the correlation coefficients among the factors are listed, as shown in Fig 4(A). It can be

seen that there is a strong correlation between certain factors, which proves that the system

efficiency is not only related to direct factors, but also affected by some indirect factors. For

example, the system efficiency has a strong correlation with the daily liquid production, and

the daily liquid production is also correlated with the pump diameter, and motor power con-

sumption; therefore, the latter two factors also indirectly affect the system efficiency. For this

reason, it is necessary to calculate the entropy value of each factor and evaluate its importance

in terms of the entire system. Next, the correlation between each factor and system efficiency

is extracted, as shown in Fig 4(B)–it can be seen that the input power, pump depth and

Fig 3. Comparison of system efficiency ratios (a) k = 2, (b) k = 3, (c) k = 4 and (d) raw data.

https://doi.org/10.1371/journal.pone.0248840.g003
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submersion degree have an inverse relationship with system efficiency. Based on this, the

block data is standardized prior to entropy calculation.

The smaller the entropy value, the larger the information utility value. To better represent

the proportion of each factor in the overall oil well data of the block, the difference coefficient

of the j-th index is calculated using formula (9). The greater the difference in the index value,

the greater the impact on the program evaluation. The ratio of the difference coefficient of

each factor and the overall difference coefficient is defined as the weight of the factor; the

weights of each factor are shown in Fig 5. It can be seen that the motor utilization and daily

fluid production have high weights, while the water content and liquid depth and submergence

have relatively small weights. The weight of each factor is used as the coefficient for calculating

the Euclidean distance.

Determining the initial cluster centre

The parameter ε and minPts in the dbscan algorithm must be set first, that is, the minimum

number of observation points included in the neighbourhood radius and the radius of the field,

respectively. Setting a small radius would not allow the data to cluster properly, and setting a

radius too large would cause significantly differing data to cluster; therefore, the proper selection

of the radius is very important. On the basis of the number of clusters being 4, the k-distance

curve is drawn as shown in Fig 6(A). The obvious inflection point in the k-distance curve is a

better radius parameter, which can be inferred from the figure; it is most appropriate when the ε
value is 3.5. The initial clustering centre selected by the dbscan algorithm is shown in Fig 6(B). It

can be seen that the initial clustering centre is in the higher density area in the four scatter plots.

Comparative analysis of the improved algorithm and k-means algorithm

results

Since the initial clustering centre of the k-means algorithm is randomly selected, the results of

k-means clustering are different in each iteration. The three test results of the improved

Fig 4. Correlation of feature parameters: (a) correlation between factors; (b) Correlation between various factors and system efficiency.

https://doi.org/10.1371/journal.pone.0248840.g004
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clustering algorithm and the original k-means algorithm are compared and analysed, as shown

in Fig 7. It can be seen that the clustering results of the improved algorithm are better than

those of the k-means algorithm. The results of the improved algorithm overlap less and the

boundaries of the categories are more distinct. It can be seen from Fig 7(A) that the overall

conformity with the expected assumptions only has a small overlap. The system efficiency

dimensionless values of the four groups are 1.165, -0.164, -0.166 and -0.636. The second and

third groups can be collectively referred to as normal wells. The proportions of high-efficiency,

normal and low-efficiency wells are 27.64%, 29.76% and 42.6%, respectively–this does not dif-

fer much from the original data. As can be seen in Fig 7(B) and Fig 7(D), the clustering effect

is not ideal, and there is significant overlap between different groups. It can be seen from Fig 7

(C) that the clustering effect is improved. The dimensionless values of the system efficiency in

the four groups are 1.11, -0.123, -0.584 and -0.936, and their proportions are 30.45%, 18.12%,

47.04% and 4.39%, respectively, which differ from the original data.

Fig 5. Histogram of the weight of each factor.

https://doi.org/10.1371/journal.pone.0248840.g005
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Fig 6. Initial cluster centre determination: (a) ε value determination; (b) Initial cluster centre plot.

https://doi.org/10.1371/journal.pone.0248840.g006

Fig 7. Comparison of the results of the improved algorithm and k-means algorithm: (a) improved algorithm; (b) k-means algorithm (first test); (c) k-means algorithm

(second test); (d) k-means algorithm (third test).

https://doi.org/10.1371/journal.pone.0248840.g007
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Table 3 shows the comparison of the sum of squared errors between the improved algo-

rithm and kmeans algorithm. Both algorithms aggregate the oil field block data into four

groups. It can be seen that the three results of kmeans algorithm are different, which prove the

instability of kmeans algorithm results, but the sum of squared errors between groups are

larger than the value of the improved algorithm, which shows that the clustering results of the

improved algorithm are more similar between groups.

Table 4 shows the comparison between the center distances of different groups in the

results of the improved algorithm and kmeans algorithm. It can be seen that the distance

between the groups of the improved algorithm is larger than that of the kmeans algorithm,

indicating that the difference between the groups of the improved algorithm is stronger. In

general, each effect of the original k-means algorithm is random; some effects can meet expec-

tations, but there is no guarantee that each effect performs well. The improved algorithm better

combines the characteristics of the block oil field data itself, because the positive and negative

influence and weight of the factors are considered. Selecting initial cluster centers through

density clustering can solve the initial center sensitivity problem of k-means algorithm. The

improved algorithm can highlight the differences between different categories and provide

more accurate results.

Fig 8 shows the analysis results for the clustering number of 4 in block oil well data using

the k-means algorithm. Group 2 (η = -0.206) and group 3 (η = -0.133) can be collectively

referred to as normal wells. It can be seen from the figure that the input power and liquid

depth of group 1 (η = 1.209, high-efficiency wells) have the lowest value, and the motor utiliza-

tion, daily fluid production, frequency, and pump efficiency have the highest values. In group

4 (η = -0.654, low-efficiency wells), the maximum current of the upstroke, maximum current

of the downstroke, power consumption, motor utilization, frequency, water content, daily

fluid production, oil pressure, casing pressure, pump diameter and pump efficiency have the

lowest values, of which only the pump diameter, water content and daily liquid productionare

lower than the average values for the block data. Through a comprehensive analysis, it can be

seen that, in the k-means clustering results, the motor utilization, daily fluid production and

pump efficiency are significantly higher than those of other wells. For low-efficiency wells,

water content, pump diameter, daily fluid production are lower than the average values of the

block. Observation and analysis show that pump efficiency, daily fluid production and system

Table 3. Comparison of within-group error sum of squares.

Groups 1 2 3 4

Improve algorithm 22994.58 3604.16 8101.387 12888.65

Kmeans-1 16035.71 10121.28 15769.30 16001.83

Kmeans-2 17537.47 10105.44 14284.18 15630.76

Kmeans-3 19124.50 5069.61 15839.66 17708.55

https://doi.org/10.1371/journal.pone.0248840.t003

Table 4. Distance between groups.

Algorithm Groups 2 3 4

Improve algorithm 1 6.84 3.08 3.06

2 - 5.51 5.81

3 - - 2.60

kmeans 1 3.55 3.08 3.01

2 - 3.84 5.04

3 - - 2.44

https://doi.org/10.1371/journal.pone.0248840.t004
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efficiency have an obvious positive correlation, therefore, these factors should be improved in

increase system efficiency.

Figs 9 to 11 show the analysis results when using the weighted k-means algorithm com-

bined with density clustering on block oil well data, with a cluster number of 4. The upper part

is a histogram of each parameter produced by the improved algorithm, and the lower part is a

graph corresponding to the system efficiency according to various factors. It can be seen from

the clustering results that the group 1, with a dimensionless value of 1.165, includes high-effi-

ciency wells, accounting for 27.64% of the total; the efficiencies of group 2 and group 3 are

-0.164 and -0.166, respectively, which are referred to as normal wells, accounting for 3.61%

and 26.15% of the total, respectively; and group 4, with an efficiency value of -0.636, include

low-efficiency wells, accounting for 42.6% of the total.

Fig 9 shows the clustering results of the improved algorithm for the observation set of oil

well parameters in the block. It can be seen from the figure that the maximum current and

input power of the upper and lower strokes of group 1 are lower than the average values; the

input power is the lowest value of the four groups, and the output power and motor utilization

rate are higher than the average values, where the motor utilization rate is the highest value of

the four groups. All motor parameter values in group 4 are lower than the overall average val-

ues, and the maximum current of the upstroke, maximum current of the downstroke, power

consumption and motor utilization rate are the lowest among the four groups, of which only

the power consumption of group 4 is lower than the average value for the block. Combined

with the analysis of the graph, it can be seen that there is a positive correlation between motor

utilization and system efficiency, that is, the higher the motor utilization, the higher the system

efficiency. The trends of change of the maximum current of the upstroke and the maximum

current of the downstroke are almost the same, both of which increase the system efficiency as

they increase, subsequently making it decrease and plateau. The curve of input power and sys-

tem efficiency first declines, then rises and finally flattens, that is, there is a suitable interval for

the maximum current and input power of the upper and lower strokes where the block has a

higher system efficiency.

The downhole parameters in the clustering results of the improved algorithm for the obser-

vation set of oil well parameters in the block are shown in Fig 10. The pump depth and liquid

depth of group 1 are lower than the average values, and are the lowest among the four groups;

the dimensionless value of pump depth of group 1 is lower than the block average. However,

the submergence, pump diameter and pump efficiency are significantly higher than the

Fig 8. k-means clustering results.

https://doi.org/10.1371/journal.pone.0248840.g008

PLOS ONE Main control factors affecting mechanical oil recovery efficiency in complex blocks identify

PLOS ONE | https://doi.org/10.1371/journal.pone.0248840 May 4, 2021 14 / 20

https://doi.org/10.1371/journal.pone.0248840.g008
https://doi.org/10.1371/journal.pone.0248840


average values–the pump efficiency is the largest among the four groups. The dynamic liquid

level, pump diameter and pump efficiency of group 4 are lower than the average values for the

block. Among them, the pump diameter and pump efficiency are the lowest of the 4 groups,

and the pump diameter values of the four groups are only lower than the average value of

group 4. From these results and those of the graph, it can be seen that the pump efficiency is

positively correlated with the system efficiency, that is, increasing the pump efficiency can

increase the system efficiency. The graphs of dynamic liquid level, pump depth and system effi-

ciency show a trend of declining first and then increasing, that is, the two parameters have an

interval where the system efficiency is lower than the average value, the specific values of

Fig 9. Block motor parameters for the improved algorithm clustering analysis.

https://doi.org/10.1371/journal.pone.0248840.g009
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which need to be further investigated. It can be determined that the downhole characteristics

of the high-efficiency wells are that the dimensionless value of pump efficiency is the highest

value among the four groups, and the value of pump depth is lower than the average value; the

downhole parameters of low-efficiency wells are characterized by the pump diameter being

lower than the average value, and the pump diameter and pump efficiency being the lowest

among the four groups. To improve the efficiency of the pumping unit system in this block,

the pump efficiency and pump diameter should be increased, while the pump depth should be

decreased.

Fig 10. Block downhole parameters of the improved algorithm cluster analysis.

https://doi.org/10.1371/journal.pone.0248840.g010
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The operating parameters of the improved algorithm’s clustering results on the observation

set of oil well parameters in the block are shown in Fig 11. In group 1, the frequency, water

content, daily fluid production, oil pressure and casing pressure are all higher than the block

average. All operating parameter values of group 4 are lower than the overall average, and

among the four groups, only group 4 has water content, daily fluid production, oil pressure

and casing pressure lower than the overall average. It can be seen from the graph that the daily

fluid production volume, is positively correlated with the system efficiency, that is, the system

efficiency increases with increases in the daily fluid production volume; the stroke, oil pres-

sure, casing pressure and system efficiency graphs all increase first and subsequently decline,

indicating that these three factors have a certain region in which the system efficiency is higher

than the average value. The specific value for this needs to be further investigated. From the

clustering results, it can be seen that the low values of the water content, daily fluid production,

oil pressure and casing pressure are the reasons for the reduction in the efficiency of the pump-

ing unit system.

Fig 11. Block operating parameters of the improved algorithm clustering analysis.

https://doi.org/10.1371/journal.pone.0248840.g011
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A comprehensive analysis of Figs 8 to 11 compares the clustering results of the improved

algorithm with those of the k-means algorithm. It can be seen that the ordinate interval of the

improved algorithm is larger than that of the k-means algorithm. The greater the distance, the

more obvious the clustering result of the improved algorithm. The two algorithms have certain

things in common, and both show that the motor utilization rate, pump efficiency, daily fluid

output and system efficiency have an obviously positive correlation. In the k-means clustering

results, the main characteristic of low-efficiency wells is that the motor parameters and operat-

ing parameters are all lower than the average value. Among the four groups, only the low-effi-

ciency well groups have lower water content and daily fluid production than the block average;

the most important feature of high-efficiency wells is that the input power is significantly

lower than that of other well groups, and the motor utilization, daily fluid production and

pump efficiency are significantly higher than those of other wells. In the improved algorithm

results, the significant feature of inefficient wells is that the motor parameters and operating

parameters are lower than the average values. Among the four groups, only the dimensionless

values of water content, daily fluid production, oil pressure, casing pressure, power consump-

tion and pump diameter of the inefficient well groups are lower than those of the block aver-

age; the obvious characteristics of high-efficiency wells are that the motor utilization rate,

pump efficiency and daily fluid production are the four highest values; the input power has the

four lowest values; and the dimensionless value of the pump depth is lower than the block

average. Most of the clustering results of the two algorithms are the same. In contrast, the

improved algorithm has more obvious characteristics for high-efficiency wells and low-effi-

ciency wells, which shows that the improved algorithm can better reflect the characteristics of

oil wells in the block.

Conclusion

1. A weighted k-means algorithm combined with density clustering was proposed in this

study. First, an appropriate number of clusters is selected using the formulas for the sum of

squares of errors between groups, sum of squares of errors within groups, number of clus-

ters and sample size. Next, density clustering is used to select the initial cluster centre.

Finally, the weight of each factor is obtained by calculating the entropy value, which is used

as the coefficient of the improved clustering algorithm to calculate the Euclidean distance.

2. The improved clustering algorithm and the original k-means algorithm are used to perform

cluster analysis on the motor parameters, downhole parameters and operating parameters

of the block oilfield. The results of the two algorithms are compared; the k-means algorithm

cannot guarantee the accuracy of each clustering result, and the improved algorithm has

obvious classification boundaries and stable clustering results. The analysis results show

that the improved algorithm is more suitable for the cluster analysis of block oilfield data.

3. The similarities between the k-means and improved algorithm clustering results include

the pump efficiency, daily fluid production and system efficiency having an obviously posi-

tive correlation. The main characteristics of low-efficiency wells are, pump diameter, water

content and daily fluid production being lower than the block average. In comparison to

the clustering results of the k-means algorithm, the improved algorithm has more features:

the motor utilization and system efficiency having an obviously positive correlation, the

pump depth of high-efficiency wells is lower than the block average, and the daily fluid pro-

duction is higher than the block average. Further, the oil pressure, casing pressure and

power consumption, of low-efficiency wells are lower than the block average.
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4. Using the improved algorithm clustering results, the measures to improve the efficiency of

the block system are summarized. In terms of motor parameters, the power consumption

should be increased to increase the input power, which, in turn, increases the utilization

rate of the motor. In terms of operating parameters, relevant operations should be carried

out to indirectly increase the water content, daily fluid production, oil pressure and casing

pressure. In terms of downhole parameters, pump efficiency should be improved and the

depth of the pump should be reduced under the condition of satisfying submergence.

Supporting information

S1 File.

(XLSX)

Author Contributions

Conceptualization: Suling Wang, Minzheng Jiang.

Data curation: Yanchun Li.

Funding acquisition: Kangxing Dong.

Software: Qiuyu Lu.

Supervision: Suling Wang.

Visualization: Qiuyu Lu.

Writing – original draft: Qiuyu Lu.

Writing – review & editing: Qiuyu Lu.

References

1. Man Y, Li W. A novel method of energy saving for nodding donkey oil pump. Advanced Intelligent Com-

puting Theories and Applications. With Aspects of Theoretical and Methodological Issues, 2007: 327–

333.

2. Ging Y, Zhou HP, Hu SH, et al. Application of beam pumping unit directly driven by permanent magnet

integrated motor. Acta Petrolei Sinica, 2018, 39(8): 955–962.

3. Wang H, Yu J, Ni YJ, et al. Analysis of the eccentric wearing prevention of pumping unit for CBM wells

in south Qinshui Basin. China Coalbed Methane, 2014, 11(6): 41–43.

4. Wang HL, Mu LX, Shi FG, et al. Management and instant query of distributed oil and gas production

dynamic data. Petroleum Exploration and Development, 2019, 46(5): 959–965.

5. Cheng XQ, Le XL, Wang YZ, et al. Survey on Big Data system and analytic technology. Journal of Soft-

ware, 2014, 25(9): 1889–1908.

6. Li DW, Shi GR. Optimization of common data mining algorithms for petroleum exploration and develop-

ment. Acta Petrolei Sinica, 2018, 39(2): 240–246.

7. Radu-E P; Teodor-A T; Adriana A. Evolving Fuzzy Models for Prosthetic Hand Myoelectric-Based Con-

trol[J]. IEEE Transactions on Instrumentation and Measurement.2020, 69(7): 4625–4636.

8. Sotirios C. M, George-C V. An agent-based Flexible Manufacturing System controller with Petri-net

enabled algebraic deadlock avoidance[J]. Reports in Mechanical Engineering.2020, 1 (1): 72–92.

9. Agarwal S, Dandge S S, Chakraborty S. Parametric analysis of a grinding process using the rough sets

theory[J]. Facta Universitatis Series Mechanical Engineering, 2020, 18(1):91–106.

10. Albu A, Precup R E, Teban T A. Results and challenges of artificial neural networks used for decision-

making in medical applications[J]. Facta Universitatis Series: Mechanical Engineering, 2019, 17

(3):285–308.

11. Fan Z, Xu X. Application and visualization of typical clustering algorithms in seismic data analysis (Con-

ference Paper)[J]. Procedia Computer Science.2019171–178.

PLOS ONE Main control factors affecting mechanical oil recovery efficiency in complex blocks identify

PLOS ONE | https://doi.org/10.1371/journal.pone.0248840 May 4, 2021 19 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0248840.s001
https://doi.org/10.1371/journal.pone.0248840


12. Jia DL, Liu H, Zhang JQ, et al. Data-driven optimization for fine water injection in a mature oil field.

Petroleum Exploration and Development,2020, 47(03):629–636.

13. Wang HL, Mu LX, Shi FG. Production prediction at ultra-high water cut stage via Recurrent Neural Net-

work. Petroleum Exploration and Development,2020, 47(05):1009–1015.

14. Yousef A M, Kavousi G P, Alnuaimi M. Predictive data analytics application for enhanced oil recovery in

a mature field in the Middle East. Petroleum Exploration and Development,2020, 47(02):366–371.

15. Vilela M, Oluyemi G, Petrovski A. A fuzzy inference system applied to value of information assessment

for oil and gas industry[J]. Decision Making Applications in Management and Engineering, 2019, 2

(2),1–18. https://doi.org/10.31181/dmame1902001v

16. LI Kun, Xianwen GAO, Haibo ZHOU, et al. Fault diagnosis for down-hole conditions of sucker rod pump-

ing systems based on the FBH-SC method[J]. Petroleum Science, 2015, 12(1): 135–147.

17. Liu H, Lu QY, Zhu SJ. Application of Typical clustering algorithm in analysis of system efficiency of

pumping wells in blocks[J]. Aeta Petrolei Sinica,2020, 41(12):1657–1664.

18. Li XQ. Research on energy saving of coalbed methane field pumping wells based on data mining. IOP

Conference Series: Earth and Environmental Science, 2019, 310(3): 032032.

19. Lei JS, Jiang T, Wu K. Robust K-means algorithm with automatically splitting and merging clusters and

its applications for surveillance data. Multimedia Tools and Applications.2016, 75(9): 12043–12059.

20. Reda M. Elbasiony, Sallam Elsayed A., Tare E. Eltobely. A hybrid network intrusion detection frame-

work based on random forests and weighted K-means. Ain Shams Engineering Journal.2013, 4:753–

762.

21. James Manoharan J., Hari Ganesh S. Initialization of optimized K-means centroids using divide-and-

conquer method.2016, 11(2):1076–1081.

22. Zhang XD, Xie XH, Li ZY, et al. Application of principal component analysis in influence factor evaluation

of oil well pump efficiency. Southwest Petrol 2011; 33(5): 176–180+204.

23. Feng ZM, Tan JJ,-Liu XL. Selection method modelling and matching rule for rated power of prime motor

used by Beam Pumping Units. Journal of Petroleum Science and Engineering,2017, 153: 197–202.

https://doi.org/10.1016/j.petrol.2017.03.048

PLOS ONE Main control factors affecting mechanical oil recovery efficiency in complex blocks identify

PLOS ONE | https://doi.org/10.1371/journal.pone.0248840 May 4, 2021 20 / 20

https://doi.org/10.31181/dmame1902001v
https://doi.org/10.1016/j.petrol.2017.03.048
https://doi.org/10.1371/journal.pone.0248840

