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A B S T R A C T   

The COVID-19 pandemic has led to reduced anthropogenic pressure on ecosystems in several world areas, but 
resulting ecosystem responses in these areas have not been investigated. This paper presents an approach to make 
quick assessments of potential habitat changes in 2020 of eight marine species of commercial importance in the 
Adriatic Sea. Measurements from floating probes are interpolated through an advection-equation based model. 
The resulting distributions are then combined with species observations through an ecological niche model to 
estimate habitat distributions in the past years (2015–2018) at 0.1◦ spatial resolution. Habitat patterns over 2019 
and 2020 are then extracted and explained in terms of specific environmental parameter changes. These changes 
are finally assessed for their potential dependency on climate change patterns and anthropogenic pressure 
change due to the pandemic. Our results demonstrate that the combined effect of climate change and the 
pandemic could have heterogeneous effects on habitat distributions: three species (Squilla mantis, Engraulis 
encrasicolus, and Solea solea) did not show significant niche distribution change; habitat suitability positively 
changed for Sepia officinalis, but negatively for Parapenaeus longirostris, due to increased temperature and 
decreasing dissolved oxygen (in the Adriatic) generally correlated with climate change; the combination of these 
trends with an average decrease in chlorophyll, probably due to the pandemic, extended the habitat distributions 
of Merluccius merluccius and Mullus barbatus but reduced Sardina pilchardus distribution. Although our results are 
based on approximated data and reliable at a macroscopic level, we present a very early insight of modifications 
that will possibly be observed years after the end of the pandemic when complete data will be available. Our 
approach is entirely based on Findable, Accessible, Interoperable, and Reusable (FAIR) data and is general 
enough to be used for other species and areas.   

1. Introduction 

The COVID-19 pandemic has directly affected human activities in 
many world areas (Coro and Bove, 2022), but its direct and indirect 
effects on the ecosystems of these areas are still under study. The 
reduced anthropogenic pressure on these ecosystems may have been 
beneficial for species habitats. However, the combined effects of the 
pandemic and climate change may have triggered complex reactions. 
Analysing natural pattern changes can reveal how ecosystems have 
responded to general climatic trends and inter-annual climatic varia
tions within the context of human pressure reduction in 2020. In 
particular, marine ecosystems, especially in the Adriatic Sea, have 
benefited from the reduction of stress factors such as (i) fishing and 
vessel traffic (Depellegrin et al., 2020), (ii) disturbance of species life 

(Kemp et al., 2020), (iii) nutrient load in coastal areas (Adwibowo, 
2020; Mishra et al., 2020; Shehhi and Samad, 2021), and (iv) water 
pollution (Yunus et al., 2020). Understanding these benefits is inter
esting to quantitatively assess the peculiar marine ecosystem dynamics 
modifications that occurred at various levels (e.g., pollution, biodiver
sity, and ecosystems) and how these influenced human activities (e.g., 
fisheries, ecosystem services, social interaction and mobility, and illegal 
activities) (Snapshot-CNR, 2020). Understanding these dynamics allows 
identifying correlations that would have been hidden without the 
lockdowns and help designing novel strategies for marine resource 
sustainability. For example, the lockdowns have allowed scientists to 
better model the resilience of Adriatic fishing fleets to activity closure, i. 
e., the time to return to regime fishing activity and market saturation 
(Coro et al., 2022). Moreover, the 2020 lockdown restrictions to fishing 
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activities in many areas (including the Adriatic) have limited scientific 
survey ranges and resulted in missing survey hauls with consequent 
information loss on stock biomass in 2020. This scenario calls for solu
tions to estimate biomass variation in 2020 despite the data gaps, which 
in turn requires information about habitat modification as support to 
expert observations, biomass estimates, and fishing catch change un
derstanding (Brown et al., 2010; Coro et al., 2020, 2021; Trifonova et al., 
2017; Weatherdon et al., 2016). 

This paper analyses the potential habitat change, in 2020, of eight 
marine species of commercial importance in the Adriatic Sea: European 
hake (Merluccius merluccius), common sole (Solea solea), mantis shrimp 
(Squilla mantis), red mullet (Mullus barbatus), common cuttlefish (Sepia 
officinalis), European anchovy (Engraulis encrasicolus), European 
pilchard (Sardina pilchardus), and deep-water rose shrimp (Parapenaeus 
longirostris). These species are target of beam (common sole, mantis 
shrimp, common cuttlefish), bottom (red mullet, deep-water rose 
shrimp, European hake), and mid-water (European anchovy and 
pilchard) trawlers and purse seine vessels (European anchovy and 
pilchard). They currently account for about 70% of the total catch in the 
basin (FAO, 2020). The related fishing grounds range from coastal and 
offshore waters to deeper waters (e.g., the Pomo Pit) (Russo et al., 2020). 
The high fishing stress on these species and most Adriatic stocks (Froese 
et al., 2018) makes them relevant to understand how the combination of 
reduced anthropogenic stress during the COVID-19 pandemic and cli
matic changes influenced their distribution in the Adriatic. The study 
presented in this paper sheds light on the magnitude of change in one 
year of reduced anthropogenic pressure. Additionally, it indicates the 
sensitivity of the species' habitats to environmental change and can be 
used to predict the economic and ecological impact of a return to the 
pre-pandemic human activity level. 

Habitat assessment often estimates the ecological niche of a species 
(Coro et al., 2016a; Deneu et al., 2021; Jones et al., 2012; Weber et al., 
2017), i.e., the set of resources and environmental conditions that foster 
its persistence and proliferation in an area. It indicates such conditions 
either in the species' native habitat (native niche) or in other 
geographical areas (potential niche). Mathematically, a species' 
ecological niche is the space within a hyper-volume, in a vector space 
made up of environmental parameters, associated to the species' pro
liferation. Ecological niche models (ENMs) both estimate the parameters 
to use in the vector space and identify the hyper-volume boundaries. As 
a first step, an ENM uses statistical analysis or machine learning to es
timate a predictive function between species observation records and 
specific environmental parameters. As a second step (projection phase), 
it applies the predictive function to other environmental parameter 
values that refer to a new area or other environmental scenarios 
(Peterson et al., 2007). For example, a model trained on the environ
mental parameters of an area in 2015 can be projected onto the 
parameter values in 2020 (Coro, 2020; Coro et al., 2018c). In the 
experiment presented in this paper, individual ENMs for the eight 
selected species were estimated for average environmental parameter 
values of the 2015–2018 years. Then they were projected onto the 
environmental parameters of 2020 to see if the COVID-19 related 
changes influenced habitat distribution change. Furthermore, the major 
parameters driving change were checked against other studies to assess 
if the observed variations potentially depended on climate change 
(rather than inter-annual climatic variations) or the pandemic. Our 
experiment was conducted in a context of minimal environmental and 
species-occurrence data available for the pandemic period. Information 
extraction techniques were therefore used to estimate enough infor
mation to feed the ENMs. Pattern recognition was finally used to infer 
habitat change information over the years. 

ENMs have been used to identify suitable areas for species (Men
chetti et al., 2019; Peterson, 2003). The generality of the approach made 
them adopted in early predictions of the potential spread of COVID-19 
due to environmental and meteorological conditions, e.g., they fore
saw the lower summer outbreak rate of 2020 (Araujo and Naimi, 2020; 

Coro, 2020). These models have demonstrated a sufficient prediction 
effectiveness when working with few data, for example to predict rare 
species distributions (Chunco et al., 2013; Coro et al., 2013a, 2015b; de 
Siqueira et al., 2009). The possibility to process environmental param
eters over time also makes them effective to monitor long-term habitat 
change (Ashraf et al., 2017; Ben Rais Lasram et al., 2010; Chala et al., 
2019; Coro et al., 2016a, 2018c; Friedlaender et al., 2011). ENMs 
commonly require uniformly distributed environmental parameters 
estimated from real observations over the study area. These distribu
tions can result from hydrodynamic models based on point observations 
coming from satellite (Alvera-Azcárate et al., 2005; Durand et al., 2010; 
Werdell and Bailey, 2005) or in situ probes (Huang et al., 2008; Peter
son, 2001; Ravdas et al., 2018; Scarponi et al., 2018). Effective distri
butions are also obtainable through lower-complexity models, based on 
the advection equation that simulates the dispersion of a quantity by 
currents (Djakovac et al., 2015; Lipizer et al., 2014; Troupin et al., 
2012). Parameters estimated from these models commonly find appli
cations in ecological models (Blackford, 2002; Garcia et al., 2019; 
Toonen and Bush, 2020) and ecological niche models (Azzolin et al., 
2020; Coll et al., 2007). Accurate parameter selection is also integral to 
ENMs, because these models are sensitive to mutually-dependent vari
ables and achieve higher performance when using independent vari
ables (Pearson, 2007). A correct variable selection is typically achieved 
through statistical analysis (Guo and Liu, 2010; Magliozzi et al., 2019; 
Muscarella et al., 2014; Sánchez-Tapia et al., 2017; Schnase et al., 2021) 
or other ENMs (Warren and Seifert, 2011; Coro et al., 2013a, 2015b,a; 
Zeng et al., 2016; Bargain et al., 2017). 

This paper proposes a workflow based on the application of ENMs to 
in situ environmental parameter observations and expert-verified spe
cies observations to discover habitat change across 2015–2018, 2019, 
and 2020. The 2015–2018 period was used as an aggregated and 
meaningful reference for average environmental conditions and species 
presence in the near past, and 2019 data were used to assess if the 
variations observed in 2020 were due to the pandemic or climate 
change. First, punctual environmental observations were transformed 
into uniform parameter distributions through an advection equation- 
based model. Second, parameter selection per species was conducted 
to feed ENMs with the parameters mostly associable with the species 
habitat (e.g., its preferred depth range and environmental conditions). 
Third, the consistency of our ENMs was verified against other ENMs 
calculated independently. Fourth, habitat variation over the years, per 
species, was studied to identify habitat change trends. Finally, these 
trends were explained in terms of environmental parameter change 
potentially correlated with climate change and the pandemic. Our study 
used only a few, but reliable, environmental and species data. This 
choice was made to investigate the viability of open data and thus to 
only use actual observations whose modulations contained information 
on the reduced anthropogenic pressure in 2020 due to the pandemic. 

Our analysis identified robust patterns at the Adriatic scale but 
cannot be considered punctually reliable because it is based on few data 
(i.e., it is a data-poor approach). Nevertheless, it offers an unprece
dented possibility to shed light on the modifications that the combined 
action of the COVID-19 pandemic and climate change brought to species' 
distribution in the Adriatic Sea, way ahead of the time when data will be 
collected, collated, and analysed after the end of the pandemic. The open 
data approach was possible thanks to the recent investments by inter
national communities on Findable, Accessible, Interoperable, and 
Reusable (FAIR) data, Open Science, and data collection networks 
addressing the realisation of digital twins of marine systems (EU Com
mission, 2020b). 

2. Methods 

2.1. Data 

Our experiment used the data of the international Argo float network 
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(Argo, 2000). This network includes robotic probes that drift with ocean 
currents while moving and measuring biogeochemical parameters along 
the water column. These probes collect environmental information with 
sampling frequencies ranging from 2 s to several minutes, reaching 
down to 2000 m in 10-day data collection cycles. Data streams are 
transmitted via satellite to distributed information centres (Global Data 
Assembly Centers, GDACs). GDACs make the data freely available for 
download (Argo, 2000). Argo currently exposes over 20-years of data 
and manages ~4000 operational floats. Floats are located worldwide 
except for ice zones, with a higher density in the equatorial belt. The 
collected environmental parameters include depth, pressure, dissolved 
oxygen, ocean-current speed components, practical salinity, tempera
ture, wind-stress components, electrical conductivity, chlorophyll-a, and 
fluorescence. Argo data can be included in the class of FAIR data as 
being free, timely, and unrestricted-access data (Tanhua et al., 2019). 
Data access has the only policy to acknowledge the Argo network in 
scientific publications. Ethical oversight is left to the individual scien
tists or organizations using the data. 

To use Argo data in our niche models, they were aggregated and 
processed to reduce noise and computational complexity. Three groups 
of data were selected and downloaded from the GDACs - in CSV format - 
for the Adriatic Sea (using a bounding box extension of [+8;+20] 
longitude and [+38;+46] latitude). The first dataset contained obser
vations from 2015 to 2018; the second included observations collected 
in 2019; the third contained observations collected in 2020. The 
2015–2018 range represents an aggregated reference of environmental 
conditions in the near past. This aggregation was necessary to provide 
reference statistical averages for the environmental parameters and 
allowed collecting a meaningful set of species observations for training 
ENMs. The 2019 data were used as a reference to assess if the variations 
observed in 2020 were either due to the pandemic or continuing trends 
from the previous years (possibly related to climate change). The 2020 
data were assumed to contain observations with signals of the COVID-19 
pandemic and climate change. 

Argo data were averaged at a 0.1◦ resolution to increase statistical 
viability (Coro et al., 2018b). The following parameters were extracted 
from the CSV data: temperature (◦C), salinity (PSU), chlorophyll-a (mg/ 
m3), dissolved oxygen (DOX) (μmol/kg). These are indeed the most 
abundant and reliable data downloadable from Argo. For each param
eter, average values were calculated for surface range, seafloor (bot
tom), and the entire water column. Surface and bottom ranges were 
identified as the first and last ranges of a logarithmic division, into five 
parts, of the maximum depth of each 0.1◦ cell in the Adriatic (Coro et al., 
2018b; Reyes, 2015). Instead of using static ranges, this approach 
adapted the definition of surface and bottom ranges to the specific cell 
depth. It normally results in better niche modelling, especially for 
benthic and demersal species (Ready et al., 2010; Reyes, 2015). For each 
parameter, surface, bottom, and average (in the water column) values 
were estimates at 0.1◦ resolution. Furthermore, locations outside of the 
Adriatic Sea were excluded by only using those within the geographical 
subareas 17 and 18 of the General Fisheries Commission for the Medi
terranean (GFCM, 2020). This process generated 36 datasets overall, as 
the results of three aggregation types (surface, bottom, average), for 
each aggregation time (2015–2018, 2019, 2020), repeated for four 
parameters. 

As a final step, consistency between the observations from the 
different datasets was enhanced by constraining all datasets to cover the 
same areas. Different spatial coverage over the years can indeed be a 
source of bias. For example, if observations covered north Adriatic more 
extensively than south Adriatic in a particular year, sampling would be 
northward skewed with consequent over-representation of northern 
environmental values. If this is not the case for the other years, incon
sistency between parameter sampling and representation will occur. To 
avoid this issue, only probes locations that were present in all reference 
years were retained. A 0.5◦ spatial tolerance was used in the selection of 
these locations. 

The ENM used in the present experiment required environmental 
data uniformly distributed over the Adriatic Sea. Consequently, all 0.1◦

cells required an environmental value assigned, either averaged from 
the Argo observations or estimated through a model. Given the low 
density and quantity of the available environmental observations (Sec
tion 3) and the importance of currents in the biogeochemical compo
nents' drift and spread in the Adriatic, parameter values were 
interpolated through a model based on the advection equation and 
depth information. In particular, the Data-Interpolating Variational 
Analysis (DIVA) was used (Barth et al., 2010). DIVA is commonly used to 
produce uniform distributions of environmental parameters (Coro et al., 
2018a; Coro and Trumpy, 2020; Schaap and Lowry, 2010) and solves the 
advection equation to simulate the transport of a substance or quantity 
by currents. DIVA also estimates the mutual spatial correlation between 
observations and requires minimal parametrisation to produce high- 
quality interpolation at a user-defined resolution (Coro et al., 2016c; 
Troupin et al., 2010, 2012). Internally, DIVA reconstructs a continuous 
field from discrete measurements through a numerical implementation 
of the Variational Inverse Model (Bennett, 1992). This algorithm fits a 
continuous field to the data through a minimization cost function 
(Watelet et al., 2016), using a finite-element statistical method that 
embeds topographic and dynamic constraints (based on bathymetry and 
oceanic-currents data). It can process irregularly-spaced observations to 
produce estimates on a regular grid. Based on this fit, DIVA estimates a 
triangular-element mesh over the interpolation area, where the char
acteristic length of each element is directly linked to the mutual spatial 
correlation between observations. 

For our experiment, DIVA was applied to all Argo-aggregated data 
described in Section 2.1. Data of ocean current components were taken 
as NetCDF files from the Global Ocean Physic Analysis dataset hosted by 
the Copernicus Marine Service (Von Schuckmann et al., 2018). In 
addition, depth information was taken from the GEBCO-2020 bathym
etry dataset, a global terrain model for ocean and land with 0.0042◦

uniform spatial resolution (GEBCO, 2020). To execute DIVA, the 
D4Science e-Infrastructure computational platform was used (Assante 
et al., 2019; Candela et al., 2016; Coro et al., 2015a, 2017). As a result, 
36 uniform parameter distributions at 0.1◦ resolution for our environ
mental parameter aggregations were produced and represented with the 
ESRI-grid format (ASC). 

2.2. Species observations 

In order to extract species observation data, we consulted the Ocean 
Biogeographic Information System (OBIS) (Grassle, 2000). OBIS con
tains taxonomic and occurrence information for ~155,000 marine 
species and provides access to more than 163 million observation re
cords, integrated from more than 4000 sources. Its contributors include 
international research projects, national monitoring programs, mu
seums, and individuals. OBIS is suitable for data mining and pattern 
recognition experiments, especially in data-poor scenarios where the 
quality of the data is fundamental to produce reliable analyses (Coro 
et al., 2013b, 2015c, 2016b, 2018c). The OBIS data quality checking is 
integral to ecological niche models that are particularly sensitive to data 
bias (Coro et al., 2015b). Furthermore, for each occurrence record, OBIS 
indicates if it underwent expert verification. This feature makes OBIS 
more suited for ecological niche modelling in data-poor scenarios than 
other data collections (Coro et al., 2015b, 2015c). In our experiment, the 
OBIS observation records in the Adriatic Sea, between 2015 and 2018, 
that underwent expert verification were retrieved for the eight species 
under study. Their coordinates were stored as CSV files to feed ENMs 
later. 

2.3. Ecological niche modelling 

Maximum Entropy (MaxEnt) is a widely used ENM for marine species 
(Angeletti et al., 2020; Capezzuto et al., 2018; Raybaud et al., 2015). 
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MaxEnt is a shallow machine learning model that estimates a function 
π(x) defined over real-valued vectors x of environmental parameters. 
This function is forced to reach maxima on the parameters associated 
with a species' presence and minima on absence-related parameters. 
Following a common abuse of notation, π(x) can be considered a proxy 
of a probability density of a species' presence given the x environmental 
parameters (Elith et al., 2011; Merow et al., 2013; Phillips and Dudík, 
2008). MaxEnt learns the relation between environmental values in the 
species-observation locations and the general species' presence (Coro 
et al., 2018c; Pearson, 2007). One advantage of this model is that it can 
work with species-presence information only, but it is over-sensitive to 
biased data (Coro et al., 2015b; Elith and Graham, 2009). A MaxEnt 
model trained with parameters and species observations at 0.1◦ reso
lution will produce a probability distribution of species presence over 
the 0.1◦ cell subdivision of a study area. The π(x) function is thus the 
probability that a 0.1◦ cell is suitable species habitat. MaxEnt estimates 
π(x) after maximising the entropy function H = −

∑
π(x) ln(π(x) ) on 

the training locations with respect to randomly-selected environmental 
parameter vectors in the study area (background points). In the present 
experiment, x was made up of 13 parameters associated with the 
2015–2018 year range: temperature, salinity, chlorophyll-a, DOX (with 
related surface, bottom, water-column aggregations), and depth (from 
the GEBCO-2020 bathymetry data set). Although depth was constant 
through the years, it was included in our models because it is a funda
mental parameter to estimate the niches of the studied species correctly. 
Depth was used as a proxy to model species preference to different 
seabeds and water column heights. Thus, it enhanced prediction reli
ability by adding complementary and valuable information about the 
species habitat. On the other hand, it was not functional to the subse
quent pattern analysis. Training locations were those associated with the 
OBIS observations between 2015 and 2018. The used MaxEnt imple
mentation (Phillips et al., 2021) accepted environmental parameters in 
ASC-raster format and species observation data in CSV format. 

The training algorithm estimates the coefficients of a linear combi
nation of the environmental parameters. These coefficients represent the 
weight of each environmental parameter in the species' environmental 
preferences (percent contribution). MaxEnt also estimates the permutation 
importance of each parameter in the x vector. The training process is 
based on the following function definitions: f(x), the probability density 
over the background parameters; f1(x), the density on the training set; 
and pr, the prior distribution (prevalence) of the species (equal to 0.5 
when no prior assumption is available, as in our case). Based on these 
functions, π(x) is defined as 

π(x) = f1(x)⋅pr
f (x)

In a maximum entropy condition, the optimal f1(x) is the closest 
function to f(x), because there would be no difference without species 
observations. Additionally, f1(x) should have maxima on the parameter 
means in the training set locations. With these constraints, the model 
minimises the Kullback-Leibler distance between f1(x) and f(x)

d(f1(x) , f (x) ) =
∑

xf1(x)⋅log2

(
f1(x)
f (x)

)

This minimisation is solved by Gibbs distribution functions in the 
form f1(x) = f(x)eη(x) (Phillips et al., 2006a), with η(x) = α+ β h(x); α 
being a normalization constant that makes f1(x) sum to 1; h being an 
optional transformation of x that simulates a complex relation between 
the environmental parameters; and β being the percent contribution co
efficients. The minimisation of η(x) - which requires solving a log-linear 
equation - consequently minimises d(f1(x) , f(x) ). The used MaxEnt 
software automatically solves this minimisation problem. It also esti
mates percent parameter contribution through an iterative process that 
calculates and accumulates the percent performance gain provided by 
each parameter (Phillips et al., 2017). 

MaxEnt is generally preferred over linear and logistic regression for 
species habitat distribution modelling. It is equivalent to a Poisson 
regression (a generalized linear model) that is naturally suited for 
modelling the probability of a number of events in a fixed space (such as 
species occurrences) (Renner and Warton, 2013). Once the model pa
rameters have been estimated, the π(x) function can be used to estimate 
probability distributions over new parameter values than those of the 
training set, e.g. the parameters of locations outside of the study area (to 
discover the potential species niche) or new environmental scenarios (to 
study niche change over time) (Elith and Graham, 2009; Phillips et al., 
2017). 

MaxEnt is sensitive to sampling bias associated with species- 
observation locations and can over-fit small datasets (Merow et al., 
2013; Wang et al., 2018). Our selected occurrence datasets were indeed 
small, as only expert-verified records were selected. They also had 
potentially biased distributions, as they belonged to OBIS-included 
surveys with frequent and fixed paths (Coro et al., 2015c). One way to 
manage this issue is to select background points far away from the 
presence locations (Hengl et al., 2009). However, our analysed species 
are common and widely distributed in the Adriatic, with absence loca
tions potentially dense in the presence areas. Therefore, it was not 
possible to focus background point sampling on specific areas. Providing 
the model with precise absence and background locations would also 
have required more presence data and precise environmental parameter 
distributions. However, specific studies on MaxEnt parametrisation 
(Dudík et al., 2005; Phillips et al., 2017; Phillips and Dudík, 2008; 
Zaniewski et al., 2002) have indicated general strategies to reduce 
presence location sampling and over-fitting biases, which include (i) 
selecting background points to reflect the same sampling bias as the 
presence locations, (ii) including presence points among background 
points, (iii) using hinge features to model complex species response to the 
environmental parameters and make model fitting more flexible. The 
MaxEnt software used for this experiment offers options to use hinge 
features and include presence locations among background points if 
these are associated with unique combinations of environmental pa
rameters (Phillips et al., 2021). These options were used to attenuate 
over-fitting and sampling bias issues as far as possible. 

In the present experiment, MaxEnt was trained with 2015–2018 
Adriatic environmental data and species occurrence records to produce 
an ecological niche reference for the near past. Then it was projected 
onto the 2019 and 2020 environmental data to analyse probability 
distribution change due to the different environmental parameters of 
these years. Since the β vector indicates the parameters that carry the 
highest quantity of information to understand species habitat prefer
ences (Coro, 2020; Coro et al., 2018c), it can be used to remove poorly 
niche-correlated parameters from the x vector. This operation optimally 
selects the variables associated with the species habitat (Section 3.1). 
For example, deep-water and benthic species will likely be modelled 
with bottom-averaged parameters, whereas pelagic species habitat will 
likely be modelled with water-column or surface related parameters. 
Furthermore, reducing the number of input environmental parameters 
decreases the inter-dependence between the variables and improves the 
model accuracy (Coro et al., 2015b). In the present experiment, the 
MaxEnt models of the studied species were first trained with all pa
rameters and then re-trained using only those parameters having a 
percent contribution within 95% from the maximum contribution. 

In summary, MaxEnt ENMs were produced for the 8 Adriatic species 
through the following steps: (i) MaxEnt models were trained with 
2015–2018 OBIS observations and interpolated environmental data; (ii) 
after a first training phase, the parameters with the 95% highest percent 
contributions were retained (thus, different parameter sets were associ
ated to the different species); (iii) the models were re-trained only with 
the retained parameters; (iv) the models were projected onto the 2019 
and 2020 environmental parameters. The produced models will be 
referred to as floating sensor (FS) based models - i.e., FS 2015–2018, FS 
2019, and FS 2020 - to distinguish them from the baseline models used 
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for evaluation. A total of 24 models was thus produced, i.e., three models 
for each analysed species. 

2.4. Evaluation and pattern recognition 

The ENM distributions were used to discover driving factors of spe
cies habitat change over the years. The first goal of our quality evalua
tion was to assess the consistency of the produced maps. As our second 
goal, the principal environmental drivers of habitat suitability change 
were checked against evidence from general climate change and COVID- 
19 pandemic related trends. The entire evaluation process was managed 
through four evaluation questions: 

2.4.1. Question 1: Are the produced distributions consistent? 
This question was answered by verifying the similarity between our 

models and other ENMs. This operation confirmed that our models 
consistently captured the species' environmental preferences, although 
they were trained on scarce and scattered data and tested on the same 
training set (Section 3.1). Indeed, the partial reliability of our MaxEnt 
model was assessed using the training data, but this was insufficient to 
state they were consistent, due to the few data at hand. Thus, we set two 
consistency boundaries for our model: one similarity and one dissimi
larity reference. We used the similarity reference to confirm that the 
produced distributions agreed with an independent habitat distribution. 
Instead, we used the dissimilarity reference to check for significant 
difference with respect to a known improbable scenario based on un
likely environmental parameter distributions. 

The AquaMaps distributions were used for these tasks (Kaschner 
et al., 2006). They were downloaded (not re-calculated) from the 
AquaMaps website (AquaMaps, 2020). AquaMaps is a presence-only 
ENM that incorporates scientific expert knowledge into species habitat 
modelling to account for known limitations of species occurrence re
cords (Corsi et al., 2000; Ready et al., 2010). We used AquaMaps as a 
mechanistic model to estimate species distributions independently of the 
data available in our experiment. Moreover, AquaMaps uses a comple
mentary approach with respect to machine-learning-based approaches 
because it explicitly models the causality between species presence and 
environmental parameters (Baker et al., 2018; Pearson, 2007). Aqua
Maps has comparable accuracy to GAM- and GLM-based ecological 
niche models (Ready et al., 2010). It is particularly effective for large 
areas (e.g., the size of the Adriatic Sea) and when expert knowledge 
about the species is available at the global scale. Moreover, it is reliable 
for extracting macro-patterns of climate change influence on species 
distributions (Coro et al., 2016a). 

The AquaMaps native algorithm estimates the species niche distri
bution in its known habitat. It uses a multiplication of environmental 
parameter envelopes whose ranges are either statistically estimated or 
defined by an expert. The environmental parameters integrated with the 
model are 0.5◦ resolution distributions of depth, salinity, temperature, 
primary production, distance from land, and sea ice concentration. In 
the present experiment, the AquaMaps native model based on 2019 
annual environmental parameters (hereafter referred as AquaMaps 
2019) was used as a similarity reference for our models. 

As a dissimilar reference model, the AquaMaps native-2050 model 
was used (hereafter referred as AquaMaps 2050). This model integrates 
environmental parameters estimated under the Special Report on 
Emissions Scenario (SRES) A2 of the Intergovernmental Panel on 
Climate Change (IPCC). This scenario describes a future world with in
dependent, self-reliant nations with a continuously increasing popula
tion. Economic and technological development are assumed to increase 
non uniformly across the world countries. Of key importance are 
average surface temperature and salinity that have increasing trends 
(with localised decreases for salinity), whereas ice concentration de
creases globally and water level increases. Our models were checked to 
be significantly distant from AquaMaps 2050 because this model rep
resents an unlikely scenario for all selected species today. Using the 

AquaMaps 2050 distributions as unlikely scenarios was particularly 
consistent for our studied species because their 2050 distributions were 
significantly different from the AquaMaps native distributions (Section 
3). The AquaMaps native models were downloaded from the AquaMaps 
website (AquaMaps, 2020; Scarponi et al., 2018), whereas a NetCDF 
FAIR version of the AquaMaps 2050 model was used, whose consistency 
and validity was confirmed by other experiments (Coro et al., 2018a). 
GDAL and CDO software (OSGeo, 2019) was used to downsample the 
models to 0.1◦ resolution, through first-order conservative remapping 
(Schulzweida, 2020), in order to be able to compare them with our 
models. 

2.4.2. Question 2: Can habitat patterns be identified in 2020 with respect to 
the previous years? 

A map comparison procedure was used to answer this question 
(described in Coro et al. (2014)). This process calculates discrepancy and 
agreement between two maps. It allows setting a threshold over each 
probability distribution to conduct presence/absence comparison. Ab
sences are values under the threshold and presences are values over the 
threshold. The process then uses this classification to calculate 
discrepancy as the percentage cells where the two distributions disagree. 
It also calculates Cohen's kappa (Cohen et al., 1960) to estimate agree
ment with respect to chance. Kappa is classified as poor, slight, fair, 
moderate, substantial, or excellent according to the Landis and Koch 
range classifications (Landis and Koch, 1977). 

The three FS distributions of each species had different probability 
ranges. This issue made it difficult to find a common threshold to 
compare low and high probability cells, which is a common problem 
when comparing different distributions (Coro et al., 2014; Phillips et al., 
2006b). MaxEnt suggested potential habitat suitability thresholds out of 
a training session over the 2015–2018 data, using a sensitivity- 
specificity analysis that considered only the observations and environ
mental data in 2015–2018. However, after this training session, the 
MaxEnt model was projected onto the 2019 and 2020 data without re- 
training, and this operation normally produces distributions with new 
probability ranges (Coro and Bove, 2022; Phillips et al., 2006b). One 
approach to accommodate for this issue is to allow MaxEnt to extend 
estimates beyond the parameter ranges observed on the training set (i.e., 
to disable the model's clamping option). However, this technique should 
be used with caution because it could generate inconsistent results or 
unnatural projections (Elith et al., 2011). Moreover, the approach as
sumes that the projection conditions represent a completely different 
environmental scenario (e.g., in the far past or future). In contrast, our 
projection scenarios fell within the clamped ranges for most variables 
(Section 3.3). We also experimentally verified that clamping was not 
useful in overcoming this issue with the data at hand. 

Thus, the thresholds suggested by the sensitivity-specificity analysis 
over the 2015–2018 data could not be used for the 2019 and 2020 
distributions. Therefore, conducting a fair comparison between the 
MaxEnt distributions required setting appropriate thresholds for habitat 
suitability/unsuitability on each distribution separately; to transform a 
numerical comparison into a consistent classification comparison. In this 
case, one possible threshold to use is the first-quartile probability value, 
as also suggested by O'Brien (1980) and Theil (1982). This property 
comes out of the observation that although the distribution ranges and 
shapes can differ between the models, one comparable measure of 
MaxEnt probability abundance (and thus of habitat suitability extent) is 
the number of elements with MaxEnt output value over the first quartile. 
Therefore, we used the first-quartile probability value of each FS dis
tribution to identify areas of low and high suitability. Our results 
demonstrate that this approach generated comparable FS distributions 
(Section 3). As for AquaMaps, the log-linear nature of this model allows 
setting a 0.2 probability value as the threshold (Coro et al., 2013a, 
2016a). 

Since discrepancy and agreement calculation does not indicate if one 
distribution corresponds to more suitable habitat than the other, a new 
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metric was introduced for this scope. In particular, a suitability score was 
defined on the discrepancy cells: 

S =

∑
iP'

H(i) −
∑

iP''
H(i)

N  

where i refers to cells on which the two dichotomic P′ and P′′ distribu
tions differ; N is the total number of cells involved in the comparison; 
and PH

' (i) and PH
'' (i) are the compared habitat distributions using new 

thresholds that identify very high probability zones. These thresholds 
were set to the 3rd quartiles of the FS distributions and to 0.8 for 
AquaMaps. The rationale behind the suitability score calculation is that 
if one distribution indicates very high suitability in the discrepancy 
areas more often than the other, that distribution is overall more 
favourable. Thus, S > 0 indicates that the first distribution is more 
suitable than the second (habitat gain) - and vice-versa when S <
0 (habitat loss) - whereas S = 0 indicates overall equal suitability be
tween the two distributions (stable habitat). 

Discrepancy, agreement, and suitability scores over the years can 
identify habitat change. Increasing habitat suitability from 2015 to 2018 
to 2019 and 2020 may indicate overall habitat expansion (gain) in 2020, 
stable suitability may indicate unchanged habitat, and inconstant 
habitat gain and loss over the years can be associated with potential 
habitat change. 

2.4.3. Question 3: Which parameters drove habitat change in 2020? 
MaxEnt also produces single-parameter distributions by training the 

model with one parameter at-a-time. These parameter distributions 
allow inferring the parameter ranges that correspond to higher suit
ability. The inference is straightforward when the involved parameters 
are independent or bring a high contribution (Coro et al., 2013a, 2015b, 
2018c). Our approach enhances parameter independence by re-training 
MaxEnt after removing low-contributing parameters. Intersecting envi
ronmental parameter trends with MaxEnt single-parameter distributions 
identifies the key responsible parameters for habitat change. 

2.4.4. Question 4: Do environmental parameter changes in 2020 depend on 
the COVID-19 pandemic or also on climate change? 

The change in key parameters for our selected species' habitat change 
could be due to statistical inter-annual fluctuations, or to general global- 
scale changes such as climate change or the reduction of anthropogenic 
pressure due to the COVID-19 pandemic. The key factors were investi
gated by searching for other studies that specifically analysed these 
parameters in other locations and correlated their trends to climate 
change or the pandemic. This analysis, combined with the results from 
the previous evaluation phases, clarified the correlation between 
anthropogenic pressure on ecosystems due to the COVID-19 pandemic, 
the coupling with climate change, and potential species habitat change. 

2.5. Complete workflow 

The complete workflow can be summarised as the production and 
comparison of MaxEnt distributions of eight selected Adriatic Sea spe
cies out of OBIS species observations and Argo data. Each step of the 
workflow has code and data associated in the open-source repository 
linked to this paper (see Supplementary Material). The steps can be 
summarised through the following phases: 

2.5.1. Phase 1 
Retrieve Argo data for the Adriatic and aggregate them at 0.1◦ spatial 

resolution (from https://dataselection.euro-argo.eu/). Select probes 
across years that have a mutual distance under 0.5◦. Produce surface, 
bottom, and water-column average values for each environmental 
parameter in every reference time frame, i.e., 2015–2018, 2019, and 
2020. This phase generated 9 datasets (3 aggregations by 3 years) for 
Argo parameters (4 in total), i.e., 36 datasets overall. All processing R 

code and results of this phase are available in the repository linked in the 
Supplementary Material, within the “Phase 1 - Argo Data Preparation” 
folder. 

2.5.2. Phase 2 
Interpolate the 36 environmental parameter datasets through DIVA, 

using data on ocean current speed components and depth, to obtain 
uniform 0.1◦ distributions for the entire Adriatic. Prepare the data as 
ASC files for MaxEnt. The used DIVA notebook and the results of this 
phase are available in the repository linked in the Supplementary Ma
terial, within the “Phase 2 - Environmental Parameter Distributions” 
folder. 

2.5.3. Phase 3 
Retrieve species occurrence records from OBIS (https://obis.org/ma 

nual/access/) and prepare them for MaxEnt. For each species, use 
2015–2018 OBIS species occurrence records and environmental datasets 
(plus depth from GEBCO) within a MaxEnt model to produce 8 floating- 
sensor-based full-variable models for 2015–2018 at 0.1◦ resolution. The 
retrieved and pre-processed OBIS occurrences, the data preparation 
scripts, the link to the MaxEnt software, and the MaxEnt results are 
available in the repository linked in the Supplementary Material, within 
the “Phase 3 - Occurrence Records and First MaxEnt Run” folder. 

2.5.4. Phase 4 
Execute MaxEnt again, for each species, using only the parameters 

that had the highest percent contribution, i.e., those within 95% relative 
difference from the maximum. This phase produced 8 final FS 
2015–2018 models, one for each species. It also modelled each species 
with an optimal selection of parameters associated with their preferred 
depth ranges. For example, it selected depth and bottom-level parame
ters for deep-water and benthic species (Section 3.3). As a further step, 
project the MaxEnt models over the 2019 and 2020 parameter data to 
obtain FS 2019 and FS 2020 models for the 8 species. The MaxEnt re- 
execution results are available in the repository linked in the Supple
mentary Material, within the “Phase 4 - MaxEnt Re-application” folder. 

2.5.5. Phase 5 
Retrieve AquaMaps 2019 and 2050 distributions and downsample 

them to 0.1◦ for consistent comparison with the MaxEnt distributions. 
The retrieved AquaMaps distributions are available as ESRI-grid files in 
the repository linked in the Supplementary Material, within the “Phase 5 
- AquaMaps Distributions” folder. 

2.5.6. Phase 6 
Extract parameter quantiles to study trends over the years. Compare 

MaxEnt distributions to quantify discrepancy and estimate habitat 
change (though suitability score). The results and the used scripts are 
available in the repository linked in the Supplementary Material, within 
the “Phase 6 - Estimate Quantiles” folder. 

2.5.7. Phase 7 
Identify patterns of habitat change (gain, loss, stability). The 

extracted patterns are available in the repository linked in the Supple
mentary Material, within the “Phase 7 - Patterns” folder. 

2.5.8. Phase 8 
Study the main parameter trends to identify those that influenced 

habitat change. Understand the relation between these trends and 
climate change and COVID-19 pandemic (Sections 3.3–3.4). 

3. Results 

Our method produced distribution maps for 2015–2018, 2019, and 
2020 for each of the eight analysed species (Fig. 2). Referring to our 
evaluation questions (Section 2.4), Section 3.1 addresses question 1; 
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Fig. 1. Distribution of the analysed species' occurrence records, used for our floating sensor based ecological niche models.  
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Fig. 2. Ecological niches estimated by our floating sensor based (FS) models for 2015–2018, 2019, and 2020, and AquaMaps 2019 and 2050 over the eight analysed 
species. Coloured species names indicate habitat gain (green), change (red), or stability (blue) in 2020 with respect to 2015–2018. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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Section 3.2 addresses question 2; Section 3.3 addresses question 3; and 
Section 3.4 addresses question 4. 

For the present experiment, our workflow processed overall 
2,166,025 in situ observations for 2015–2018, 364,219 observations for 
2019, and 463,352 observations for 2020. These observations covered 
from ~600 (for chlorophyll-a and DOX) to ~2100 (for temperature and 
salinity) 0.1◦ cells in the Adriatic Sea. OBIS occurrence records that had 
undergone expert review were extracted for these cells to increase 
observation reliability (at the expense of their quantity). The extracted 
records between 2015 and 2018 were 47 for S. officinalis, 189 for 
M. merluccius, 166 for M. barbatus, 39 for S. pilchardus, 30 for 
P. longirostris, 28 for S. solea, 40 for S. mantis, and 27 for E. encrasicolus. 
These observations were distributed across the species' Adriatic habitats 
(Fig. 1). Although they were theoretically unsuitable for building a 
detailed model, they were useful for a macroscopic pattern-change 
analysis of species distributions, in agreement with other ENM ap
proaches that use even a lower number of observations to trace viable 
environmental envelopes for pattern analyses (Coro et al., 2016a; 
Kaschner et al., 2006; Kaschner et al., 2011; Ready et al., 2010; Rees, 
2008). 

3.1. Model consistency 

3.1.1. Variable selection and model optimisation 
Our feature selection criterion was evaluated using the Kuenm R 

package (Cobos et al., 2019), which also allowed us to fine-tune the 
models. This software exhaustively tests the performance of MaxEnt 
with multiple sets of environmental parameters and finds the optimal 
configuration of (i) the analytical form of h - among linear, quadratic, 
product, threshold, hinge, and their combinations (feature classes) - and 
(ii) a penalty factor on the β vector (regularisation multiplier) (Merow 
et al., 2013; Morales et al., 2017). Kuenm allows selecting the optimal 
model based on the highest Akaike Information Criterion value (AIC) 
calculated on a test set. To select the optimal parametrisations of our 
2015–2018 models, several sets of environmental variables were pre
pared and evaluated in two ways: (i) on the entire training set (self- 
performance) and (ii) based on the average AIC over ten randomly 
extracted observation sets, with an 80–20% training-test set ratio for 
each extraction and considering only models with omission rate below 
5%. The prepared sets of environmental variables included the entire 
set, the 95% percent contribution-based set (Section 2.3), and ten 
randomly chosen subsets. 

The Kuenm evaluation estimated that the optimal regularisation 
multipliers for all analysed species ranged around 1. Thus, this param
eter was fixed to 1 for all models for simplicity, i.e. no penalty was set on 
β. Moreover, both self-performance and 80–20% validation indicated 
that the optimal set of environmental variables was the one obtained 
using a 95% threshold percent contribution from the maximum contri
bution. Finally, using a complex h function that combined all feature 
classes was optimal for 80–20% validation and also gained high self- 
accuracy performance. The average AIC over all tests was ~990, 
whereas the average optimal models' AIC was ~860. These results likely 
derive from the fact that our selection criterion discards the predictor 
variables that bring poor and potentially confounding information to the 
model. Moreover, using complex feature classes reduced the over-fitting 
bias (Section 2.3) and thus likely increased validation performance. 

As a further evaluation step, the Receiver Operating Characteristic 
(ROC) curve was traced for each optimal model to conduct a sensitivity 
analysis. This analysis calculated the true-positive rate and the false- 
positive rate using various decision-thresholds on the model output. 
Consequently, all optimal models were verified to achieve an Area Under 
the Curve (AUC) (i.e., the integral of the ROC curve) over 0.95. Specif
ically, AUC was averagely 0.96 [0.954;0.97] for the optimal models, and 
0.83 [0.78;0.95] for sub-optimal models. This property guaranteed that 
the probability distributions simulated by each model were significantly 
higher on species-presence locations than on random locations. All these 

quality checks aimed to optimise model robustness in a context of 
scattered environmental data and few observation data. 

It is worth noting that using AIC as a selection criterion can be prone 
to criticisms, especially because AIC tends to select models with a higher 
number of parameters among equal-likelihood models (Arnold, 2010; 
Guthery et al., 2005). However, issues especially arise if AIC were used 
(i) as the only selection criterion, (ii) without adding prior information 
to guide selection, and (iii) to build models that pretend to assess 
ecological reality (Reside et al., 2019; Roy-Dufresne et al., 2019; Zhang 
et al., 2018). Therefore, our use of AIS, through Kuenm, can be tolerated 
because we (i) did not assume the optimal models to be punctually 
reliable, but generally reliable to assess macroscopic changes when 
compared to each other, (ii) used a prior condition to evaluate only the 
models with omission rates below 5%, (iii) forcibly introduced a further 
parametrisation that involved the 95% percent contribution-based set; 
(iv) added sensitivity analysis to assess model validity further; (v) 
checked model consistency through comparison with AquaMaps; (vi) 
introduced constraints to avoid over-fitting. Indeed, the optimal models 
did not use the highest number of environmental parameters and com
plex regularisation and penalty conditions. 

The optimal parametrisations estimated for the FS 2015–2018 
models were also used for the FS 2019 and FS 2020 projections. The 
resulting optimal distributions are reported in Fig. 2. 

3.1.2. Comparison with AquaMaps 
The dissimilarity between our maps and AquaMaps 2019 was 

reasonably low, i.e., averaging below 20% (19.14%, Table 1). Further
more, a fair kappa agreement (according to Landis and Koch classifica
tion, Landis and Koch (1977)) occurred for 81.3% of the comparisons. 
The greatest discrepancy, corresponding to slight agreement, was found 
for E. encrasicolus and M. merluccius. For these species (Figs. 2-h and -b), 
AquaMap 2019 extended more into south Adriatic. As for AquaMaps 
2050, the IPCC SRES A2 scenario was found to be significantly distant 
from our distributions, with a ~30% average discrepancy and poor/ 
marginal agreement with 87.5% of the distributions. The highest simi
larity - with moderate kappa agreement - occurred for S. mantis (19.2% 
discrepancy vs FS 2015–2018, 17.57% vs FS 2019, and 19.07% vs FS 
2020). The FS models indicated that this species had a stable habitat 
concentrated in northern Adriatic, whereas AquaMaps 2019 estimated a 
possible presence in south Adriatic. Notably, OBIS does not report 
expert-verified occurrences of S. mantis in south Adriatic, which enforces 
the consistency of our model. 

Overall, this assessment indicates that our distributions generally 
agreed with an independent reference model (AquaMaps 2019) and 
were far from an unlikely scenario (AquaMaps 2050). Thus, despite the 
poor data, the predictions of our models were not poor, which permitted 
us to conduct further analyses and extract general patterns over the 
Adriatic. 

3.2. Habitat change classification 

Based on the discrepancy (Table 1) and the suitability score (Table 2) 
calculations, detailed habitat gain and loss trends were traced per spe
cies. In particular, S. officinalis habitat expanded in 2020 with respect to 
both 2015–2018 (+3.95%) and 2019 (+0.14%) with significant 
discrepancy (12.36% vs. 2015–2018 and 7.18% vs. 2019) (Fig. 2-a). 
Distributional differences were found off the Apulian coasts and in the 
south Balkans. The FS 2020 distribution was also similar to AquaMaps 
2019, with substantial kappa agreement, because both the distributions 
indicated extension towards south-east and south-west. In northern 
Adriatic, the FS 2020 map presented a similar distribution to the other 
FS maps, with substantial kappa agreement. This distribution was 
different from AquaMaps 2050 (24.72% discrepancy), which predicted 
habitat loss throughout south Adriatic. Overall, this analysis indicates 
habitat gain for this species in 2020. 

M. merluccius habitat expanded in 2020 with respect to 2015–2018 
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Table 2 
Suitability score comparison between the ecological niche 
models of the eight species involved in our experiment. 
Model names indicate floating sensor models for 
2015–2018 (FS 2015–2018), 2019 (FS 2019), 2020 (FS 
2020), and AquaMaps 2019 and 2050. Scores are reported 
only for the FS models to ease the reading. Coloured 
numbers highlight habitat gain (green), loss (red), or 
stability (blue) in 2020. Coloured species names indicate 
habitat gain (green), change (red), or stability (blue) in 
2020 with respect to 2015–2018. 

Table 1 
Discrepancy between the ecological niche models of 
the eight species involved in our experiment. Model 
names refer to floating sensor models for 2015–2018 
(FS 2015–2018), 2019 (FS 2019), 2020 (FS 2020), and 
AquaMaps 2019 and 2050. Coloured numbers refer to 
Cohen's kappa values corresponding to at-least- 
moderate (green), slight (orange), or poor agreement 
(red) according to Landis & Koch interpretation. Bold- 
highlighted text indicates the most similar distribution 
for each model. Coloured species names indicate 
habitat gain (green), change (red), or stability (blue) 
in 2020 with respect to 2015–2018. 
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(+5.68%) but minimally lost habitat with respect to 2019 (− 0.36%) 
(Fig. 2-b). The discrepancy vs 2019 (5.89%) was lower than vs 
2015–2018 (17.82%). The similarity between FS 2020 and FS 2019 was 
due to minimal differences in the south-eastern Adriatic. Furthermore, 
FS 2019 reported habitat gain (+7.04%) against FS 2015–2018, which 
indicated an increasing habitat extension trend over the years. The 
greatest discrepancy between FS 2020 and AquaMaps 2019 was in the 
south Adriatic, where AquaMaps reported high suitability. The FS 2020 
distribution was also different from AquaMaps 2050 (41.03% discrep
ancy) due to the AquaMaps-predicted habitat loss throughout south 
Adriatic in 2050. Overall, this analysis suggests habitat gain for this 
species in 2020 because its habitat substantially expanded with respect 
to 2015–2018 and was similar to a habitat-favourable 2019. 

Similarly, M. barbatus habitat expanded in 2020 with respect to 
2015–2018 (+3.38%) and slightly lost habitat with respect to 2019 
(− 1.94%) (Fig. 2-c). The discrepancy vs 2019 (9.20%) was lower than vs 
2015–2018 (16.24%). The similarity between FS 2020 and FS 2019 was 
due to minimal differences in middle Adriatic. Furthermore, FS 2019 
resulted in habitat gain (+7.61%) against FS 2015–2018, which indi
cated an increasing habitat extension trend over the years. The FS 2020 
was also similar to AquaMaps 2019 (19.6% discrepancy and moderate 
agreement) because both models reported high suitability for south 
Adriatic. For this reason, FS 2020 was different from AquaMaps 2050 
(27.42% discrepancy and poor agreement), which foresaw habitat loss in 
south Adriatic. Overall, this analysis indicates habitat gain for 
M. barbatus in 2020 because its habitat substantially expanded with 
respect to 2015–2018 and was similar to an advantageous 2019. 

S. pilchardus habitat expanded with respect to 2015–2018 (+4.6%) 
but substantially lost habitat with respect to 2019 (− 5.46%) (Fig. 2-d). 
The discrepancy between FS 2020 and FS 2019 (29.6%) was concen
trated off Apulian coasts (with gain in 2020) and in the Balkans (with 
gain in 2019). Furthermore, FS 2019 reported habitat gain (+4.31%) vs 
2015–2018 especially in south-western Adriatic and off central Italian 
coasts. Thus, habitat trend was not stable, and the FS 2020 habitat 
suitability patterns changed with respect to FS 2015–2018 and FS 2019. 
Due to the high suitability reported in south Adriatic, all FS distributions 
had moderate agreement with AquaMaps 2019. The discrepancy be
tween FS 2020 and AquaMaps 2050 (20.89%) was lower than the one of 
the previous species because also AquaMaps 2050 foresaw suitable 
habitat in 2050 in south Adriatic. Overall, this analysis indicates habitat 
change for S. pilchardus in 2020 because no definite trend and pattern 
was present across the models. 

Similarly, P. longirostris habitat expanded with respect to 2015–2018 
(+8.33%) but substantially lost habitat with respect to 2019 (− 7.04%) 
(Fig. 2-e). The discrepancy between FS 2020 and FS 2019 (20.83%) was 
concentrated in the south and middle Adriatic (with gain in 2019). In the 
same areas, FS 2019 reported substantial habitat gain (+14.87%) vs 
2015–2018. Thus, habitat trend was unstable since the FS 2020 habitat 
suitability patterns were substantially different with respect to FS 
2015–2018 and FS 2019. All FS distributions had moderate kappa 
agreement with AquaMaps 2019 due to the high habitat suitability 
AquaMaps indicated in south Adriatic. In contrast, since AquaMaps 
2050 indicated great habitat loss in south Adriatic, the discrepancy with 
FS distributions was large (42.37% average). Overall, this analysis in
dicates habitat change for P. longirostris in 2020 because no definite trend 
and pattern was present across the models. 

S. solea slightly gained habitat with respect to 2015–2018 (+0.5%) 
and presented stable habitat suitability with respect to 2019 (Fig. 2-f). 
The discrepancy between FS 2020 and FS 2015–2018 (6.75%) was due 
to a slightly higher suitability area off Apulian coasts by FS 2020. The 
habitat change trend was thus stable, and the similarity and the kappa 
agreement between the FS 2020 and the other distribution was sub
stantial. The FS distributions also had substantial kappa agreement with 
AquaMaps 2019, with very similar patterns throughout the Adriatic. 
Since AquaMaps 2050 foresaw great habitat loss in south Adriatic 
(except for a small area in southern Balkans), its discrepancy with 

respect to the FS distributions was high (34.63%). Overall, this analysis 
indicates stable habitat for S. solea from 2015 to 2018 to 2020. 

S. mantis slightly gained habitat with respect to 2015–2018 
(+0.36%) and slightly lost habitat with respect to 2019 (− 0.72%) 
(Fig. 2-g). The discrepancy between FS 2020 and the other FS distri
butions was concentrated off the Apulian coasts. The habitat change 
trend was overall stable, and kappa agreement between the FS 2020 and 
the other distribution was substantial. The FS distributions also had 
moderate kappa agreement with AquaMaps 2019, which reported 
habitat suitability for most of the Adriatic. Since AquaMaps 2050 re
ported high probability areas in northern and middle Adriatic and off 
northern Albanian coasts, kappa agreement with the FS maps was 
moderate. Overall, S. solea presented an overall stable habitat from 2015 
to 2018 to 2020. 

E. encrasicolus presented stable habitat distribution with respect to 
2015–2018 and a slight suitability loss with respect to 2019 (− 1.15%) 
(Fig. 2-h). The discrepancy between FS 2020 and FS 2019 was due to a 
higher probability area off Albanian coasts. The habitat change trend 
was overall stable, and the mutual similarity had substantial kappa 
agreement. The FS distributions also had moderate kappa agreement 
with AquaMaps 2019, which presented a decreasing gradient from north 
to south. Since AquaMaps 2050 reported habitat loss for middle and 
south Adriatic, kappa agreement with the FS maps was poor. Overall, 
E. encrasicolus presented an approximately stable habitat from 2015 to 
2018 to 2020. 

3.3. Habitat change due to environmental parameter change 

The key driving parameters for habitat change in 2020 were iden
tified through the analysis of their percent contributions (Table 4). 
Notably, the MaxEnt parameter selection corresponded to known envi
ronmental preferences of the studies species. For example, M. barbatus 
lives in sandy, muddy bottoms near river mouths (Esposito et al., 2014), 
and indeed its key parameters were bottom temperature and depth, but 
also chlorophyll-a and DOX averages in the upper water column. 
S. pilchardus habitat-depth ranges between 10 and 100 m (Santos et al., 
2006), and indeed it was associated with bottom and water-column 
averaged parameters. P. longirostris is a deep-water species, and its 
habitat was indeed highly dependent on depth. However, its distribution 
also depends on temperature and DOX in the water column (Ardizzone 
et al., 1990) as confirmed by our MaxEnt model. 

The single-parameter charts of FS 2015–2018 - produced by MaxEnt 
after training - were used to identify the most significant driving factors 
of the change (Fig. 3). In addition, parameter quartiles were extracted to 
understand if variation trends could be identified among the driving 
factors (Table 3). To enhance readability, only the parameter distribu
tions that were sensitive to parameter change over the years, i.e., with 
probability density variation over 0.05 - were reported in Fig. 3. Other 
probability distributions indicated non-significant variation in corre
spondence of the median parameter change over the years (e.g., they 
reported a plateau over the variation range), and were omitted. Since 
this analysis was conducted on the optimal models, only the parameters 
that showed significant percent contribution were analysed for each 
species' distribution. 

As regards the species that expanded habitat, S. officinalis was mainly 
supported by a general decreasing trend, from 2015 to 2020, of average 
DOX (with median going from 234.1 to 213.7 μmol/kg, Table 3) and an 
increasing trend of bottom temperature over the years (with median 
rising from 14.15 to 14.32 ◦C, Table 3). These two parameters signifi
cantly contributed to the MaxEnt model, and their trends went towards 
maxima of the single-parameter densities (Fig. 3-a). Change in the other 
parameters did not influence habitat gain and thus was not discussed. 
M. merluccius and M. barbatus expanded habitat especially because of 
increasing bottom temperature trend and decreasing average 
chlorophyll-a over time (from 0.039 to 0.034 mg/m3, Table 3). These 
changes moved the habitat to higher MaxEnt probability values and 
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Fig. 3. Single-parameter MaxEnt probability 
densities across the studied species. Only the 
charts of the key parameters driving habitat 
gain and change are reported. Coloured species 
names in the chart titles indicate those that 
gained (green) or changed (red) habitat in 2020 
with respect to 2015–2018. Vertical bars high
light the values in 2015–2018 and 2020 at the 
intersection with medians as dashed lines and 
quartiles 1 and 3 as dotted lines. A green hori
zontal arrow, from a red to a green vertical line, 
indicates a general habitat suitability increase 
from 2015 to 2018 to 2020. Conversely, a yel
low horizontal arrow, from a green to a red 
vertical line, indicates habitat suitability 
decrease from 2015 to 2018 to 2020. (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.)   
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consequently increased habitat gain (Figs. 3-b and -c). 
As regards the species that changed habitat, the inconstant trend of 

S. pilchardus was due to average DOX and average chlorophyll-a 
decrease (Table 3). This decrease changed habitat suitability in 2020 
with respect to 2015–2018 (Fig. 3-d), and also generated different pat
terns between the FS 2019 and 2020 distributions. Habitat change for 
P. longirostris was mainly driven by surface temperature modulations 
(from 16.6 ◦C in 2015–2018 to 19.7 ◦C in 2019 and 18.4 ◦C in 2020, 
Table 3) and surface DOX modulations (from 228.36 μmol/kg in 
2015–2018 to 227.8 μmol/kg in 2019 and 214.7 μmol/kg in 2020, 
Table 3). For this species, this parameter combination resulted in a less 
favourable habitat in 2020 than the previous years (Fig. 3-e). 

The species with stable habitat distributions presented a robust 
response to environmental change, and no parameter could be high
lighted over the others. 

3.4. Environmental parameter relation with climate change and COVID- 
19 pandemic 

The parameters that principally drove distribution changes - i.e., 
temperature, chlorophyll-a, and DOX - were analysed to understand if 
their change depended on inter-annual climatic variations, general 
climate change trends or the COVID-19 pandemic (Table 5). 

The general change of temperature positively affected the distribu
tions of S. officinalis, M. merluccius, M. barbatus, but negatively the one of 
P. longirostris. Despite the cooling effect of La Niña since August 2020 - 
which mainly affected surface temperature - global temperature 
increased up to 1.2 ◦C above pre-industrial value (DownToEarth, n.d.; 

Table 4 
Percent contribution and permutation importance of the most 
habitat-predictive parameters for the 8 analysed species. Bold- 
highlighted text indicates, for each species, the major drivers of 
habitat change from 2015 to 2018 to 2020. Coloured species 
names indicate habitat gain (green), change (red), or stability 
(blue) in 2020 with respect to 2015–2018. 

Table 3 
Median, 1st and 3rd quartiles of the environmental parameter distributions used 
in our experiment over the Adriatic Sea, estimated from Argo data. Average 
aggregation type indicates parameter average over the entire water column.  

Parameter 
name 

Aggregation 
type 

Years Median 1st 
Quartile 

3rd 
Quartile 

Temperature 
(◦C) 

Average 2015–2018 14.95 14.94 15.02 
2019 14.74 14.74 14.75 
2020 15.26 15.25 15.26 

Bottom 2015–2018 14.15 14.14 14.16 
2019 14.10 14.09 14.10 
2020 14.32 14.31 14.32 

Surface 2015–2018 16.58 16.50 18.48 
2019 19.67 18.51 19.71 
2020 18.40 18.35 18.55 

Salinity (PSU) Average 2015–2018 38.83 38.83 38.83 
2019 38.90 38.90 38.90 
2020 38.97 38.97 38.97 

Bottom 2015–2018 38.82 38.82 38.82 
2019 38.86 38.85 38.86 
2020 38.90 38.89 38.90 

Surface 2015–2018 38.78 38.77 38.78 
2019 38.80 38.80 38.82 
2020 39.01 39.00 39.01 

Chlorophyll-a 
(mg/m3) 

Average 2015–2018 0.0391 0.0389 0.0392 
2019 0.0366 0.0365 0.0377 
2020 0.0343 0.0331 0.0344 

Bottom 2015–2018 0.0051 0.0027 0.0052 
2019 0.0056 0.0056 0.0057 
2020 0.0028 0.0027 0.0029 

Surface 2015–2018 0.0436 0.0432 0.0438 
2019 0.2213 0.2202 0.2222 
2020 0.1896 0.1888 0.1907 

Dissolved 
oxygen 
(μmol/kg) 

Average 2015–2018 234.12 228.72 234.26 
2019 220.50 219.88 220.53 
2020 213.70 213.67 213.72 

Bottom 2015–2018 214.32 212.41 214.39 
2019 216.81 216.40 216.84 
2020 210.33 210.16 210.35 

Surface 2015–2018 228.36 228.25 228.64 
2019 227.80 227.66 227.92 
2020 214.73 214.47 214.84  
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United Nations, 2021a; World Meterological Organization, 2021). 
Similarly, the general decrease of DOX positively affected the habitat 

of S. officinalis, but negatively the habitats of S. pilchardus and 
P. longirostris. Although in 2020 DOX increased in several world areas, as 
the consequence of the quality improvement of coastal environments 
during the pandemic (Arif et al., 2020), in the Adriatic Sea the trend has 
been strongly decreasing in the last two decades (Kralj et al., 2019b). 
The Adriatic has a generally increasing DOX gradient from north to 
south consequent to its water circulation, a decreasing nutrient con
centration provided by rivers, and a higher phytoplankton development 
in northern regions (especially in autumn and winter) (Zavatarelli et al., 
1998). The overall average DOX decrease trend is probably due to a 
general DOX depletion at the Adriatic Sea floor. DOX level correlates 
with plankton respiration and benthic oxygen consumption, which has 
been exceeding the oxygen produced by microalgae and the one coming 
from oxygenated water (Kralj et al., 2019b; Lipizer et al., 2014). This 
condition has been assessed as being a probable consequence of bottom 
temperature and salinity increase due to climate change (Kralj et al., 
2019a; Lipizer et al., 2014; Marasović et al., 2005), and indeed was 
never observed before 1984 (Justić et al., 1987). 

Conversely, the strong chlorophyll-a decrease in 2020 - i.e., − 6% in 
the water column, − 50% at the sea bottom, and − 14% at the surface 
than 2019, based on the Argo data (Table 3) - could be correlated with 
the COVID-19 pandemic. Although this correlation cannot be demon
strated with our data, some supporting conjectures can be reported from 
other studies. Chlorophyll-a is indeed one of the main indicators of 
ocean productivity and is an integral part of the carbon cycle and oxygen 
production. The carbon cycle indeed depends on carbon dioxide con
sumption during photosynthetic primary production and inorganic 
carbon production during biomineralisation. The global balance of the 
natural carbon cycle implies that a large decrease of carbon dioxide 
(CO2) in the atmosphere likely corresponds to a lower chlorophyll-a 
level because of the lower demand for CO2 uptake (Shehhi and 
Samad, 2021). In 2020, a 7% reduction in the global carbon dioxide 
emissions was measured from satellite and in situ estimates due to big 
industry closure in several world countries with high industrial activity 
and large population (Le Quéré et al., 2020). As a probable consequence 
(Adwibowo, 2020; Mishra et al., 2020), a consistent decrease of 
chlorophyll-a was observed in many areas throughout 2020. For 
example, a 123 t reduction of CO2 emission in south China corresponded 
to a measured 5% reduction of chlorophyll-a during the pandemic 
(Shehhi and Samad, 2021). This phenomenon was also observed in 

north Europe, South Korea, south-east United States, the Pacific Ocean, 
Middle East, western Africa, and south-east Australia. Thus, the 
chlorophyll-a decrease was probably a global phenomenon correlated 
with anthropogenic activity reduction (Shehhi and Samad, 2021). 

Thus, our analysis indicates that the COVID-19 pandemic likely 
resulted in modifying three species habitats among those studied: it 
positively affected the distributions of M. merluccius and M. barbatus, but 
negatively the one of S. pilchardus. 

4. Discussion and conclusions 

This paper has presented an analysis of habitat change in 2020 with 
respect to the previous years (2015–2018 aggregated and 2019), based 
on floating sensor information and species occurrence records from the 
OBIS data collection. Our experiment estimated the habitat of 8 com
mercial species of the Adriatic Sea over this period. The produced 
ecological niche distributions were sufficiently reliable when compared 
to those produced by an independent model. They were similar to a 
model based on 2019 environmental conditions (AquaMaps 2019) and 
very distant from a model based on a currently improbable environ
mental scenario (AquaMaps 2050). 

Our distributions were suitable for a pattern analysis to investigate if 
habitat change depended on climate change or the COVID-19 pandemic. 
The main parameters that influenced habitat change were the general 
increase of temperature and the overall decrease of dissolved oxygen 
and chlorophyll-a. Although the observed temperature and DOX trends 
depend on climate change, the chlorophyll-a decrease in 2020 was likely 
a consequence of the COVID-19 pandemic. 

Although some species - S. solea, S. mantis, and E. encrasicolus - were 
not significantly affected by these changes, heterogeneous effects on the 
other species habitat were observed. The increasing temperature and 
decreasing DOX trends - i.e., the potential effects of climate change - 
negatively affected the distribution of P. longirostris by making its habitat 
overall unstable and less suitable in 2020 than in 2019. This potential 
negative dependency on climate change finds confirmation by several 
studies on this species (Colloca et al., 2014; Quattrocchi et al., 2020; 
Sbrana et al., 2019; Ungaro and Gramolini, 2006). Conversely, these 
trends favoured S. officinalis and extended its potential habitat, in 
agreement with other studies that analysed its response to the single 
parameter changes (Capaz et al., 2017; Palmegiano and d'Apote, 1983). 

The potential coupling between climate change and COVID-19 - 
manifested as a simultaneous decreasing trend of DOX and chlorophyll-a 
- negatively affected the distribution of S. pilchardus. Other studies have 
also reported habitat instability of this species' habitat as the conse
quence of the variation of these parameters (Ganias, 2009; Sinovčić, 
2001). However, the combination of rising temperature and decreasing 
chlorophyll-a positively affected the habitats of M. merluccius and 
M. barbatus. This observation agrees with parameter-specific indications 
by other studies (García-Rodríguez et al., 2011; Gucu and Bingel, 2011; 
Sabates et al., 2015; Sion et al., 2019). These two species were the major 
beneficiary of the two parameter trend combination. Thus, reduced 
anthropogenic stress on ecosystems in 2020 was beneficial for some 
species' habitats. 

4.1. Reusability and limitations of the approach 

Our approach predicted potential general consequences of climate 
change on species habitat and its coupling with the COVID-19 pandemic. 
In this view, it can be useful for integrated environmental assessments 
(Antunes and Santos, 1999; Kristensen, 2004). For example, it can be 
combined with human activity analysis and when estimating available 
biomass, and can be used in models that predict risk of regime shift 
caused by habitat loss (Deyoung et al., 2008; Graham et al., 2015; 
Wernberg et al., 2016). Notably, the potential effects of reduced fishing 
activity - due to sanitary restrictions and market closure - on habitat 
distributions are yet unclear. Only a 10% reduction of fishing hours with 

Table 5 
Summary of the principal environmental parameters that drove species distri
bution change in 2020. For each parameter, the table reports (i) the general 
(increasing/decreasing) trend with respect to the past years, (ii) the main rea
sons of the change, (iii-iv) the species whose distributions were positively 
affected (i.e. they increased in 2020) or negatively affected by that parameter 
change.  

Principal 
parameters 
that drove 
selected- 
species 
distribution 
change in 2020 

General 
trend in 
2020 wrt 
past years 

Possible 
reason of 
the 
change 

Species with 
positively 
affected 
distribution by 
the change 

Species with 
negatively 
affected 
distribution 
by the change 

Temperature Increasing Climate 
change 

Sepia officinalis, 
Merluccius 
merluccius, 
Mullus barbatus 

Parapenaeus 
longirostris 

Dissolved 
Oxygen 

Decreasing Climate 
change 
and 
pollution 

S. officinalis Sardina 
pilchardus, P. 
longirostris 

Chlorophyll-a Decreasing COVID-19 
pandemic 

M. merluccius, 
M. barbatus 

S. pilchardus  
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respect to the 2019 level has been estimated globally (for large and small 
scale fisheries) (Clavelle, 2020; WWF, 2020). Furthermore, the overall 
fishing activity reduction was just 4% in the Italian seas (Clavelle, 2020). 
Such a low reduction possibly had minor effects on the habitat distri
butions of our analysed species and will be the subject of our future 
investigations. Our approach is also general enough to be applied to 
other species and areas. To this aim, our workflow uses FAIR data that 
have a global-scale coverage. Furthermore, our software is open source, 
and all data are reported under the ESRI-grid format (see Supplementary 
Material). Specifically, the optimal MaxEnt models and the data are all 
available as raster ESRI-grid files in the repository linked in the Sup
plementary Material, within the “Phase 4 - MaxEnt Re-application/ 
MaxEnt Distributions and Statistics” folder, for re-use in GIS software 
and other experiments. 

The main limitation of our experiment is the low amount of data 
used, due to current data availability, which was partially compensated 
by accurate data selection and model optimisation. Although the pro
posed Adriatic-scale pattern analysis is reliable enough to extract habitat 
change trends, the produced maps cannot be considered punctually 
reliable (Queiroz et al., 2021). Conducting a precise analysis will require 
collecting, collating, and analysing a massive amount of data that will be 
available only years after the end of the pandemic. Nevertheless, data- 
poor approaches like ours can predict realistic macroscopic patterns 
and indicate priority directions for investigating species modifications in 
the search for confirmation or confutation of the reported results (Coro 
et al., 2015b, 2016a). In this view, our model allows looking ahead to 
the possible significant modifications that will possibly be observed in 
the Adriatic in the following years due to the impact of the combined 
action of the COVID-19 pandemic and climate change on species dis
tributions. Small-scale reliability can also be enhanced in our model 
when marine environmental data and species records will be more dense 
and uniform in the study area. Several initiatives are promoting the 
collection of these data (EU Commission, 2020a; EU Commission, 
2020b; Snapshot-CNR, 2020), but they are ongoing and main address 
regional scales. These data will be a fundamental source of information 
to repeat our analysis and validate its predictions. We believe that these 
activities are justified to understand the effects of natural and man-made 
pressure on marine ecosystems in current and future scenarios. Our 
study also confirmed that in order to realise the UN Decade on 
Ecosystem Restoration motto “the science we need for the ocean we 
want” (United Nations, 2021b) an Open Science approach can be 
successful. 
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Marasović, I., Ninčević, Ž., Kušpilić, G., Marinović, S., Marinov, S., 2005. Long-term 
changes of basic biological and chemical parameters at two stations in the middle 
adriatic. J. Sea Res. 54, 3–14. 
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Rixen, M., Alvera-Azcárate, A., Belounis, M., Capet, A., et al., 2012. Generation of 
analysis and consistent error fields using the data interpolating variational analysis 
(diva). Ocean Model 52, 90–101. 

Ungaro, N., Gramolini, R., 2006. Possible effect of bottom temperature on distribution of 
parapenaeus longirostris (Lucas, 1846) in the southern adriatic (mediterranean sea). 
Turk. J. Fish. Aquat. Sci. 6. 

United Nations, 2021a. Cooling La Niña is on the Wane, but Temperatures Set to Rise: UN 
Weather Agency. https://news.un.org/en/story/2021/02/1084222. 

United Nations, 2021b. UN Decade on Ecosystem Restoration. https://www.decad 
eonrestoration.org/. 

Von Schuckmann, K., Le Traon, P.Y., Smith, N., Pascual, A., Brasseur, P., Fennel, K., 
Djavidnia, S., Aaboe, S., Fanjul, E.A., Autret, E., et al., 2018. Copernicus marine 
service ocean state report. J. Operation. Oceanogr. 11, S1–S142. 

Wang, L., Kerr, L.A., Record, N.R., Bridger, E., Tupper, B., Mills, K.E., Armstrong, E.M., 
Pershing, A.J., 2018. Modeling marine pelagic fish species spatiotemporal 
distributions utilizing a maximum entropy approach. Fish. Oceanogr. 27, 571–586. 

Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in maxent: the importance of 
model complexity and the performance of model selection criteria. Ecol. Appl. 21 
(2), 335–342. 
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