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Abstract
Gynaephora (Lepidoptera Erebidae: Lymantriinae) is a small genus, consisting of 15 nom-

inated species, of which eight species are endemic to the Qinghai-Tibetan Plateau (QTP).

In this study, we employed both mitochondrial and nuclear loci to infer a molecular phylog-

eny for the eight QTP Gynaephora spp. We used the phylogeny to estimate divergence

dates in a molecular dating analysis and to delimit species. This information allowed us to

investigate associations between the diversification history of the eight QTP species and

geological and climatic events. Phylogenetic analyses indicated that the eight QTP spe-

cies formed a monophyletic group with strong supports in both Bayesian and maximum

likelihood analyses. The low K2P genetic distances between the eight QTP species sug-

gested that diversification occurred relatively quickly and recently. Out of the eight spe-

cies, five species were highly supported as monophyletic, which were also recovered by

species delimitation analyses. Samples of the remaining three species (G. aureata, G.

rouergensis, and G.minora) mixed together, suggesting that further studies using exten-

sive population sampling and comprehensive morphological approaches are necessary to

clarify their species status. Divergence time estimation results demonstrated that the di-

versification and speciation of Gynaephora on the QTP began during the late Miocene/

early Pliocene and was potentially affected by the QTP uplift and associated climate

changes during this time.

Introduction
The Qinghai-Tibetan Plateau (QTP) is the highest (approximately 4500 m above sea level (asl)
on average) and one of the most extensive (2.5 × 106 km2) plateaus on Earth [1]. The QTP is an
economically important region for animal husbandry and is also a biodiversity hotspot [2].
The uplift of the QTP is thought to have begun with the Indian-Eurasian collision about 50
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million years ago (Ma) [3–5] and the QTP has gone through several uplift events since the
Miocene period (~23 Ma). The emergence of the QTP has largely re-shaped the climate system
of central and eastern Asia and produced complex habitats [6–8]. It is widely accepted that the
dramatic climatic and environmental shifts caused by the uplift of the QTP are the most impor-
tant drivers of genetic diversity and divergence patterns in many species in the region [9–12].
Therefore, the QTP has been recognized as a natural laboratory for the study of speciation
and biogeography.

Recently, molecular data have been widely used to reconstruct phylogenetic relationships
among various taxonomic levels, and to explore the causal correlations between speciation and
geological events. Several studies of this nature have been conducted on QTP species, including
fishes [13–16], plants [9,10,17–21], amphibians [22–25], birds [26], and mammals [27–29].
These studies suggest that speciation events within these groups occurred during several uplifts
of the QTP since Miocene (~23 Ma). Most of this previous work has focused on patterns of di-
versification in plant and vertebrate species, but invertebrates (e.g., insects) tend to have differ-
ent life history characteristics (e.g., high population density and short life history) that result in
unique patterns of diversification and evolution [30]. The potential effects of the QTP uplift on
speciation in QTP insects have never been studied.

The genus Gynaephora (Insecta: Lepidoptera: Erebidae: Lymantriinae), also known as grass-
land caterpillars, was described by Hübner (1822), and the type species is Gynaephora selenitica
Esper (1783). Currently, this genus contains 15 species, mainly distributed in mountainous
areas of the Northern Hemisphere and the Arctic tundra [31,32]. In China, only one species
(G. alpherakii) was known before the 1970s, but seven species were recently described by Chou
and Ying (1979) and Liu et al. (1994) based on morphological characteristics [33,34]. The
Gynaephora species of China are endemic to the QTP (Table 1), and are among the most dam-
aging insect pests to the flora of the QTP alpine meadows [32]. In 2003, the grassland areas
damaged by grassland caterpillars were over one million hm2 in Qinghai Province of China,
leading to the loss of over 90 million CNY [32]. During outbreaks, larvae populations (general-
ly 200–500/m2, but the number may exceed 1,000/m2) can devour all aboveground herbage,
leading to serious shortage of fodder, changing plant community structure, aggravating grass-
land degeneration and environmental deterioration, and increasing the mortality rate of over-
wintering livestock and wildlife [32]. More importantly, the cocoons of grassland caterpillars
remain in the meadow and can cause skin irritations and blisters, which result in mouth sores
and broken tongue disease in domestic animals and wildlife, preventing the animals from for-
aging and eventually leading to their death [35].

Studies on grassland caterpillars are limited, in spite of their impact on the QTP economy
and ecology [32]. Several new Gynaephora species have been described since 1979, but the phy-
logeny and evolutionary history of these species have never been estimated. Furthermore, it is
crucial to examine whether the current taxonomy of these eight species can be recovered by
molecular approaches, as most species have very similar morphological characteristics. These
information can be used to gain insight into the speciation process and to make effective pest
management strategies.

In this study, we used both mitochondrial and nuclear loci to investigate the molecular phy-
logeny and diversification history of the eight Gynaephora spp. endemic to the QTP. The spe-
cific goals of this study were to: (1) assess the taxonomic status of currently recognized
Gynaephora species on the QTP, (2) investigate the phylogenetic relationships among the eight
species of Gynaephora in China, and (3) examine associations between the diversification his-
tory of the eight QTP species and geological events that formed the QTP.
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Materials and Methods

Ethics statement
No specific ethics permits were required for the described studies. The insect specimens were
collected from alpine meadow of the QTP. No specific permissions were required for these lo-
cations/activities. The species in our study are agricultural pests and are not included in the
‘‘List of Protected Animals in China”.

Sample collection
A total of 145 Gynaephora specimens were collected from 15 sampling localities (S1 Table), in-
cluding all eight described species that occur on the QTP. All specimens were collected in the
field and immediately frozen in liquid nitrogen, and stored at -80°C. The habitat features for
each Gynaephora species endemic to the QTP are shown in Table 1. Two species (Hyphantria
cunea and Estigmene acrea) from Arctiinae and four species (Lymantria dispar, L.monacha,
Orgyia antique and O. leucostigma) from Lymantriinae were chosen as outgroup taxa in phylo-
genetic analyses (S1 Table). Recent molecular phylogenetic analyses have indicated that the
subfamilies Lymantriinae and Arctiinae are within Erebidae [36]. We also included three non-
QTP Gynaephora spp. (G. selenitica, G. rossii, and G. groenlandica) to infer the phylogenetic re-
lationships within the genus Gynaephora. DNA sequences of outgroup taxa were attained from
GenBank (S1 Table). There is no molecular data available from GenBank for the remaining
four Gynaephora spp. These species have not been reported recently and are endemic to Eu-
rope, Russia and Hindu Kush Mountain (G. lugens), Altai Plateau of Russia (G. pumila), Pa-
mirs, Kunlun Montain and Ukraine (G. selenophora), and West of Pamirs (G. sincera) [31].

DNA extraction, PCR and sequencing
Total genomic DNA was extracted from individual specimens using the Genomic DNA Extrac-
tion Kit (TIANGEN, Beijing, China) according to the manufacturer’s protocol. We amplified

Table 1. Original descriptions, type localities, and distributions of theGynaephora species endemic to the Qinghai-Tibetan Plateau.

Species Original
paper

Type locality* Distribution, habitat & altitude #

Gynaephora alpherakii
Grum-Grschimailo

[74] Amdo County, Tibet Montane meadow; Tibet; ~5000 m asl

G. qinghaiensis Chou et
Ying

[33] Yushu County,
Qinghai Province

Montane meadow; widely distributed in Tibet, Qinghai Province, Sichuan Province,
and Gansu Province; from 3000 to 4000 m asl

G. aureata Chou et Ying [33] Zeku County, Qinghai
Province

Montane meadow; widely distributed in Qinghai Province and Gansu Province; ~
3500 m asl

G. menyuanensis Yan et
Chou

[34] Menyuan County,
Qinghai Province

Montane meadow; mainly distributed in the North of Qinghai Province and the
Southwest of Gansu Province; no hydrotaxis; from 2900 to 3700 m asl

G. ruoergensis Chou et
Ying

[33] Ruoergai County,
Sichuan Province

Montane meadow; restricted to the Ruoergai Grassland of Sichuan Province; ~
3500 m asl

G. minora Chou et Ying [33] Ruoergai County,
Sichuan Province

Montane meadow; restricted to the Ruoergai Grassland of Sichuan Province; ~
3500 m asl

G. qumalaiensis Yan et
Chou

[34] Qumalai County,
Qinghai Province

Montane meadow; restricted to Qumalai County, Zhiduo County, and Zaduo
County of Qinghai Province; hydrotaxis; from 4000 to 4500 m asl

G. jiuzhiensis Yan et Chou [34] Jiuzhi County, Qinghai
Province

Montane meadow; restricted to Jiuzhi County, Dari County, and Gande County of
Qinghai Province; hydrotaxis; from 3600 to 4000 m asl

* The type locality of Gynaephora are cited from original paper, expect for G. alpherakii whose type locality is from [74].
# The information is cited from [34] and [31].

doi:10.1371/journal.pone.0127257.t001
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and sequenced partial sequences of two mitochondrial genes (mitochondrial cytochrome oxi-
dase subunit 1 [COI] and NADH dehydrogenase subunit 5 [ND5]) and two nuclear genes
(glyceraldehyde-3-phosphate dehydrogenase [GAPDH] and elongation factor 1-alpha [EF-
1α]) for all 145 individuals (S1 Table). Universal insect primers for COI and two nuclear genes
were obtained from [37] and [38], respectively, and Gynaephora-specific ND5 primers were
designed in this study (Table 2). Each PCR reaction was performed in a total volume of 25 μL,
containing 2.5 μL of 10x PCR reaction buffer (with Mg2+), 1.5 μL of dNTPs (each 2.5 mM),
1.5 μL of each of two primers (20 μM), 2 μL of the extracted DNA, 0.2 μL Taq DNA polymerase
(5 U/μL, TAKARA), and 16.8 μL of distilled water. The PCR conditions were as follows: 94°C
for 5 min, 35 cycles of 94°C for 30 s, a primer-specific annealing temperature of 46–50°C
(Table 2) for 50 s, 72°C for 50 s, and a final extension at 72°C for 10 min. All PCR products
were separated by electrophoresis on a 1.2% agarose gel, purified with a DNA gel purification
kit (Omega, USA), and sequenced in both directions on an ABI3730 automated sequencer
(Sangon Biotech, Shanghai, China). The PCR primers were also used for sequencing.

Sequence data exploration
DNA sequences were aligned for each gene, independently using ClustalW (codons) imple-
mented in MEGA 5.10 [39] with the default parameters. Sequences were examined for the pres-
ence of stop codons or indels, which could reveal pseudogene sequences. Identical haplotypes
were collapsed using DNASP 5.10 [40]. For each gene, transitions and transversions were plot-
ted against sequence divergence in DAMBE 5.0.59 [41] to evaluate the possibility of sequence
saturation. Since there was no evidence of saturation in the gene sequences, all codon positions
were included in the analyses. The numbers of haplotypes and standard diversity indices [hap-
lotype (h) and nucleotide (π) diversities] for each gene were estimated using DNASP 5.10 [40].
The pairwise genetic distances between species were calculated in MEGA 5.10 [39] with a
Kimura 2-parameter (K2P) model.

Phylogenetic analyses
Maximum likelihood (ML) and Bayesian inference (BI) phylogenetic trees were estimated for
each individual mitochondrial gene, the combined mitochondrial gene dataset (COI and
ND5), the combined nuclear gene dataset (EF-1α and GAPDH), as well as a concatenated data-
set of all of the genes. The PartitionFinder 1.1.1 [42] was used to find the best partitioning
schemes and corresponding nucleotide substitution models for each dataset. We defined data
blocks based on genes and/or codon positions, and used the Bayesian information criterion

Table 2. PCR primers used in the present study.

Gene name Primer name Primer sequence (5'-3') Annealing temperature (°C) Reference

COI LCO1490 GGTCAACAAATCATAAAGATATTGG 46 [37]

HC02198 TAAACTTCAGGGTGACCAAAAAATCA [37]

ND5 ND5-F CCCCCTATATAACGAATATCTTG 46 This study

ND5-R TTAGGTTGGGATGGTTTAGG This study

GAPDH GAPDH-F TAATACGACTCACTATAGGGAARGCTGGRGCTGAATATGT 48 [38]

GAPDH-R ATTAACCCTCACTAAAGGWTTGAATGTACTTGATRAGRTC [38]

EF-1α EF1-F TAATACGACTCACTATAGGGCACATYAACATTGTCGTSATYGG 50 [38]

EF1-R ATTAACCCTCACTAAAGCATRTTGTCKCCGTGCCARCC [38]

EF2-F TAATACGACTCACTATAGGGGAGGAAATYAARAARGAAG 50 [38]

EF2-R ATTAACCCTCACTAAAGACAGCVACKGTYTGYCTCATRTC [38]

doi:10.1371/journal.pone.0127257.t002
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(BIC) and the ‘‘greedy” algorithm with branch lengths estimated as ‘‘unlinked” to search for
the best-fit scheme (S2 Table). The best-fit partitioning schemes and models determined by
PartitionFinder were used for the subsequent analyses. Both BI and ML tree constructions
were performed on the CIPRES Science Gateway 3.3 [43]. ML analyses were conducted with
RAxML-HPC2 on XSEDE 8.0.24 [44] using GTRGAMMAmodel, and 1,000 bootstraps (BS)
were used to estimate the node reliability. BI analyses were performed with MrBayes 3.2.3 [45]
on XSEDE. For each dataset, two independent analyses starting from different a random tree
were run in parallel for ten million generations, sampling every 1,000 generations. Stationarity
is considered to be reached when ESS (estimated sample size) value is above 100 and PSRF (po-
tential scale reduction factor) approach 1.0 as MrBayes 3.2.3 suggested [45]. The first 25% of
samples were discarded as burn-in, and the remaining trees were used to calculate posterior
probabilities (PP) in a 50% majority-rule consensus tree.

Species delimitation
We conducted species delimitation analyses using three datasets (the COI dataset, the ND5
dataset, and the mitochondrial gene dataset) with the following two approaches. First, we used
Automatic Barcode Gap Discovery (ABGD) [46] to discover candidate species. This method is
an automatic procedure to partition the dataset into putative species based on the barcode gap
without an a priori species hypothesis [46]. We submitted three datasets to the ABGD online
website (http://wwwabi.snv.jussieu.fr/public/abgd/abgdweb.html), and run with the default pa-
rameters. Both Jukes-Cantor (JC69) and Kimura (K80) models were tested.

A second species delimitation analysis was performed with the Poisson Tree Processes
(PTP) including bayesian implementation of the model [47]. Analyses were conducted on the
bPTP web Server (http://species.h-its.org/ptp/) using rooted phylogenetic trees from RAxML
analyses. We used the following parameters: MCMC, 500,000 generations; Thinning, 100;
Burnin, 0.1; Seed, 123; and removed outgroups.

Molecular dating
Divergence times in the Gynaephora phylogeny were estimated using the four gene dataset in
BEAST 1.8.0 [48] on the CIPRES Science Gateway 3.3 [43]. As there is no reliable lymantriine
fossil record that could be used to calibrate the tree, the secondary calibration approach was
used with caution here. To use the temporal framework of Toussaint et al. [49] andWahlberg
et al. [50], additional 33 taxa from the families Erebidae and Nolidae were included in our data-
set (S1 Table). For Nolidae, six taxa were taken from Toussaint et al. [49] andWahlberg et al.
[50]. For Erebidae, additional 27 taxa representing seven subfamilies were selected according
to the results of recent molecular phylogenetic analyses of Erebidae [36]. Two temporal con-
straints were imposed on the tree to estimate the divergence time. Both were obtained from
Wahlberg et al. [50], which utilized six fossil calibrations and one secondary calibration point
with extensive taxa sampling and accounted for uncertainty around each point. The crown
ages of both Erebidae and Nolidae were set as a normal distribution with a mean of 55 Ma and
a standard deviation of 5 Ma.

The BEAST.xml files were created in BEAUti 1.8.1 [48] with the following settings: the “Site
Model” was set as GTR+I+G model proposed by the jModeltest 2.1.3 [51], the “Clock Model”
was set to a strict clock or a relaxed-clock with uncorrelated rates, the “Tree Models” were set
to a Yule or Birth-Death process of speciation, the MCMC chain length was set to 3 × 109 gen-
erations with a 10% burn-in, and the remaining parameters used default settings. BEAST anal-
yses were repeated three times. The best fit models for “Clock model” and “Tree model” were
selected with a Bayes Factor (BF) approach, and the log marginal likelihood values were
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calculated using path sampling (PS, [52]) and stepping-stone sampling (SS, [53]) [54,55].
Chain convergence was assessed by examining the effective sample size (ESS) of parameters
with Tracer 1.5 (http://tree.bio.ed.ac.uk/software/tracer/). The 95% highest posterior densities
(95% HPD) and 50% majority rule consensus trees were summarized using TreeAnnotator
1.8.1 [48]. Trees were visualized using the FigTree 1.4.2 (http://tree.bio.ed.ac.uk/software/
figtree/).

Results

Sequence data
We obtained 3,196 bp sequences for each individual, including 1,271 bp mitochondrial (COI,
658 bp; ND5, 613 bp) and 1,925 bp nuclear (GAPDH, 685 bp; EF-1α, 1,240 bp) sequences
(Table 3, S1 Table). A total of 580 sequences were deposited in GenBank under accession num-
bers KF887501–KF887904 and KP419744–KP419919 (S1 Table). No length polymorphisms or
stop codons were observed in the four protein-coding genes in any of the studied specimens.
Sequence polymorphism data for each gene were presented in Table 3. Compared to the two
mitochondrial genes, two nuclear genes showed markedly low genetic polymorphisms, with
only 16 variable sites and 13 parsimony informative sites.

A total of 12, 12, 10, and 10 haplotypes were identified in COI, ND5, GAPDH, and EF-1α
sequences, respectively (Table 3, S1 Table). Some of the haplotypes were shared between differ-
ent species, and this was especially evident in the two nuclear genes. When the four gene se-
quences were combined, a total of 58 unique haplotypes were identified. These haplotypes
were unique to species, except for three haplotypes which were shared between G. rouergensis
and G.minora (S1 Table). The K2P genetic distances between pairs of species were listed in
Table 4. The K2P distance values of COI between G. selenitica and other Gynaephora spp. were
the highest (8.96–11.03%), and the lowest value (0.29%) was found between two QTP species
(G. ruoergensis and G.minora). For the combined four gene dataset, the K2P distances among
the eight QTP Gynaephora spp. were markedly low (0.10–1.78%).

Phylogenetic relationships
Phylogenetic analyses with five datasets and two inference methods resulted in almost identical
tree topologies, with slight differences occurring in some nodes poorly supported and BI trees
having higher supports for internal branches (Fig 1, S1 and S2 Figs). The eight Gynaephora
spp. from the QTP formed a strongly supported monophyletic group in all BI and ML trees
(PP = 0.99–1.0, BS = 100). The analyses based on the combined nuclear dataset generated

Table 3. Sequence polymorphism data.

Dataset N Size (bp) VS (%) PIS (%) n h ± SD π ± SD (%)

COI 145 658 47 (7.14) 46 (6.99) 12 0.895 ± 0.007 2.457 ± 0.054

ND5 145 613 34 (5.55) 34 (5.55) 12 0.899 ± 0.007 1.931 ± 0.045

GAPDH 145 685 8 (1.17) 7 (1.02) 10 0.707 ± 0.032 0.155 ± 0.011

EF-1α 145 1,240 8 (0.65) 6 (0.48) 10 0.681 ± 0.026 0.083 ± 0.007

Mitochondrial dataset (COI + ND5) 145 1,271 81 (6.37) 80 (6.29) 21 0.922 ± 0.008 2.203 ± 0.047

Nuclear dataset (GAPDH + EF-1α) 145 1,925 16 (1.66) 13 (0.78) 26 0.877 ± 0.017 0.109 ± 0.006

Combined gene dataset (COI + ND5 + GAPDH + EF-1α) 145 3,196 97 (3.54) 93 (2.97) 58 0.974 ± 0.004 0.942 ± 0.020

N, number of individuals sequenced; VS, variable sites; PIS, parsimony information sites; n, number of different haplotype; h, haplotype diversity; and π,

nucleotide diversity.

doi:10.1371/journal.pone.0127257.t003
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poorly resolved trees, and none of the eight Gynaephora spp. were supported as monophyletic,
potentially caused by the limited number of parsimony informative sites (Table 3). Phylogenet-
ic analyses of ND5 produced relatively good resolution, but only four of the Gynaephora spp.
were recovered as monophyletic group in both BI and ML analyses (PP = 1.0, BS = 85–100; S1
and S2 Figs), as found in the BI tree of the COI dataset (PP = 1.0, S1 Fig). In the ML tree of the
COI dataset, five monophyletic groups were found, but G. jiuzhiensis and G. qumalaiensis were
recovered as sister-species with low support (BS = 42, S2 Fig). Analyses of both the mitochon-
drial gene dataset and the four gene combined dataset yielded well-resolved clades with good
support (Figs 1a and 1b, S1 and S2 Figs). The eight recognised Gynaephora species on the QTP
were resolved as two main clades (Fig 1, S1 and S2 Figs). One clade was composed of five spe-
cies: G. alpherakii, G.menyuanensis, G. aureata, G. rouergensis, and G.minora, and the other
clade contained three species: G. qinghaiensis, G. qumalaiensis, and G. jiuzhiensis. Five mono-
phyletic clades with strong supports (PP� 0.99, BS� 80) corresponded to five currently recog-
nized species. However, three Gynaephora spp. (G. aureata, G. rouergensis and G.minora)
were paraphyletic and divided into two clades (Clades A and B; Fig 1). These three species are
closely related to G.menyuanensis (PP = 1.0, BS = 99; Fig 1, S1 and S2 Figs). G. alpherakii is sis-
ter to the other species in the same clade (PP = 1.0, BS = 99; Fig 1, S1 and S2 Figs). G. qin-
ghaiensis and G. jiuzhiensis are more closely related to each other (PP = 0.99, BS = 91; Fig 1, S1
and S2 Figs) than to G. qumalaiensis.

Species delimitation
The ABGD analyses for the three datasets yielded variable group numbers, depending on dif-
ferent prior threshold, JC69 or K80 distance model, and initial or recursive partitions (Table 5).
When two mitochondrial genes were combined together, the ABGD analyses resulted in a sta-
ble group count (6) with a range of prior intraspecific values (P = 0.0010–0.0077) in both initial
and recursive partitions. Among the six groups, five corresponded to the morphologically rec-
ognised Gynaephora species (S3 Table). The remaining one group consisted of three species
(G. aureata, G. ruoergensis, and G.minora), and could be further divided into two groups (i.e.,
Clades A and B in the phylogenetic analyses) by some ABGD analyses only for the COI dataset
(S3 Table).

Table 4. Means of Kimura 2-parameter genetic distances (%) betweenGynaephora.

Species 1 2 3 4 5 6 7 8 9 10 11

1 G. alpherakii 0 1.28 1.48 1.27 1.22 1.42 1.35 1.21 – – –

2 G. aureata 3.46 0.35 1.49 0.50 0.15 1.67 1.42 0.15 – – –

3 G. jiuzhiensis 4.04 4.74 0.08 1.58 1.47 0.40 0.42 1.46 – – –

4 G. menyuanensis 3.46 1.38 4.73 0 0.49 1.78 1.60 0.48 – – –

5 G. minora 3.42 0.38 4.69 1.34 0.34 1.66 1.41 0.10 – – –

6 G. qinghaiensis 3.63 4.67 0.72 4.66 4.62 0 0.44 1.65 – – –

7 G. qumalaiensis 3.65 4.00 0.74 4.34 3.96 0.67 0.04 1.40 – – –

8 G. ruoergensis 3.32 0.33 4.59 1.19 0.29 4.52 3.85 0.17 – – –

9 G. groenlandica 8.38 8.80 8.13 8.42 8.75 8.06 7.67 8.64 0.33 – –

10 G. rossii 8.95 8.81 8.45 8.40 8.77 8.38 7.99 8.66 5.81 0.62 –

11 G. selenitica 11.03 10.63 10.31 10.07 10.58 10.24 9.52 10.46 9.58 8.96 0.16

Data above the diagonal are interspecific genetic distances based on the combined four genes (COI, ND5, GAPDH and EF-1α), with COI distances

below. Data in bold (the diagonal) are intraspecific COI distances.

doi:10.1371/journal.pone.0127257.t004
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Results of bPTP analyses for each the three datasets (COI, ND5 and COI+ND5) were
shown in S3 Fig. The bPTP analysis using the COI dataset identified four putative species
(PP = 0.51–0.99; S3A Fig), of which two corresponded to the morphologically recognised spe-
cies, i.e. G. alpherakii (PP = 0.99) and G.menyuanensis (PP = 0.76). For the ND5 dataset, eight
putative species were recovered (S3B Fig), but only three species were congruent with the mor-
phologically recognised species, i.e. G. qinghaiensis (PP = 0.92), G. alpherakii (PP = 0.82) and
G.menyuanensis (PP = 0.54). When two mitochondrial genes were combined together, the

Fig 1. Phylogenetic trees ofGynaephora based on the concatenated sequences of twomitochondrial (COI and ND5) and two nuclear (GAPDH and
EF-1α) genes. (A) Bayesian tree. Numbers at nodes indicate Bayesian posterior probabilities (PP). (B) Maximum tree. Numbers at nodes indicate bootstrap
support values (BS). For full phylogenetic trees see S1 and S2 Figs.

doi:10.1371/journal.pone.0127257.g001

Table 5. Results of ABGD analyses with JC69 distancemodel.

Prior intraspecific distance
(P)

No. groups of COI dataset No. groups of ND5 dataset No. groups of the mitochondrial
gene dataset

Initial
partition

Recursive
partition

Initial
partition

Recursive
partition

Initial
partition

Recursive
partition

0.0010 6 (7) 12 (12) 6 (6) 12 (12) 6 (6) 6 (6)

0.0017 6 (7) 7 (7) 6 (6) 6 (6) 6 (6) 6 (6)

0.0028 6 (7) 7 (7) 6 (6) 6 (6) 6 (6) 6 (6)

0.0046 3 (3) 6 (6) 3 (3) 5 (5) 6 (6) 6 (6)

0.0077 3 (3) 3 (3) 3 (3) 3 (3) 6 (6) 6 (6)

0.0129 0 1 (1) 0 1 (1) 0 1 (1)

Values in the bracket are the results obtained with K80 distance model.

doi:10.1371/journal.pone.0127257.t005
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bPTP analysis recovered six putative species, of which five were recognised by morphologically
characteristics (PP = 0.65–1.0; S3C Fig). Three species (G. qinghaiensis, G. jiuzhiensis and G.
qumalaiensis) consistently recovered as a single bPTP group by the three datasets (S3A–S3C
Figs).

Divergence times
All BEAST analyses showed high convergence, with ESS values well above 3,000 for all parame-
ters. Bayes factors indicated that the lognormal relaxed clock was favored compared to the
strict clock, and the best fit tree model for our data was the Birth-Death process of speciation
(S4 Table). The results for all age estimates with 95% HPD intervals were presented in Fig 2.

The most recent common ancestor of the eleven Gynaephora spp. was estimated at approxi-
mately 20.7 Ma (95% HPD: 15.4–26.9 Ma). The split between two main clades of the eight
QTP Gynaephora spp. occurred at about 4.5 Ma (95% HPD: 3.2–5.9 Ma). The early splits with-
in each main clade occurred at 3.3 Ma (95% HPD: 2.2–4.4 Ma) and 1.6 Ma (95% HPD: 1.0–2.3
Ma), respectively. The divergence time between G. jiuzhiensis and G. qinghaiensis was 1.1 Ma
(95% HPD: 0.7–1.7 Ma). G.menyuanensis diverged from Clades A and B (G. aureata, G. rouer-
gensis, and G.minora) at 1.3 Ma (95% HPD: 0.8–1.9 Ma), followed by a divergence between
Clades A and B at 0.8 Ma (95% HPD: 0.5–1.1 Ma). The intraspecific divergence times were all
within 0.6 Ma.

Discussion

Phylogenetic relationship and species status ofGynaephora
In this study, we employed multi-locus DNA data to estimate the first molecular phylogenetic
relationships of Gynaephora species, including 11 of 15 species, i.e. all the eight taxa endemic
to the QTP and three from other regions including the type species (i.e., G. selenitica). Phyloge-
netic analyses based on COI sequences indicated that all the eleven Gynaephora spp. included
in the current study formed a monophyletic group with high supports (PP = 1.0, BS = 99; S1
and S2 Figs). However, the eight QTP Gynaephora spp. is sister to the clade formed by G. rossii
and G. groenlandica in the Bayesian analysis (PP = 1.0), instead to sister to G. groenlandica in
the ML analysis (BS = 60). The topology incongruence between BI and ML analyses was also
observed for other datasets. As no sequences are presently available for the other four Gynae-
phora spp., we do not know yet the complete phylogenetic relationship among the genus
Gynaephora. However, the eight QTP species consistently formed a monophyletic clade with
high supports in phylogenetic analyses (PP = 1.0, BS = 100), regardless of the analytical datasets
and methods (Fig 1, S1 and S2 Figs). Additionally, the COI genetic distances between the three
non-QTP species and the eight QTP species (8.96–11.03%) much larger than that of within the
latter (0.29–4.74%) (Table 4). Therefore, out results preliminarily supported the monophyly of
the eight QTP Gynaephora spp., though further research including all the 15 Gynaephora spp.
is needed.

Five species (G.menyuanensis, G. qinghaiensis, G. alpherakii, G. qumalaiensis, and G. jiuz-
hiensis) were recovered as monophyletic in both BI and ML analyses (Fig 1, S1 and S2 Figs),
and were also strongly supported as valid species by both ABGD and bPTP analyses (Table 5,
S3 Table, S3 Fig) in spite of low K2P genetic distances among the five monophyletic species
(K2PCOI = 0.67–4.74%, K2Pfour genes = 0.40–1.78%; Table 4). The gene tree topology based on
the mitochondrial gene dataset was most similar to the topology of the combined dataset, with
five species recovered as monophyletic (PP� 0.99, PS� 85; Fig 1, S1 and S2 Figs), indicating
that mitochondrial genes are useful genetic markers for species delimitation in Gynaephora. In
contrast, the two nuclear gene trees lacked resolution at the species level and this might be
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Fig 2. Estimates of divergence times obtained with BEAST. The numbers above nodes are the mean divergence times. The node bars indicated the 95%
highest posterior densities of the divergence time estimates. For haplotype information see S1 Table.

doi:10.1371/journal.pone.0127257.g002
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attributed to insufficient phylogenetic information in the EF-1α and GAPDH sequences at this
taxonomic level. Our results confirmed that the nuclear DNAmarkers like these two have
slower rate of evolution that is already shown in previous studies [56,57] and are more suitable
for deep phylogenetic studies [36,49,58,59].

At least one sample from the type locality was collected for each Gynaephora species
(Table 1, S1 Table), but G. aureata, G. rouergensis, and G.minora were not supported as mono-
phyletic species. These three species mixed together and were divided into Clades A and B in
the phylogenetic trees of the combined dataset, and consistently supported as two potentially
distinct species by species delimitation analyses (ABGD and bPTP) based on the mitochondrial
gene dataset (Table 5, S3 Table, S3 Fig). These three Gynaephora species were recently de-
scribed by Chou and Ying (1979) and they were recognized as valid species by Yan (2006).
They can be differentiated by overall size differences and subtle features of the wing colour and
shape of the external genitalia [33]. For example, G. rouergensis and G.minora have body
lengths of 7 mm and 5 mm, and their wingspan is 27 mm and 12 mm. It is noteworthy that
G. rouergensis is sympatrically distributed with G.minora, and the two species are restricted to
Ruoergai County of Sichuan Province [33]. G. aureata has a parapatric distribution with
G. rouergensis and G.minora. Furthermore, some of the haplotypes for each gene were shared
among these three species (S1 Table). Therefore, it is plausible that interspecific hybridization
might occur between these three species, which could result in extremely low interspecific ge-
netic distances (K2PCOI = 0.29–0.38%, K2Pfour genes = 0.10–0.15%; Table 4), but relatively high
intraspecific distances (K2PCOI = 0.17–0.35%; Table 4). Considering their similar morphologi-
cal characteristics and extremely low genetic distances, G. aureata, G. rouergensis, and G.mi-
noramight be better described as a species complex, i.e. the G. aureata complex. This complex
was highly supported by phylogenetic analyses (PP = 1.0, BS = 99; Fig 1) and species delimita-
tion analyses (Table 5, S3 Table, S3 Fig). However, our molecular data represent only a small
sampling of the genetic data, and further studies using comprehensive morphological charac-
teristics and molecular data (multiple unlinked genes or genomic data) from more populations
and individuals are needed to clarify the taxonomic status of these three putative species.

Divergence patterns ofGynaephora on the QTP
Given that all the eight Gynaephora spp. from the QTP well formed a monophyletic clade in all
phylogenetic analyses (Fig 1, S1 and S2 Figs), Gynaephora spp. on the QTP most likely arose
from a single origin. Among 15 reported Gynaephora spp., more than half of the species are en-
demic to the QTP [31,32]. An outstanding feature of Gynaephora spp. on the QTP is that most
species are highly restricted in their distribution (Table 1). Therefore, geographic isolation may
play an important role in the speciation process of Gynaephora on the QTP. Isolation and sub-
sequent divergence have been proposed as an important mechanism of speciation, as demon-
strated by previous studies on some endemic species/genera on the QTP [9,11,12]. Therefore,
it is likely that the common ancestor of QTP Gynaephoramay have been widely distributed in
the QTP, and subsequently diverged due to the formation of mountains and valleys accompa-
nying the QTP uplift. This hypothesis best fits the divergence pattern seen in one main clade
including three Gynaephora spp. (G. jiuzhiensis, G. qinghaiensis, and G. qumalaiensis) which
occupy adjacent distribution ranges (Table 1) and are strongly supported as sister species (Fig
1, S1 and S2 Figs). This hypothesis does not adequately explain all of the relationships though.
Although G. alpherakii is geographically close to G. qinghaiensis, they belong to different main
clades (Fig 1). G. alpherakii is restricted to high altitude environments (~ 4500 m asl) and is
geographically separated from the other four species in the same clade that are found in rela-
tively low altitude habitats (~3500 m asl) (Table 1, S1 Table). The biogeographic pattern of
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QTP Gynaephora spp. might be more complicated than we thought, and further analysis with
extensive sampling is required to uncover the vicariance, migration, and speciation history of
Gynaephora spp. on the QTP.

Association betweenGynaephora evolution and the uplift of the QTP
Estimating evolutionary timeframe from genetic data is a complex process [60], and calibration
has a significant, sometimes drastic impact on estimated divergence time [61]. Although rate of
substitution for COI has been widely used in insect divergence time estimates, substitution
rates greatly differ among insect lineages [62–64]. Due to the lack of fossil record presently
available for the subfamily Lymantriinae, the secondary calibration approach was used with
caution in the present study. Our molecular dating results showed that the two calibration
nodes were highly supported (PP = 1.0), and the median ages for the two nodes were 51.8 Ma
and 56.5 Ma, which were highly congruent with the results of Toussaint et al. [49] and Wahl-
berg et al. [50]. Although more taxa of the subfamily Arctiinae were included in our study, the
divergence time between Dysauxes famula and Pseudophaloe troetschi was estimated to be 35.6
Ma, which was highly similar to that of Wahlberg et al. [50]. Including the root calibration did
not have a large effect on the resulting age estimates. Hence, our BEAST analyses should gave
reasonable age estimates for the diversification of the eight QTP Gynaephora spp.

Our molecular dating analyses suggested that the eight QTP Gynaephora spp. diverged
from G. rossii and G. groenlandica at about 17.7 Ma. This time frame corresponds with the con-
clusion of the initial uplift of the QTP during the Early Miocene (25–17 Ma) [65]. The rapid di-
versification event that resulted in the split between two main clades occurred around 4.5 Ma
and may be associated with accelerated uplift of the QTP during the late Miocene/early Plio-
cene [4,66]. Further diversification in each main clade gave rise to many extant species and is
estimated to have occurred 3.3–1.1 Ma, during an extensive period of QTP uplifts from the
mid-Pliocene to the early Pleistocene [65,67,68]. Although our estimations require further test-
ing with additional robust phylogenies and more reliable calibration points, similar diversifica-
tion times have been reported for weevils (Coleoptera: Curculionidae: Niphadomimus) [69]
and other plant and animal taxa on the QTP [11,16,26,28,29,70]. The QTP uplift strengthened
the East Asia monsoon and increased the aridity of the dry seasons [66], which may have led to
the fragmentation of Gynaephora populations. Therefore, the Gynaephora diversifications may
be related to global cooling and desiccation, particularly around the Miocene/Pliocene bound-
ary and during Pleistocene climate fluctuations [71–73]. Thus, our results suggest, together
with previous studies, that extensive uplift of the QTP and simultaneous climate changes trig-
gered rapid speciations of many animal taxa on the QTP. However, these correlations require
stronger evidence and should be tested in other insects that have high levels of diversity on the
QTP.
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S1 Fig. Bayesian phylogenetic trees. (A) the COI dataset, (B) the ND5 dataset, (C) the mito-
chondrial gene dataset (COI + ND5), (D) the nuclear gene dataset (GAPDH + EF-1α), and (E)
the combined dataset (COI + ND5 + GAPDH + EF-1α). Numbers above the branches repre-
sent posterior probabilities (PP).
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S2 Fig. ML phylogenetic trees. (A) the COI dataset, (B) the ND5 dataset, (C) the mitochondri-
al gene dataset (COI + ND5), (D) the nuclear gene dataset (GAPDH + EF-1α), and (E) the
combined dataset (COI + ND5 + GAPDH + EF-1α). Numbers above the branches represent
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