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Abstract 
Assessing the determinants of reproductive success is critical but often complicated because of complex interactions between parental traits 
and environmental conditions occurring during several stages of a reproductive event. Here, we used a simplified ecological situation—an 
amphibian species lacking post-oviposition parental care—and a laboratory approach to investigate the relationships between parental (both 
maternal and paternal) phenotypes (body size and condition) and reproductive success (fecundity, egg size, embryonic and larval duration, larval 
and metamorphic morphology). We found significant effects of maternal phenotype on fecundity, hatching success, and tadpole size, as well 
as on the duration of larval development. Interestingly, and more surprisingly, we also found a potential contribution of the paternal phenotype 
occurring during early (embryonic development duration) offspring development. Although our study focused on life-history traits such as 
body size and development duration, additional mechanisms involving physiological costs of development may well mediate the relationships 
between parental phenotypes and offspring development. Future studies are required to decipher the mechanisms underlying our findings in 
order to clarify the mechanistic basis of the links between parental phenotypes and offspring development.
Key words: clutch quality, embryonic development, larval development, phenotype, reproductive success.

Assessing the determinants of fecundity and offspring quality, 
and thus reproductive success, remains an essential question 
in evolutionary ecology (Pianka 2011). This is especially the 
case at a time when natural (ancestral) environmental con-
ditions for most species are disrupted by novel, additional 
anthropogenic sources of perturbations (Moore and Waring 
2001; Rhind 2009; Seress and Liker 2015). Indeed, reproduc-
tive success often depends on a variety of parameters which 
include both parental traits and environmental conditions 
where the reproductive event occurs. It is thus critical to 
thoroughly investigate determinants of reproductive success 
across a variety of taxa if we are to understand the conse-
quences of anthropogenic global change on the persistence of 
populations (Dahlhoff et al. 2008; Massot et al. 2008; Loarie 
et al. 2009; Auer and Martin 2013).

Reproductive success is known to be particularly depend-
ent on the quality (with both genetic and environmental 
components, Berg et al. 2019; Salles et al. 2020) of paren-
tal organisms (Kölliker et al. 2014; Ratikainen et al. 2018). 
Such parental quality is expressed through complex inter-
actions between ecology, physiology, and behavior during 
reproduction (Moczek 1998; Bradshaw and McMahon 2008; 
Cauchard et al. 2013). For instance, parental quality can 
influence reproductive success through processes that include 
the selection of suitable reproductive sites, the selection of 
suitable mates, the production of gametes, and the energetic 
investment during embryonic development (Amos et al. 2001; 

Refsnider and Janzen 2010; Cauchard et al. 2013; Kölliker et 
al. 2014; Ratikainen et al. 2018). In addition to these traits 
which occur relatively early during reproduction, other deter-
minants of reproductive success can occur later and are often 
expressed through the parental care to the progeny and the 
quality of the environment where reproduction takes place 
(Clutton-Brock 2019). In many cases, both environmental 
characteristics and parental traits interact to determine repro-
ductive success, sometimes during several stages of a repro-
ductive event (Hoy et al. 2016). As a consequence, it is often 
difficult to tease apart the relative contributions of parental 
(including both maternal and paternal organisms) and envi-
ronmental factors on reproductive success (Ridley 2007; Hoy 
et al. 2016). All of these sources of variation of reproductive 
success and offspring development have been grouped within 
the concept of parental effects with a strong focus on their 
evolutionary consequences (Rollinson and Hutchings 2013; 
Lynch and Lynch 2017). Accordingly, this corpus of literature 
has highlighted that phenotypic correlations between par-
ents and offspring can reflect both parental effects and direct 
genetic correlations between parents and offspring (Amos et 
al. 2001; Fan et al. 2015).

Some ecological situations offer relevant opportunities to 
simplify such complex interactions between environmental 
and parental characteristics. This is typically the case for 
species lacking post-oviposition parental care and that breed 
communally (Heisswolf et al. 2005; Refsnider and Janzen 
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2010). Indeed, such a situation allows to reduce the influence 
of parental organisms to a few simple factors of the repro-
ductive investment, such as the quality of the gametes and the 
energetic investment in the eggs (Ratikainen et al. 2018). In 
such a context, it is thus possible to directly assess how mater-
nal and paternal traits (proxies of individual quality, Wilson 
and Nussey 2010) can affect fecundity and offspring quality, 
and thus reproductive success (Ratikainen et al. 2018).

Amphibians are one such taxa allowing to simplify com-
plex interactions between environmental and parental traits. 
Indeed, many amphibian species lack parental care (Wells 
2010) and lay their eggs communally (i.e., in the same breed-
ing pond, Doody et al. 2009). In these taxa, maternal pheno-
type (e.g., body size, mass, and condition) has been shown 
to positively affect fecundity and egg size (Castellano et al. 
2004) which, in turn, positively affect the subsequent larval 
quality (Laugen et al. 2002; Loman 2002). Interestingly, as in 
most vertebrate species, the influence of paternal phenotype 
on reproductive success has been overlooked to date (Moiron 
et al. 2020; but see Lange et al. 2021), presumably because 
of the predominant role of females for reproduction in most 
systems (Parker and Begon 1986; Caro et al. 2008). Yet, it is 
widely recognized that reproductive success depends on both 
maternal and paternal traits, even in species in which the con-
tribution of paternal organisms to reproduction is reduced 
to the fertilization of the eggs (Brommer and Rattiste 2008; 
Germain et al. 2016). It is thus essential to include paternal 
phenotypes in addition to maternal traits to thoroughly assess 
the effects of parental traits on fecundity and offspring qual-
ity, and thus reproductive success.

In this study, we used a common garden experiment to 
investigate the relationships between parental (both mater-
nal and paternal) phenotypes (body size and condition) and 
reproductive success in an amphibian species that breed com-
munally and lacks post-oviposition parental care, the spined 
toad Bufo spinosus. Pairs of breeding toads (amplexus) were 
captured in the field after that mate selection occurred and 
brought back to the laboratory before egg laying, which 
allowed us to monitor the whole reproductive event (from 
egg laying to metamorphosis) under controlled conditions. 
With such a design, we were able to assess whether maternal 
and paternal phenotypes relate to each other (i.e., indicating 
assortative mating, Chajma and Vojar 2016; but see Green 
2019), and to assess how maternal and paternal phenotypes 
influenced fecundity (number and size of the eggs), embryonic 
development traits (duration, hatching success), and larval 
development traits (duration, body size across key develop-
mental stages) up to metamorphosis (body size, mass, and 
condition). It is important to emphasize that parental trait 
variation can have both a genetic and an environmental com-
ponent and that our study design did not allow to separate 
these effects.

Material and Methods
Study species and sampling
Spined toad B. spinosus is one of the most common amphib-
ian species in western Europe (Trujillo et al. 2017). Breeding 
occurs between late winter and early spring (mid-January to 
late March) depending on the climatic conditions. During 
breeding, adults converge to reproductive ponds where they 
pair and lay their eggs (Brischoux et al. 2018). Both embry-
onic and larval developments occur in reproductive ponds.

Sampling took place in February 2020 in western France. 
Three typical breeding sites (ponds surrounded by a mixture 
of woods and arable lands) were monitored from the onset of 
the breeding season (mid-January). These sites were situated 
close to the laboratory (CEBC, 46°8ʹ 48.64″N; 0°25ʹ30.86″W) 
and considered as a single population (unpublished microsat-
ellites data). Captures were conducted at night using a head-
lamp and toad pairs (hereafter amplexus) were caught using a 
net. We collected a total of 23 amplexus which were brought 
back to the laboratory until laying.

Parental traits and fecundity
At the laboratory, each amplexus was separated and males 
and females were individually weighed (with an electronic 
scale, ± 0.01 g). Each pair was reunited in plastic containers 
(59 × 36 × 28 cm) containing 30 L of dechlorinated tap water, 
a rock, and a branch (for egg attachment). Each amplexus 
was monitored several times a day until the completion of egg 
laying (all pairs successfully laid eggs), which occurred after 
0–7 days (2.54 ± 0.38).

When egg laying was completed, males and females were 
individually weighed and the body size (snout-to-vent length, 
SVL) was measured using a caliper (±0.01 mm). All individ-
uals were released at the site of capture within 1 day after 
laying.

The clutch of B. spinosus is formed by elongated egg strings 
containing 3,000–5,000 eggs (Cheron et al. 2021a). In order 
to assess the fecundity of each amplexus, each egg string was 
placed in a container (35 × 20 × 25 cm) containing 2 cm of 
dechlorinated tap water and a scale (graph paper). A picture 
was taken in order to measure the total length of the egg 
string using ImageJ software (Schneider et al. 2012). For each 
clutch, we randomly selected 5 segments of 10 cm long and 
individually counted the number of eggs within each segment. 
The mean number of eggs per 10-cm segment was calculated 
and used to assess fecundity (number of eggs) for each clutch 
based on the length of the egg strings.

Embryonic and larval development
For each clutch, we randomly subsampled 4 pieces contain-
ing 34 eggs that were kept for our experiment. The remain-
ing eggs were released at their site of origin. Each piece was 
placed in a Petri dish above the graph paper and a picture was 
taken in order to measure the egg size (diameter) using the 
ImageJ software (Schneider et al. 2012). We collected a total 
of 136 values of egg diameter per clutch (34 eggs measured 
for each of the 4 segments of each clutch). Each segment was 
then individually transferred in glass tanks (18 × 13 × 18 cm) 
containing 2  L of dechlorinated tap water (changed every 
week) until hatching. Hatching occurred at Gosner stage 25 
(Gosner 1960) and for each segment, we recorded the dura-
tion of embryonic development and the number of live and 
undeveloped embryos. The 2 later variables were used to 
assess hatching success for each of the 4 segments of each 
clutch.

Upon hatching, we randomly selected 6 tadpoles per clutch 
to monitor the larval development until metamorphosis (N 
= 138 tadpoles). The remaining individuals were released 
at their site of origin. Tadpoles were raised individually in 
glass tanks (18 × 13 × 18 cm) containing 2 L of dechlorin-
ated tap water. During the larval development, tadpoles were 
fed ad libitum with organic chopped spinach, and the water 
was changed every week. We used morphological features to 
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classify developmental stages according to Gosner (1960). We 
selected Gosner stages 25, 30, 37, 41, and 42 (hereafter, GS 
25, GS 30, GS 37, GS 41, and GS 42, respectively) in order to 
monitor larval development (Cheron et al. 2021a). For each 
stage, we measured the total length and tail length follow-
ing Cheron et al. (2021a). Each tadpole was put into a Petri 
dish placed above graph paper with the water from its own 
tank, and photographs were taken from above the Petri dish. 
Morphological measurements were performed with the soft-
ware ImageJ (Schneider et al. 2012).

At metamorphosis (Gosner stage 46, Gosner, 1960), 
toadlets were individually transferred to a plastic box 
(17 × 15 × 9 cm) with a damp paper towel as substrate and 
a shelter. Toadlets were measured (SVL) and weighed 5 days 
after metamorphosis and individuals were then released at 
their site of origin.

All the experiments took place in a thermally controlled 
room with the temperature set at 17°C (both air and water). 
The photoperiod was controlled (12 h dark–12 h light).

Statistical analyses
All data were tested for homogeneity of variance, residual 
independence, and normality with the Bartlett test, Dubin–
Watson test, and Shapiro–Wilks test, respectively. We also 
checked the residue normality using diagnostic plots. All sta-
tistical analyses were carried out with R v.4.0.3(R Core Team 
2019). For variables following normal distribution (fecundity, 
morphological traits, development duration), we used linear 
mixed models (LMER, lm4 package), and for variables fol-
lowing binomial distribution (hatching success), we used gen-
eralized mixed models (GLMER, lme4 package).

Body size and body mass were highly correlated in adult 
individuals as well as in metamorphic toadlets. As a conse-
quence, we quantified a body condition index (BCI) using 
residual scores from the linear regressions between body size 
and body mass independently in males, females, and meta-
morphic toadlets. In all cases, BCI was not correlated to body 
size (all P > 0.355).

First, to quantify the relationships between parental traits 
(SVL and BCI), we used linear models with female traits as 
dependent variables and male traits as explanatory variables.

Second, to study the relation between fecundity (clutch size, 
egg size) and parental traits (SVL, mass, and BCI), we fitted 

linear models with clutch size or egg size as dependent varia-
bles and parental measurements (body size and body condi-
tion) as explanatory variables.

Third, for embryonic development duration (assessed as 
the time elapsed between the date of egg laying and the date 
of hatching), we fitted linear mixed models (LMER, lm4 
package) with development duration as dependant variable 
and parental measurements as explanatory variables (SVL 
and BCI). We used generalized mixed models (GLMER, lme4 
package) to investigate the relationships between hatching 
success (binomial distribution) and parental traits. In all 
cases, we used clutch identity as a random effect.

Fourth, to test whether there was a relation between paren-
tal traits and larval development, we used repeated measures 
analyses. Larval development traits (total length or days 
elapsed between Gosner stages) were used as dependant var-
iables and egg size or parental traits (female or male SVL, 
female or male BCI) as explanatory variables in interaction 
with Gosner stages. In all models, we used tadpole identity 
nested within clutch identity as a random effect. We per-
formed post hoc analyses using emmeans package (emtrends 
function) to test for statistical differences in slope at each 
stage.

Finally, to test whether there was a relation between paren-
tal traits and toadlet life-history traits, we fitted several lin-
ear mixed models with toadlet SVL, BCI, or body mass as 
dependent variables and egg size or parental traits (SVL and 
BCI) as explanatory variables.

Results
Relationships between parental traits
We did not find any relationship between male and female 
body size (F1,21= 0.016, P = 0.969), body mass (F1,21= 0.122, P 
= 0.730), or body condition (F1,21= 0.018, P = 0.966).

Parental determinants of fecundity and egg size
SVL and BCI were positively related to clutch size in females 
(SVL F1,21= 9.782, r² = 0.285, P = 0.005 and BCI F1,21= 10.46, 
r² = 0.332, P = 0.004, Figure 1), but not in males (SVL F1,21= 
0.318, P = 0.579 and BCI F1,21= 9.99, P = 0.881, Figure 1).

The size of the eggs was neither related to female or male 
traits (all P > 0.307) nor to clutch size P = 0.286).

Figure 1. Relationships between (A) female or (B) male body size (SVL, mm) and fecundity (clutch size). Gray shading indicates 95% confidence 
intervals.
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Parental influences during embryonic development
Hatching success varied between clutches (χ2 = 379.50, df = 
22, P < 0.001, range 0.35–0.99) but not within clutches (χ2 = 
0.740, df = 3, P = 0.864). Eggs size and embryonic develop-
ment duration were not related to hatching success (respec-
tively, F1,3126 = 2.158, P = 0.141 and F1,3126 = 1.035, P = 0.307). 
Finally, we found no relationship between eggs size and 
embryonic development duration (F1,21 = 0.304, P = 0.587).

Hatching success was not related to female or male SVL 
(respectively, χ2 =0.439, df = 1, P = 0.598; χ2 =3.053, df = 1, 
P = 0.081). Hatching success was marginally positively linked 
to female BCI (χ2 =3.579, df = 1, P = 0.059, Figure 2), but not 
to male BCI (χ2 =1.249, df = 1, P = 0.264, Figure 2).

Embryonic development duration was not related to female 
SVL (F1,22 = 2.166, P = 0.155, Figure 3) but was marginally 
negatively correlated to male SVL (F1,22 = 3.585, P = 0.072, 
Figure 3). Neither female nor male BCI influenced embryonic 
development duration (respectively, F1,22 = 1.015, r² = 0.046, 
P = 0.325; F1,22 = 1.811, r² = 0.046, P = 0.193).

Parental influences during larval development
Overall, the total length of tadpoles increased through time 
(F2,274 = 7139.2, P < 0.001). We did not find any relation 
between tadpole total length and egg size, female and male 
SVL, or male body condition (all P > 0.109). However, we 

found that female BCI was related to tadpole size through-
out ontogeny (BCI × Stages: F2,271 = 10.09, P < 0.001, Figure 
4). Post hoc analyses showed that female BCI was negatively 
related to the total length of tadpoles at GS30 (F1,30 = 5.324, P 
= 0.028, Figure 4) and GS37 (F1,30 = 8.420, P = 0.007, Figure 
4) but not GS25 (F1,30 = 1.121, P = 0.298, Figure 4).

Neither female SVL, male SVL, nor egg size was related to 
the total duration of larval development (from GS 25 to GS 
46, all P > 0.660). However, female BCI was positively related 
to the total duration of larval development (from GS 25 to 
GS 46, F1,20 = 5.763, P = 0.026). When focusing our analysis 
to the days between stages, we found a similar result (BCI × 
Stage: F4,535 = 3.72, P = 0.006, Figure 5). More specifically, 
post hoc analyses showed that females in better condition 
produced tadpoles that developed less rapidly between GS 30 
to GS37 (F1,192 = 6.355, P = 0.013, Figure 5) and between 
GS41 and GS42 (F1,19 = 14.525, P = 0.002 Figure 5). Other 
parental traits were not correlated to either total duration of 
larval development or duration of each Gosner stage (all > 
0.660).

Parental influences on toadlets
Toadlet SVL was not influenced by parental traits (all P > 
0.445). Parental traits did not influence the body mass of met-
amorphic individuals (all P > 0.410). We found a marginal 

Figure 2. Relationships between (A) female or (B) male body condition and hatching success. Grey shading indicates 95% confidence intervals.

Figure 3. Relationships between (A) female or (B) male body size (SVL, mm) and embryonic development duration (days). Gray shading indicates 95% 
confidence intervals.
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positive relation between egg size and toadlet body mass (F1,89 
= 3.358, P = 0.070). Toadlet BCI was not related to parental 
traits (all P > 0.753) but we found a positive relation between 
egg size and toadlet BCI (F1,70 = 4.618, P = 0.035 Figure 6).

Discussion
In this study, we investigated the effects of both maternal and 
paternal phenotypes on embryonic and larval development 
in an amphibian species. Importantly, we did not find size-re-
lated assortative mating in our study species (see also Marco 
and Lizana 2002). As expected, we found significant effects of 
maternal phenotype on fecundity, hatching success, and tad-
poles size, as well as on the duration of larval development. 

Interestingly, and more surprisingly, we also found a margin-
ally significant contribution of the paternal phenotype occur-
ring during early (embryonic development duration) offspring 
development. It is also important to highlight that phenotypic 
correlations between parents and offspring can reflect both 
parental effects and direct genetic correlations between par-
ents and offspring. Although the effects of parental phenotype 
are likely influenced by the environment, part of the variation 
related to offspring traits can be of genetic origin. Parental 
trait variation can have both a genetic and an environmental 
component, and our study design did not allow to separate 
these effects. In addition, maternal (or paternal) phenotypic 
effects in the current study (where adults are not reared in a 
common garden and offspring are full sibs) can reflect genetic 
dominance and/or parental effects (Hunt and Simmons 2002; 
Wolf and Wade 2009; Martin and Pfennig 2010; Hwang et al. 
2020). Future common garden studies are required in order 
to disentangle genetic and environmental sources of parental 
phenotype effects (Rowiński et al. 2020).

We found that fecundity was strongly linked with mater-
nal life-history traits (size and condition). As expected, clutch 
size was positively related with female body size and body 
condition, indicating that larger and bigger females laid a 
higher number of eggs. Such positive effect of female size 
and condition on fecundity is a widespread relationship that 
has already been highlighted in amphibians (Gibbons and 
McCarthy 1986; Castellano et al. 2004) as well as in other 
taxa (Hines 1988; Blackmore and Lord 2000).

Egg size was, however, not related to parental phenotypes 
and not related to clutch size. Such a result contrasts with the 
classical trade-off between egg number and egg size that has 
been found in amphibians (Gould et al. 2022) as well as in 
other taxa (Jørgensen 1984; Berven 1988; Elgar 1990). The 
lack of relationships between parental phenotypes or fecun-
dity and egg size can plausibly be related to the fact that our 
methodology did not allow to capture subtle but significant 
variations in egg size (but see the relationship between egg 
size and toadlet condition in Figure 6). Future studies are 
required to investigate the determinants of egg size in this spe-
cies and to complement our approach which failed to identify 
such factors.

Figure 4. Relationships between female body condition and tadpole size 
(total length, cm) across 3 main developmental stages (GS25, GS30, 
and GS37 according to Gosner [1960]). Gray shading indicates 95% 
confidence intervals.

Figure 5. Relationships between female body condition and duration 
of larval development between key developmental stages according to 
Gosner (1960). GS30 indicates the time elapsed between GS25 and GS 
30; GS37 indicates the time elapsed between GS30 and GS 37; GS41 
indicates the time elapsed between GS37 and GS 41; GS46 indicates 
the time elapsed between GS41 and GS 46. Gray shading indicates 95% 
confidence intervals.

Figure 6. Relationship between egg size (mm) and toadlet body 
condition. Gray shading indicates 95% confidence intervals.
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We found that females in better condition produced 
clutches with greater hatching success. In this species and 
its close relative B. bufo (Trujillo et al. 2017), hatching suc-
cess has been either related to fertilization success (Touzot et 
al. 2020) or to embryonic mortality (Cheron et al. 2021b). 
Our result demonstrates that the quality (body condition) of 
females positively influenced embryonic survival while our 
analyses revealed that male phenotype does not significantly 
affect hatching success. This result also reinforces the fact 
that, in this species, hatching success can be used as an index 
of clutch quality (Cheron et al. 2021b).

Interestingly, although our analysis does not reveal an influ-
ence of male traits on fertilization success (see above), we found 
that the eggs fertilized by larger males produced embryos that 
tend to develop quicker. The mechanisms underlying such 
intriguing result remain unknown and deserve specific investi-
gations. Yet, it is likely that this effect is mediated through the 
quality of the sperm produced by larger—presumably older—
males (Gasparini et al. 2010; Roth et al. 2010). Although 
age-dependent sperm quality in amphibian species is expected 
to decrease through senescence (Hettyey et al. 2012), a study 
found that older males displayed the same fertilization capac-
ity (e.g., motility and concentration) as younger males (Watt 
et al. 2021). In addition, it has also been shown that younger 
males produced more atypical spermatozoa than older males 
(Watt et al. 2021). Other complementary mechanisms could 
potentially involve size-specific macromolecular composition 
of spermatozoa affecting the duration of the first steps of fer-
tilization (e.g., acrosome composition, chromatin unpacking) 
and/or the embryonic development (Gusseck and Hedrick 
1971; Lohka and Masui 1983; Carroll Jr et al. 1991). Finally, 
we cannot rule out possible genetic effects (Rowiński et al. 
2020) as our study did not allow to disentangle environmen-
tal parental effects from direct genetic effects. Future studies 
are required to precisely identify the mechanisms that link 
paternal size, sperm quality, and embryonic development 
duration. Such paternal influence on embryonic development 
duration may be critical to the survival of minute and immo-
bile embryos that are susceptible to predation (Zamudio et al. 
2016). Furthermore, longer embryonic development may also 
induce carry-over effects on the following larval stage dura-
tion, a potentially deleterious consequence if spawning takes 
place in ephemeral water bodies.

Parental phenotypes continued to influence offspring 
development during larval stages. Specifically, female body 
condition was positively related to the total duration of lar-
val development. This suggests that larvae originating from 
larger clutch took more time to successfully develop up to 
metamorphosis. Stage-specific durations demonstrated that 
these effects occurred at 2 different key stages of larval devel-
opment, namely somatic growth (GS30 to GS37, Cheron 
et al. 2021a) and onset of metamorphosis (GS41 to GS42, 
Cheron et al. 2021a). Interestingly, this effect was supported 
by the negative relationship we found between female body 
condition and tadpole size during larval somatic growth 
(GS30 and GS 37, Cheron et al. 2021a). Again, tadpoles that 
originated from larger clutch were smaller during somatic 
growth. Surprisingly, we failed to detect such effects dur-
ing later phases of larval development, and 2 different but 
nonmutually exclusive hypotheses could explain this lack of 
longer term effects. First, later larval phases correspond to 
critical phases dedicated to the onset of metamorphosis. The 
remarkable modifications of tadpole morphology, behavior, 

and physiology (Cheron et al. 2021a) during such stages may 
have obscured such effect. Second, it is plausible that mech-
anisms of compensatory growth may have allowed smaller 
tadpoles to reach similar body size than their counterpart 
originating from smaller clutch (Hector et al. 2012). Such 
compensatory growth is likely to occur, as tadpoles need to 
reach a minimal size to successfully complete metamorpho-
sis (Wilbur and Collins, 1973). Although we lack behavioral 
data (e.g., feeding rates, activity level, Cheron et al. 2021a) to 
test for this hypothesis, future studies should usefully inves-
tigate whether tadpole behavior could compensate for lower 
growth rates during early phases of larval development and 
whether such putative effects are mediated by parental phe-
notypes and/or genotypes.

Finally, we failed to detect any link between parental 
traits and the life-history traits of toadlets during their first 
days of terrestrial life. As stated above, the remarkable mod-
ifications of tadpole morphology, behavior, and physiology 
(Cheron et al. 2021a) during and following metamorpho-
sis may have negatively affected our ability to detect such 
effects. It is also plausible that the characteristics of embry-
onic and larval development may carry over later in life 
(Bouchard et al. 2016; Garcia et al. 2017; DiGiacopo and 
Hua 2020; Ruthsatz et al. 2020; Zeitler et al. 2021), and 
future studies investigating longer term effects of parental 
phenotypes on young toadlets up to adult life may usefully 
reveal functional links between parental quality and off-
spring development (Parker and Begon 1986; Ensminger 
et al. 2018). In contrast, we found a strong relationship 
between egg size and toadlet body condition (and to a 
lesser extent body mass). This relation is puzzling in light 
of the lack of relationship we highlighted between egg size 
and embryonic and larval development traits. This further 
indicates that egg size can bear long-term consequences in 
this study species as the body size of metamorphic individ-
uals can affect their survival (Semlitsch et al. 1988). Future 
studies are required to investigate the determinants of egg 
size in this species and to complement our approach which 
failed to identify such factors.

To conclude, our study sheds light on the contribution of 
both maternal and paternal phenotypes on fecundity and 
offspring phenotype and performance in a study species 
lacking parental care. As expected, we found significant 
effects of maternal phenotype on fecundity, hatching suc-
cess, and hatchling size, as well as on the duration of lar-
val development. Interestingly, we also found a potential 
contribution of the paternal phenotype occurring during 
early (embryonic development duration) offspring devel-
opment. This is especially interesting as, in amphibians, the 
role of fathers has often been reduced to egg fertilization 
(Kouba et al. 2009; Byrne and Silla 2020). Although our 
study focused on life-history traits such as body size and 
development duration, additional mechanisms involving 
physiological costs of development (e.g., telomere attrition, 
oxidative status, Saino et al. 2005; Burraco et al. 2017) 
may well mediate, at least in part, the relationships between 
parental phenotypes and offspring development (Wells 
2014; Van Leeuwen et al. 2015). The potential underlying 
costs of development may bear strong consequences later 
in life (Burraco et al. 2020). Clearly, future studies should 
investigate the mechanisms underlying our findings in 
order to clarify the mechanistic basis of the links between 
parental phenotypes and offspring development.
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