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Abstract: The transmission of viruses from animal hosts into humans have led to the emergence of
several diseases. Usually these cross-species transmissions are blocked by host restriction factors,
which are proteins that can block virus replication at a specific step. In the natural virus host,
the restriction factor activity is usually suppressed by a viral antagonist protein, but this is not
the case for restriction factors from an unnatural host. However, due to ongoing viral evolution,
sometimes the viral antagonist can evolve to suppress restriction factors in a new host, enabling
cross-species transmission. Here we examine the classical case of this paradigm by reviewing research
on APOBEC3 restriction factors and how they can suppress human immunodeficiency virus (HIV)
and simian immunodeficiency virus (SIV). APOBEC3 enzymes are single-stranded DNA cytidine
deaminases that can induce mutagenesis of proviral DNA by catalyzing the conversion of cytidine
to promutagenic uridine on single-stranded viral (−)DNA if they escape the HIV/SIV antagonist
protein, Vif. APOBEC3 degradation is induced by Vif through the proteasome pathway. SIV has been
transmitted between Old World Monkeys and to hominids. Here we examine the adaptations that
enabled such events and the ongoing impact of the APOBEC3-Vif interface on HIV in humans.

Keywords: immunodeficiency virus; APOBEC3; restriction factor; Vif; protein-protein interactions;
cross-species infection; virus transmission

1. Introduction

Spillover of viruses from animal hosts have led to the emergence of several human
diseases including COVID-19, severe acute respiratory syndrome (SARS), Nipah, Ebola,
influenza and acquired immunodeficiency syndrome (AIDS) [1–4]. Several factors includ-
ing the nature of contact between the animal host and humans, host restriction factors and
viral factors determine the establishment of a new virus and its spread within the human
population [1–4]. To establish replication in a host, a virus needs to overcome several
restrictions posed by the host at various stages of the virus life cycle including entry of the
virus in appropriate cells, trafficking within the cell, replication, assembly, and release. The
host factors that cause these restrictions and make the host cell resistant to viral infection are
referred to as cellular restriction factors [5]. To overcome these multiple barriers presented
by the host, the virus must make corresponding changes in its genome [6]. Thus, these
cellular restriction factors are always evolving under strong positive selection pressure to
acquire adaptations that circumvent suppression by viral pathogens.

This positive selection of restriction factors leads to differences in functionality, even
in similar species, resulting in the ability of these cellular restriction factors to also act as
barriers to the cross species transmission of viruses [7]. To successfully overcome these
barriers and infect a new host, the virus needs to make adaptive changes in its genes that
can counteract the new host’s restriction factor. To prove that a particular host factor can
act as cross species transmission barrier it is imperative to identify changes in the virus
correlating to host switching events and demonstrating a gain of function to counteract the
host restriction factor in the new host.
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AIDS, which is caused by the human immunodeficiency virus (HIV), is a classic
example of spillover of an animal virus into humans. HIV and related immunodeficiency
viruses are lentiviruses, a genus of retroviruses where infection is characterized by long
incubation periods between infection and onset of disease. The study of the emergence of
AIDS also exemplifies how a cellular restriction factor can act as a cross species transmission
barrier and how a virus adapts to overcome this barrier. This review examines cross species
transmission of the simian immunodeficiency virus (SIV) between primates, with specific
focus on the APOBEC3 family of cellular restriction factors that act as single-stranded (ss)
DNA cytosine deaminases.

2. Origin of the Immunodeficiency Virus in Humans

The world first became aware of AIDS in the early 1980s, although it had become
well established in the human population within the Belgian colonized region of the
Congo in the early 1900s [8]. Colonization practices enhanced the interaction of people
with primates, led to the reuse of syringes in population wide medical programs, and
increased the number of clients for each sex worker, which fueled spread and adaptation of
HIV [8–10]. Two lentiviruses—human immunodeficiency viruses Type 1 and Type 2 (HIV-1
and HIV-2)—can cause AIDS in humans. Ever since HIV was first discovered, the reason
for its emergence and origin have been subject of intense study. Over the years, scientists
have made significant progress in tracing the history of HIV, using advanced genetic and
biochemical techniques. Many species of Old World Monkey (OWM) have been found to
be infected with SIV. SIVs are present in more than 40 non-human primate species [11]. The
only three primate species to transmit their viruses to humans are chimpanzees, gorillas
and sooty mangabeys [1,12].

Each of the groups of HIV originated from a single species jump. There are four
lineages within HIV-1, groups M, N, O, and P. Groups M and N have been shown to
originate from crossover events from chimpanzee. Group P is a jump from gorillas, and
the evidence is not clear whether Group O originated from a crossover event from a
chimpanzee or gorilla [1,12]. Given their close genetic relationship, it is plausible that
chimpanzees and gorillas, but not monkeys transmitted their viruses to humans. However,
there is one remarkable exception. The SIVsmm of sooty mangabeys was transmitted to
humans at least nine independent occasions giving rise to HIV-2 groups A-I [1,13]. At each
of these cross-species transmission events, virus adaptation to host restriction factors was
necessary for successful infection and transmission within the new host group.

3. Lentiviral Restriction Factors and Their Viral Antagonists

Restriction factors are cell intrinsic immune proteins that can restrict the replication of
a virus at a specific step of replication or infection [5]. These proteins can decrease virus
replication significantly, usually have their expression responsive to the innate immune
response, and are at most times, susceptible to a viral counteraction mechanism, which
often is a protein–protein interaction between the host and virus proteins [5]. Due to this
combat at the protein level, the restriction factors show signs of positive selection indicating
that rapid evolution is occurring, usually at the protein–protein interface between the virus
and the host. This ensures, that in time, the restriction factor will overcome, at least partially,
the viral antagonist, until further evolution of the viral antagonist protein takes place [5,6].

Several cellular restriction factors have specific viral antagonists. Bone marrow stromal
antigen 2 (BST-2) or tetherin is a cellular transmembrane protein that blocks viral release
from cells, causing them to be endocytosed and degraded [14]. The action of tetherin is
suppressed by Vpu or Nef in HIV-1 and Env (envelope glycoprotein) in HIV-2 and SIV [15].
Another type of membrane protein, serine incorporator protein 3 (SERINC3) and SERINC5
can inhibit viral fusion, but this action is suppressed by Nef or Env in HIV-1, HIV-2 and
SIV [16,17]. The SAM and HD domain-containing protein 1 (SAMHD1) in dendritic and
myeloid cells reduces the intracellular deoxynucleotide triphosphate pool through its
triphosphohydrolase activity which prevents completion of reverse transcription, but is
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suppressed by Vpx which is produced from HIV-2 and SIV, but not HIV-1 [18,19]. The focus
of this review, the apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like
3 (APOBEC3) family of enzymes are ssDNA cytosine deaminases that can induce mutation
of proviral DNA, but are suppressed by Vif in HIV-1, HIV-2, and SIV [20]. Interestingly,
all of these counteraction mechanisms by the virus hijack cellular degradation pathways,
either through the lysosome or proteasome. However, the substrates for degradation are
usually virus and host specific. For example, the Vif of SIV from an OWM can induce
degradation of that monkey’s APOBEC3 enzymes, (e.g., African Green Monkey (AGM)),
but not those of humans. Thus, the cross species barrier is formed. Other restriction
factors without viral antagonists are part of the interferon response that greatly decreases
HIV infection and is mediated by tripartite motif-containing protein 5α (TRIM5α) and
myxovirus resistance B (MxB), among others [21]. TRIM5α destabilizes capsid uncoating
and MxB inhibits nuclear import of the preintegration complex [22–27].

Among all these restriction factors, APOBEC3s are one of the most potent restriction
factors that are known to restrict lentivirus replication. Their multifunctional restriction
mechanism and the number of paralogs that can restrict lentiviruses is unique among the
restriction factors. Sheehy et al. first reported identification of a protein called CEM-15, later
called apolipoprotein B mRNA editing enzyme catalytic polypeptide–like 3G (APOBEC3G;
A3G) as a novel cellular restriction factor that inhibits HIV-1 replication [28]. Shortly
thereafter it was realized that there are seven A3 enzymes in humans that exist in a
tandem cluster on Chromosome 22 and are named alphabetically (A3A, A3B, A3C, A3D,
A3F, A3G, and A3H) [29,30]. Despite this featureless naming system, each A3 enzyme
has unique properties that results in differing abilities to restrict the replication of viral
pathogens, with their restriction of lentivirus and retrotransposon replication being most
studied [31,32]. However, as will be described, only those A3 enzymes localized in the
cytoplasm can restrict lentiviruses, whereas others that localize to the nucleus can restrict
viruses with nuclear replication, such as DNA viruses [33]. APOBEC3s in both the nucleus
and cytoplasm can restrict retrotransposons [34].

4. Overview of APOBEC3s

The A3 family of enzymes are all cytosine deaminases on ssDNA, although some
can also deaminate RNA [31,35]. In primates, there are at least seven members in the A3
family [36]. Although initially given the letter names, there is an additional and more
universal naming system based on their conserved zinc-dependent deaminase domain
(ZDD) [37]. The characteristic feature of the A3 family is that they contain one (A3A,
A3C, A3H) or two (A3B, A3D, A3F, A3G) copies of a ZDD, with the consensus sequence
H-X-E-X23-28-P-C-X2-4-C [37]. The variation in the ZDD consensus sequence results in
three distinct phylogenetic clusters termed Z1, Z2 or Z3 [37]. In humans, A3H represents
the only Z3 domain [37]. Some double domain enzymes, such as A3G are a Z2-Z1 type,
but others, such as A3D and A3F are Z2-Z2 [37]. For human A3 enzymes that have two
ZDD, only the C-terminal domain (CTD) is catalytically active, although both coordinate
Zn2+ [38]. The histidine and cysteines of the Z-domain coordinate the Zn2+ while the
glutamate participates in deaminase activity by shuttling the proton that activates a water
molecule for nucleophilic attack of the cytosine in the active domain [39,40]. A3 enzymes
deaminate within a preferred di- or tri- nucleotide substrate motif. A3G preferentially
deaminates 5’CCC or 5’CC (underlined primarily C deaminated) while A3D, A3F, A3H
and A3C prefer a 5’TTC or 5’TC motif [41–43]. It has been reported that A3D can also
deaminate 5’GC motif [44].

When a lentivirus, such as HIV-1, infects a CD4+ T cell where A3s are expressed, the
A3s in the cytoplasm are able to become encapsidated into newly formed virions (Figure 1).
In humans, A3G, A3F, A3D, A3H (Haplotypes II, V, and VII), and A3C variant S188I are
able to restrict HIV-1 replication to varying degrees [28,42–48]. A3H occurs in primates
as several different haplotypes with differing cellular stabilities based on their propensity
to become ubiquitinated and different cellular localizations [49,50]. The haplotypes that
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restrict lentiviruses are stable in cells and localized to the cytoplasm [45,49–52]. For A3C,
the common form does not restrict HIV, although it is encapsidated, but the S188I variant
present in 10% of people of African descent, and is able to restrict HIV due to an acquired
ability to dimerize, which increases its restriction ability [48,53]. These A3s are able to
bind viral genomic RNA and/or HIV-1 Gag, which enables their encapsidation [54–56].
Other A3s such as A3A and A3B do not restrict HIV-1 in CD4+ T cells. A3A is primarily
expressed in cells of the monocyte lineage and is not encapsidated into virions due to a
low binding affinity for RNA [57–60]. A3B has a nuclear localization signal and is not in
the correct cellular localization for encapsidation [61,62]. When these virions infect a new
cell, the encapsidated A3 can restrict viral replication by binding to the genomic RNA to
physically inhibit reverse transcriptase during synthesis of (−)DNA from the RNA genome
or the (+)DNA to form the double-stranded DNA provirus (Figure 1) [63–66]. However, the
more dominant mode of restriction is by enzymatically deaminating cytosines on single-
stranded (−)DNA that forms multiple uracils, which are promutagenic in DNA since
they template for the addition of adenine, leading to mutation of the viral genome when
uracil containing (−)DNA is used as a template for synthesizing (+)DNA [41,67–69]. These
events occur in the viral capsid which is transported on microtubules to the nuclear pore
and imported into the nucleus where reverse transcription and capsid disassembly com-
pletes [70–74]. The mutagenesis is facilitated by the host DNA repair enzymes that remove
uracil and insert a thymine opposite the (+)DNA adenine. Hypermutation occurs when Vif
is absent, and results in at least 10 mutations/kb on average in the ~10 kb HIV-1 genome
(Figure 1) [75]. When Vif is present, the mutations decrease to ~1.8 mutations/kb [75].
These high mutation rates are due to the efficient processivity of A3 enzymes that enables
a fast search for target cytosine containing motifs for deamination, before the (−)DNA
becomes double stranded [32]. The mutated proviral DNA can become integrated into
the host genome and remain transcriptionally active, but may not produce an active virus
(Figure 1). The mutant virus proteins produced can be processed and surface displayed,
which enhances targeting by HIV-1-specific cytotoxic T lymphocytes (CTLs) (Figure 1) [76].
Alternatively, the uracil containing proviral DNA can result in DNA repair induced degra-
dation (Figure 1) [77]. All of these different fates are also dependent on the extent of
Vif-mediated degradation of A3s.
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Figure 1. APOBEC3-mediated restriction of HIV-1 and Vif counteraction. (A) An HIV or SIV retro-
virus integrates into the host genome as a double-stranded DNA provirus (red). This provirus is 
transcribed to produce genomic RNA (gRNA) and mRNA. The gRNA is exported to the cyto-
plasm where it is bound by viral Gag polyprotein to facilitate encapsidation (not shown). Addi-
tionally, in the cytoplasm are the APOBEC3 (A3) enzymes A3D, A3F, A3G, A3C S188I, and A3H 
Haplotypes II, V, and VII. The A3 enzymes bind the gRNA and become encapsidated if they es-
cape Vif mediated degradation. There are also the viral proteins reverse transcriptase (RT), nucle-
ocapsid (NC), integrase (IN) among others, with the encapsidated A3. The viral mRNA produces 
the protein Vif later in the replication cycle and with the highest Vif levels correlating with virus 
assembly, to purge the cytoplasm of A3 enzymes. However, Vif-mediated degradation is often 
incomplete. Vif binds CBF-β and Elongin C (EloC) which stabilizes Vif and enables nucleation of 
the Cullin 5 E3 ubiquitin ligase complex which ubiqutinates A3 enzymes and induces their degra-
dation through the proteasome pathway. (B) A3 enzymes that escape this fate travel to the next 
target cell of infection within the viral capsid. The capsid stays intact during reverse transcription 
and is drawn as an expanded view in a box. Here the viral reverse transcriptase copies the gRNA 
to (-)DNA. This forms a RNA/DNA hybrid (not shown) that is converted to ssDNA by the endo-
nuclease action of the RNaseH domain of reverse transcriptase. During this short time before 
(+)DNA synthesis starts, A3 enzymes access ssDNA and inhibit reverse transcriptase DNA synthe-
sis from the RNA (round head arrow) or DNA (hatched round head arrow) template, but the 
blockage is more efficient from the RNA template. Primarily the A3 enzymes deaminate cytosine 
(C)→ uracil (U) in a 5’CC or 5’TC context. Copying a U in DNA leads to an adenine (A) being in-
serted on the (+)DNA strand. This causes G→A mutations in the coding strand sense. The uracils 
can be repaired by host base excision repair (BER) and the proviral DNA can integrate into the 

Figure 1. APOBEC3-mediated restriction of HIV-1 and Vif counteraction. (A) An HIV or SIV
retrovirus integrates into the host genome as a double-stranded DNA provirus (red). This provirus is
transcribed to produce genomic RNA (gRNA) and mRNA. The gRNA is exported to the cytoplasm
where it is bound by viral Gag polyprotein to facilitate encapsidation (not shown). Additionally, in
the cytoplasm are the APOBEC3 (A3) enzymes A3D, A3F, A3G, A3C S188I, and A3H Haplotypes II,
V, and VII. The A3 enzymes bind the gRNA and become encapsidated if they escape Vif mediated
degradation. There are also the viral proteins reverse transcriptase (RT), nucleocapsid (NC), integrase
(IN) among others, with the encapsidated A3. The viral mRNA produces the protein Vif later in
the replication cycle and with the highest Vif levels correlating with virus assembly, to purge the
cytoplasm of A3 enzymes. However, Vif-mediated degradation is often incomplete. Vif binds CBF-β
and Elongin C (EloC) which stabilizes Vif and enables nucleation of the Cullin 5 E3 ubiquitin ligase
complex which ubiqutinates A3 enzymes and induces their degradation through the proteasome
pathway. (B) A3 enzymes that escape this fate travel to the next target cell of infection within the
viral capsid. The capsid stays intact during reverse transcription and is drawn as an expanded view
in a box. Here the viral reverse transcriptase copies the gRNA to (−)DNA. This forms a RNA/DNA
hybrid (not shown) that is converted to ssDNA by the endonuclease action of the RNaseH domain
of reverse transcriptase. During this short time before (+)DNA synthesis starts, A3 enzymes access
ssDNA and inhibit reverse transcriptase DNA synthesis from the RNA (round head arrow) or DNA
(hatched round head arrow) template, but the blockage is more efficient from the RNA template.
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Primarily the A3 enzymes deaminate cytosine (C)→ uracil (U) in a 5’CC or 5’TC context. Copying a
U in DNA leads to an adenine (A) being inserted on the (+)DNA strand. This causes G→A mutations
in the coding strand sense. The uracils can be repaired by host base excision repair (BER) and the
proviral DNA can integrate into the host genome. Alternatively, excessive uracils can lead to DNA
repair mediated degradation, which destroys the proviral DNA. Integrated but mutated proviral
DNA can remain transcriptionally active but does not produce virions. The mRNA can, however, be
translated. The defective proteins may be misfolded or truncated leading to their degradation in the
proteasome which promotes display of their epitopes on the surface of infected cells and promotes
immune recognition.

5. The Vif-A3 Interaction and Cross Species Transmission

All lentiviruses except the equine infectious anemia virus encode a protein Vif during
the late phase of replication [78]. Vif interacts with the cellular proteins Cullin 5 and Elon-
gin C in order to be recruited into an E3 polyubiquitin ligase complex [79–86]. All primate
lentivirus Vifs also interact with the co-transcription factor CBF-β for stability [87–89].
HIV-1 Vif has also been shown to be further stabilized by binding Elongin C (Figure 1) [90].
Vif alone is a highly unstructured protein but when coupled has two main domains, the
α-domain and the α/β-domain [86]. The α/β-domain interacts with CBF-β and A3 en-
zymes and the α-domain interacts with Elongin C and Cullin 5 (Figure 2) [86]. The rest
of the protein consists largely of loops and contributes to its thermodynamic instability
(Figure 2) [86]. Non-primate lentivirus Vifs have other mechanisms for stability. Bovine
immunodeficiency virus Vif has an additional protein domain that is assumed to stabilize
the otherwise flexible and largely unstructured Vif and the Sheep Maedi-visna Virus Vif is
stabilized by Cycolophillin A [91–93]. In addition, the Elongin C interacts with Elongin B
and the Cullin 5 interacts with Rbx2 [94]. The final complex in primates contains Vif/CBF-
β/Elongin B/Elongin C/Cullin 5/Rbx2 and an E2 ubiquitin ligase (Figure 1). Vif is the
substrate receptor that replaces the host SOCS2 protein and recruits and induces Lysine
48 linked polyubiquitination and degradation of A3 enzymes through the proteasome
pathway (Figure 1) [79,84,85].
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on either side of a bound Zinc (blue). The α-domain contains two alpha helices that mediate two 
separate interactions with EloC (yellow) and Cul5 (dark green). The N-terminal α/β-domain con-
sists of a five stranded β-sheet, a discontinuous β-strand and three α-helices. The α/β-domain con-
tains the binding interface for CBFβ (cyan) and A3 enzymes. The magenta residues interact with 
A3G, lime green interact with A3F, and grey interact with A3H. This surface for interacting with 
A3s is conserved in the hominid lineage. Through mutational and structural studies it was found 
that OWM additionally use residues 83 to 86. In the SIVrcm Vif structure (partial structure shown 
on right, PDB: 6P59) residues 83 to 86 are partially on Loop 5, but on HIV-1 Vif they are on a β-
strand. The 84 and 86 are key determinants for OWM SIV antagonism of A3F and A3G, respec-
tively. Thus, the OWM SIV Vifs appear to still use the same general interface as hominid SIV/HIV 
Vifs. (B–D) A3 enzymes have a basic structure in each ZDD that is composed of a five-stranded β-
sheet core surrounded by six α-helices. Zinc atoms are shown as blue spheres. (B) Rhesus Ma-
caque A3G (PDB: 6P40) is shown. A3G interacts with Vif on the NTD using three primary amino 
acids from 128-130 on loop 7 (L7). The human A3G amino acids are denoted in large orange let-
ters. These three amino acids most often differ between species. Amino acid 59 is adjacent to the 
DPD motif and was found to be polymorphic between Sooty Mangabeys and Rhesus Macaque. 
(C) Model of Rhesus Macaque A3F generated from PDB: 6P40 using SWISS-MODEL [95]. HIV-1 
Vif primarily interacts with human A3F on the CTD with residues E289 and E324 identified as 
major contact points. HIV-2 and SIVsmm interact with human/sooty mangabey A3F on the NTD 
using residue 128. This is analogous to the region Vif interacts with A3G. (D) A3H (PDB: 6B0B) is 
an obligate dimer with dimerization mediated by a double-stranded RNA. The equivalent amino 
acid to A3G and A3F 128 is A3H 121. In A3H, this amino acid is on α-helix 4 (h4), rather than the 

Figure 2. Interaction residues for Vif and APOBEC3s. (A) HIV-1 Vif (PDB: 4N9F) has two domains
on either side of a bound Zinc (blue). The α-domain contains two alpha helices that mediate two
separate interactions with EloC (yellow) and Cul5 (dark green). The N-terminal α/β-domain consists
of a five stranded β-sheet, a discontinuous β-strand and three α-helices. The α/β-domain contains
the binding interface for CBFβ (cyan) and A3 enzymes. The magenta residues interact with A3G,
lime green interact with A3F, and grey interact with A3H. This surface for interacting with A3s is
conserved in the hominid lineage. Through mutational and structural studies it was found that OWM
additionally use residues 83 to 86. In the SIVrcm Vif structure (partial structure shown on right, PDB:
6P59) residues 83 to 86 are partially on Loop 5, but on HIV-1 Vif they are on a β-strand. The 84 and
86 are key determinants for OWM SIV antagonism of A3F and A3G, respectively. Thus, the OWM
SIV Vifs appear to still use the same general interface as hominid SIV/HIV Vifs. (B–D) A3 enzymes
have a basic structure in each ZDD that is composed of a five-stranded β-sheet core surrounded by
six α-helices. Zinc atoms are shown as blue spheres. (B) Rhesus Macaque A3G (PDB: 6P40) is shown.
A3G interacts with Vif on the NTD using three primary amino acids from 128–130 on loop 7 (L7).
The human A3G amino acids are denoted in large orange letters. These three amino acids most often
differ between species. Amino acid 59 is adjacent to the DPD motif and was found to be polymorphic
between Sooty Mangabeys and Rhesus Macaque. (C) Model of Rhesus Macaque A3F generated
from PDB: 6P40 using SWISS-MODEL [95]. HIV-1 Vif primarily interacts with human A3F on the
CTD with residues E289 and E324 identified as major contact points. HIV-2 and SIVsmm interact
with human/sooty mangabey A3F on the NTD using residue 128. This is analogous to the region
Vif interacts with A3G. (D) A3H (PDB: 6B0B) is an obligate dimer with dimerization mediated by
a double-stranded RNA. The equivalent amino acid to A3G and A3F 128 is A3H 121. In A3H, this
amino acid is on α-helix 4 (h4), rather than the adjacent loop 7 (L7). Human A3H Haplotype II is
shown. Figures were made using PyMOL (the PyMOL Molecular Graphics System, Version 1.5.05,
Shrödinger, LLC, Germany).



Viruses 2021, 13, 1084 8 of 20

There is also considerable variation in the ability of Vif to induce degradation of A3 en-
zymes and even in the presence of Vif, some quantities of A3 enzymes are still encapsidated.
HIV-1 tries to avoid A3 encapsidation by blocking HIV-1 assembly until Vif expression
has peaked and depleted A3 levels [96]. This leads to lower levels of mutagenesis, which
some have reported may be beneficial for the virus since it promotes evolution, however,
other studies have found even low levels of A3-induced mutagenesis lowers HIV-1 fitness
under selective conditions [75,97,98]. Thus, the A3-mediated restriction is a numbers game
and restriction in the presence of a Vif adapted to the specific host A3s is not guaranteed,
although nearly 30% of nonfunctional but integrated HIV-1 genomes sequenced from
HIV-1+ individuals show the characteristic C/G→T/A mutations induced by A3s [99].

The most striking outcome of A3s blocking cross species transmission is the forced
evolution of SIV that transmitted from OWM to chimpanzee. For this transmission to occur,
there was a prior recombination event in chimpanzees from multiple SIVs from OWMs
(from Red-Capped Mangabeys and Cercopithecus monkeys) to form SIVcpz (Figure 3) [100].
This evolution is distinctive since it required a complete deletion of OWM SIV vpx gene and
also resulted in additional amino acids being added to the overlapping region of vif that
was deleted, an effect called overprinting [100]. The overprinting region of vif was essential
for successful antagonism of chimpanzee A3s and human A3D, A3F and A3G [100,101].

After this adaptation, the barrier for cross species transmission of SIVcpz to humans
was lessened and there are three well documented transmissions resulting in HIV-1 Groups
M, N and O. The HIV-1 Group M has nine strains (A-K) and accounts for the majority of
infections worldwide [102]. It is known that differences in tetherin antagonism among
the HIV groups have determined which HIV-1 lineages have become pandemic or en-
demic [103]. An equivalent study has not been done focusing on A3 enzyme antagonism.
There is also an HIV-1 Group P that resulted from transmission of SIVcpz to gorillas and
then SIV from gorillas (SIVgor) to humans (Figure 3) [104]. HIV-2 on the other hand was
a direct transmission of SIV from Sooty Mangabey (SMM) into humans and resulted in
Groups A–I (Figure 3) [1,11]. The HIV-2 lineage is interesting since the SIVsmm appears to
be preadapted to suppress many human restriction factors, but at the same time HIV-2 is
less transmissible and less pathogenic than HIV-1 [102]. Thus, these transmission barriers
have forced completely different evolution of the two HIVs.

The Vif-A3 barrier is acting at a protein-protein level with specific amino acid interac-
tions occurring on Vif for each A3 and on each A3 for Vif. These interaction interfaces have
been extensively reviewed elsewhere [31,105–107] and here we focus on discussing the key
amino acids or A3s that have been shown to have acted as a transmission barrier, forcing
evolution of the SIV Vif.
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Figure 3. Overview of transmission barriers and associated mutations. The SIVcpz is most similar
to a SIVrcm–like virus (Red Capped Mangabey), although the vpu and env genes are more similar
to SIV from Cercopithecus monkeys. This recombination within chimpanzees created SIVcpz that
had a deletion of vpx and generated a unique vif that overlaps with vpr at its 3’ end and contains
additional amino acids by a process called overprinting. This new Vif protein could counteract
chimpanzee A3D and A3G and facilitated the cross-species transmission. Once in the chimpanzee,
the SIV was more easily transmissible to humans and gorilla. Gorilla A3G is resistant to SIVcpz

Vif due to a P129Q change from chimpanzee to gorilla A3G. This necessitated a corresponding
change in SIVcpz Vif (M16E) to antagonize gorilla A3G and cross the species barrier. The gorilla
A3G is polymorphic at amino acid 129 (P/Q) suggesting that this could render certain gorillas more
susceptible to transmission of SIVcpz allowing the virus to gain foothold. It is also possible that
spread of SIVgor selected for an increased frequency of the A3G 129Q change in gorillas. The SIVcpz

and SIVgor were transmitted to humans. For SIVcpz, stable A3H haplotypes posed a barrier and
forced the evolution of SIVcpz Vif (E47N/P48H) to form HIV-1. Thus, it has been suggested that
humans with unstable A3H haplotypes were more susceptible to infection with SIVcpz, and possibly
the same scenario has occurred for the SIVgor transmission that resulted another HIV-1 group. For
the direct transmission of SIVsmm to humans, which resulted in HIV-2, recent evidence suggests
that A3F posed a transmission barrier. The A3F in sooty mangabeys and humans differ by a T128R
change and this required a corresponding change for Vif antagonism (T84S).

6. APOBEC3G

Several studies have shown that a physical interaction of Vif and an A3 is required
for Vif-induced degradation to occur. Initial studies reported that the Vif protein of HIV-1
can induce degradation of human and chimpanzee A3G, but cannot antagonize A3G from
AGM and Rhesus Macaque [82,108–111]. Conversely, Vif from SIVAGM can antagonize
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AGM A3G but is ineffective against human A3G [82,108–111]. To identify amino acids
critical for interaction of HIV-1 Vif and human A3G, the human A3G amino acids were
substituted with those from Rhesus Macaque or AGM A3G. Replacement of human A3G
128D with 128K as found in AGM A3G abolished the interaction of HIV-1 Vif with human
A3G and hence this mutant A3G was no longer sensitive to HIV-1 Vif mediated degrada-
tion [82,108–111]. However, when the 128D was substituted by 128A, HIV-1 Vif and A3G
interaction was intact and Vif could induce degradation of mutant A3G suggesting that
electrostatic interactions of amino acids are more important than the identity of amino
acids [109,110]. Later studies confirmed the importance of a 128D of A3G and demonstrated
that a 129P and 130D also contribute to interaction with Vif (Figure 2) [112–114]. In addition
to HIV-1, Vifs from HIV-2 and SIV originating from Sooty Mangabey monkeys (SIVsmm)
and Red-Capped Mangabey (RCM) also use this 128–130 region to bind A3G [115,116]. The
human A3G 128–130 region was first found to interact with HIV-1 Vif at 40YRHHY44 [117]
(Figure 2). Later, using Vif-mediated degradation assays, patient-derived Vif variants,
and HIV-1 forced evolution experiments, it was found that human A3G interacts with
HIV-1 Vif at 40YRHHY44 and 15DRMR17 [118]. The conserved 15DRMR17 sequence was
first found to interact with human A3F and did not affect A3G degradation using alanine
scanning mutagenesis (Figure 2) [117]. Thus, the role of the 15DRMR17 sequence in binding
human A3G may require clarification by structural studies. However, mutating the HIV-1
Vif DRMR region to SEMQ or SERQ as found in SIVagm Vif enhances the interaction of
HIV-1 Vif with Rhesus Macaque A3G, AGM A3G and D128K A3G [119]. Thus, there is a
precedent for involvement of this region in species other than in humans. These earlier
studies based on site directed mutagenesis are supported by crystal structures of Vifs
from both HIV-1 and the SIVrcm that showed the proposed residues for interaction are
surface exposed [86,116]. The Vif of SIVrcm was shown to interact with the chimpanzee
A3G using a 42YVPHF46 motif that is similar in sequence and hydrophobicity to HIV-1
Vif 40YRHHY44 [116]. Further, both The SIVrcm and SIVcpz Vifs were found to use Loop
5 residues, 83LGTY86 in SIVrcm Vif and HLGH in SIVcpz Vif, to antagonize human A3G,
with 86Y in SIVrcm Vif being the primary determinant (Figure 2) [116]. The composition of
the residues on Loop 5 determined if the Vif had a broad or specific activity toward differ-
ent A3Gs [116]. Importantly, the structural studies showed two key features of the “arms
race” strategy from the virus side, that Vif adaption to bind to human A3s either occurs on
loop regions of the protein, which can sustain more changes than structured regions and
that since Vif interacts with some A3s on a distributed surface if one surface cannot bind,
then other residues can maintain the interaction until evolution finds new contact points
(Figure 2) [116]. This has been suggested previously using molecular dynamics modeling
of Vif and A3F and termed the “wobble model” of host-pathogen adaptation [120,121].

On the host side of the “arms race”, point mutations in primates could not keep up
with the viral evolution rate. Thus, the A3 family faced selective pressure from infectious
agents and that resulted in duplication events (resulting in seven enzymes) and multiple
polymorphisms for each A3 [122–126]. Heterozygosity of a restriction factor can confer
selective advantage to the host since it forces the virus to evolve to bind multiple alleles of
the host factor. Compton et al. while studying evolution of A3G in OWMs observed that
A3G was polymorphic in AGM [127]. They found that some single amino acid changes
conferred resistance of AGM A3G against SIVagm.ver (vervet monkey species) and SIVagm.tan
(tantalus monkey species) Vifs [127]. In an experimental infection study in AGM cells, they
found out that viral adaptation to antagonize A3G was impaired in the virus obtained from
monkeys that were heterozygous for A3G, where one allele was resistant to Vif-mediated
degradation [127]. However, the SIV from monkeys that had both A3G alleles resistant to
Vif-mediated degradation was able to evolve to gain the ability to counteract A3G [127].

Polymorphic forms in A3G have also been found to create a strong barrier to cross-
species transmission of SIVsmm to SIVmac (Rhesus Macaque). This transmission was of
SIVsmm in a colony of captive Rhesus Macaques. Although not a natural infection, it
still exemplifies how polymorphisms combat viral adaption. Krupp et al. investigated if
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A3G acted as a cross species transmission barrier for transmission of SIVsmm (reservoir
host) to a new host, Rhesus Macaques [128]. They found that Rhesus Macaque A3G was
resistant to SIVsmm Vif and they attributed this resistance to the polymorphism they found
in the N-terminal domain (NTD) of Rhesus Macaque A3G [128]. The highly conserved 59Y
was found to be replaced by two amino acid insertions, either leucine-leucine (59L/60L)
or leucine-arginine (59L/60R) [128]. On the surface of A3G, these residues are in close
proximity to Amino Acid 128 and appear to have driven adaptation of SIVsmm Vif at
Position 17 (glycine to glutamate) in order to induce degradation of Rhesus Macaque A3G
and formed SIVmac (Figure 2) [128]. This further exemplifies a common interface on Vif to
interact with A3G from multiple species.

The gorilla A3G has also been found to have been a barrier for infection of SIVcpz.
Nakano et al. found that gorilla A3G was resistant to degradation by Vif from SIVcpz from
Pan troglodytes troglodytes and required an M16E mutation to induce degradation of gorilla
A3G [129]. The SIVgor Vif has an E16 residue indicating that this adaption was essential
in breaching the cross species barrier (Figure 3) [129]. Further, the interaction occurred
on gorilla A3G at amino acid Position 129, within the same amino acids that HIV-1 Vif
interacts with human A3G (128DPD130) (Figure 2) [129]. A P129Q change from chimpanzee
A3G to gorilla A3G enabled resistance to SIVcpz Vif until the M16E adaptive mutation
occurred (Figure 3) [115].

7. APOBEC3F

There is an abundance of literature on Vif adaptations to A3G since it is in all primates
one of the most active A3 enzymes for lentiviral restriction [130]. Human A3F has been
characterized as two- to four- fold less restrictive towards HIV-1 ∆Vif than A3G, but this is
dependent on several factors [131,132]. First, A3F exists in humans as two polymorphic
forms, 231I and 231V. These two forms of A3F are equally present in the population and
most often occur in individuals as heterozygous alleles [132]. The A3F 231V is more stable
in cells and thus more active in restricting HIV-1 ∆Vif [132]. Although data has yet to show
if these can act as an infection barrier as was shown for AGM A3G polymorphic alleles [127],
it is known that the A3F 231I and 231V can form oligomers in cells (a trimer or dimer of
A3F) and these oligomeric forms are more resistant to Vif-mediated degradation [132]. In
addition, due to the similar amino acid sequences of A3F and A3G, these two A3s can
form hetero-oligomers [133]. Interestingly, in this complex, only the A3F, but not the A3G
becomes more resistant to Vif-mediated degradation [75]. The mechanism of this resistance
is not known. Further, since A3s have largely been studied individually to determine
cross-species barriers, it would be interesting to repeat some of the studies with A3G,
but co-express A3F and determine if A3F also had a role in establishing a cross species
barrier. In human cells, HIV-1 with stop codons introduced into Vif will evolve to induce
degradation of A3F, but not A3G [134]. The HIV-1 evolution experiments with A3G did
involve HIV-1 suppressing A3G encapsidation by producing more virions, which had a
dilution effect since A3 encapsidation is stochastic [135,136]. However, the studies showed
that A3F puts considerably more selective pressure on vif evolution than A3G, and thus is
still important to consider in cross species transmissions [134].

A recent study suggests that A3F has posed a cross species transmission barrier for
SIVsmm transmission to humans. The SIVsmm transmission resulted in HIV-2 (Figure 3).
It was found that different lineages of SIVsmm were capable of counteracting human
A3 proteins in a Vif-dependent manner, but not as efficiently as HIV-2, indicating some
adaptation to humans occurred [137]. A3F was the most resistant to SIVsmm Vif-mediated
degradation, suggesting that it posed the greatest barrier to transmission [137]. The SIVsmm
Vif contains a T84, which is S84 in HIV-2 Vif. Introducing a T84S mutation in SIVsmm
increased its ability to induce degradation of human A3F (Figure 3) [137].

Further, since it had been previously shown that HIV-2 Vif interacts with A3F in the
NTD, whereas HIV-1 Vif interacts with A3F in the CTD, mutations were made in A3F at the
NTD Position 128, analogous to the same position that many Vifs interact with A3G [138].
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Changing the Sooty Mangabey A3F by a T128R mutation to match human A3F increased
its activity against SIVsmm, but not HIV-1 and HIV-2 (Figures 2 and 3) [137]. In support of
this being an adaptive mutation, HIV-2 was more sensitive to the R128T mutant form of
human A3F [137]. Surprisingly, the R128T change also increased the antiviral activity of
human A3F against HIV-1 [137].

Previous published reports have shown that HIV-1 Vif interacts with the CTD of A3F
with amino acids E289 and E324 being major Vif interaction points across a dispersed
interaction interface (Figure 2) [139,140]. It had been proposed that HIV-1 Vif may interact
with the N-terminal domain of A3F [139] and Vif interactions with this region of A3G and
A3H are well documented [82,109,112,115,119,141], although the interaction in the NTD
of A3F was not considered a primary determinant of the Vif interaction. Most recently, a
cryo-EM structure of Vif, CBF-β, and the CTD of A3F showed that both Vif and CBF-β
interact with the A3F CTD domain by forming a platform [142]. Thus, the interaction of
HIV-1 Vif with A3F and the role of A3F in blocking cross-species transmission warrants
further study.

8. APOBEC3H

Among A3 genes, human A3H is the most evolutionary divergent gene and ex-
ists as seven major haplotypes and many splice variants of human A3H have been re-
ported [32,45,143,144]. These polymorphic forms of A3H differ significantly in their sta-
bility and several studies have reported that stability of human A3H, which is linked to
its cellular localization, is one of the important determinants of its antiretroviral prop-
erty [49,51,145]. Recently, it was shown that different haplotypes have different levels
of polyubiquitination and proteosomal degradation in cells [50]. Further, A3H inherent
enzyme stability is determined by its dimerization state [146–148]. Dimers are formed
with no protein-protein contacts, but are mediated by a double-stranded RNA that imparts
stability to A3H and promotes localization in the cytoplasm (Figure 2) [147–150]. The single
nucleotide polymorphisms that combine to form the seven major haplotypes are at four
positions, one of which results in a change at Amino Acid 121, the primary Vif interaction
site (Figure 2) [45]. The most common circulating A3Hs in the population are unstable
and inactive against HIV-1, i.e., Haplotypes I, III, IV, and VI [145]. Since the Vif is always
evolving due to pressures to bind other A3s or natural drift, the majority of HIV-1 Vifs
cannot induce degradation of the more rare stable A3H Haplotypes II, V, and VII [43,47].
The impact of this was shown experimentally.

In a study examining the impact of A3H polymorphisms in the human population,
HIV-1+ participants that had one or two A3H alleles active against HIV-1 (A3H Haplotype
II) had lower viral loads early in infection compared to participants with A3H alleles not
active against HIV-1 [43]. This is because the HIV-1 Vif had a 39V which is not able to
induce degradation of A3H, but can induce degradation of A3F and A3G (Figure 2) [43].
Forced evolution experiments to find Vifs that could induce degradation of A3H resulted
in a 39F [43]. Importantly, this 39F correlates with data from circulating HIV-1 genome
sequences where HIV-1 from African regions primarily contained a 39F and people of
African descent are more likely to carry A3H alleles active against HIV-1 [47]. Conversely,
the Vif obtained from HIV-1 circulating in the Americas primarily had a 39V and correlates
with populations that primarily carry A3H alleles inactive against HIV-1. Thus, the “arms-
race” is on-going with the most polymorphic A3 and has great relevance for HIV-1 infection
and progression to AIDS [43,47].

Zhang et al. found that A3H Haplotype II, in addition to A3G, acted as a cross species
transmission barrier for SIVcpz to humans [101]. The study found that A3H Haplotype II
is resistant to degradation induced by SIVcpz Vif and concomitantly was found to reduce
the infectivity of SIVcpz [101]. The chimpanzee A3H was antagonized by SIV and HIV-1
Vifs but human A3H Haplotype II was resistant to Vifs from SIVcpz and SIVgor. From their
study they speculated that cross species transmission of SIVcpz to humans may have first
occurred in humans that expressed an unstable form of A3H protein, e.g., A3H Haplotypes
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I, III, IV, or VI [101]. SIVcpz and SIVgor Vifs were already effective antagonists of human
A3D, A3F and A3G proteins [100,101]. However, human A3H Haplotype II appears to
have played a role in limiting the cross-species transmission of SIVcpz from chimpanzee to
humans. This could also be true for SIVgor as well (Figure 3). Zhang et al. revealed that two
amino acids substitutions in Vif (E47N/P48H) enabled SIVcpz Vif to induce degradation of
human A3H (Figures 2 and 3) [101].

9. Conclusions

Several common interaction interfaces on both Vif and A3 enzymes have been identi-
fied. This is evolutionarily favorable since the interaction region can readily evolve without
destabilizing the protein (Figures 2 and 3). Mutations in loop regions or a surface exposed
region can enable toggling between positive and negatively charged amino acids (Figure 2).
For A3G and A3H, the interaction occurs on analogous regions, Residues 128–130 in A3G
and Residue 121 in A3H (Figure 2). The human A3F has major interactions in the CTD
(Figure 2). The corresponding interaction in HIV-1 Vif is primarily residues 15-17 for A3F,
39, 47 and 48 for A3H, and both 15–17 and 40–44 for A3G (Figure 2). The SIVgor Vif inter-
action site for gorilla A3G also overlaps with HIV-1 Vif interaction site and is at position
16. However, for OWMs, their Vif interaction sites tended to cluster differently on Vif and
were at Residue 84 for SMM and Residue 86 for RCM, although this is near Residues 15–17
(Figure 2). The OWM A3s still appear to interact at the 128 to 130 region. Thus, HIV-1 Vif
that interacts with A3F, A3D, and A3C in the C-terminal domain on a diffuse interaction
site involving 11 amino acids from Position 255 to 324 is unique (Figure 2) [151]. These
common interfaces support the wobble hypothesis in that there are small changes being
made over time in a specific area, rather than large changes in the interfaces to block an
interaction or adapt to a new interaction [120]. Since the interaction strength of the Vif and
A3 determines the degradation efficiency [152], only small changes would be needed to
reestablish a robust interaction.

It has been suggested that inefficient interactions of Vif with A3s may actually be
beneficial to the virus. During HIV-1 infection, vif can become mutated to produce a
protein that does not efficiently induce degradation of A3s [153]. This allows for more A3
encapsidation and more mutations to occur. However, since the mutations are stochastic,
there is no definitive statement that can be made regarding the outcome. Some studies have
found that this accelerates drug resistance to a single antiretroviral drug, but another study
that used multiple drugs as in antiretroviral therapy found that A3-mediated mutagenesis
actually decreased HIV-1 fitness and that reverse transcriptase alone was still more likely to
produce drug resistance mutations [75,97,98,154]. With immune escape, similarly divergent
results have been found where deamination in some epitopes can increase recognition of
HIV-1 by immune cells, but other epitopes facilitate HIV-1 immune escape [76,155,156].
In addition, many studies sequenced integrated proviral DNA, which may not produce
functional virus and it is unlikely that drug resistant non-functional virus can recombine
with other functional viral genomes [157]. However, it appears that once in a host, the rela-
tionship between Vif and A3s continues to evolve and is multifactorial. For example, less
fit viruses may more easily escape the immune system due to slower replication [158,159].
Thus, there is still more to learn on this topic.

Future work in the area of A3s and transmission barriers would be interesting to ex-
plore with other viruses. Recently A3B has been found to restrict certain herpesviruses and
be antagonized by herpesvirus proteins [33]. There may also be A3-mediated restriction
of RNA viruses, such as coronaviruses [160–163]. Regarding current viruses and cross-
species transmissions, bats are quite central, and interestingly, they contain 18 different
A3s—more than any other mammal [164]. A3s are often called a double-edged sword since
they can restrict viruses, but if they are expressed at the wrong time or place, they can
induce mutations in host genomic DNA and contribute to cancer evolution [165]. A3B is
the best example of the double-edged sword since it has both functions, but otherwise this
refers to the family as a whole. A3A and A3H Haplotype I are the other A3s involved in
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cancer and they are not known to restrict many viral pathogens, but can restrict retroele-
ments [34,166,167]. Thus, if A3s have a role in suppression of bat viruses, it would be very
pertinent to determine if they also become a double-edged sword and could facilitate viral
evolution and cross-species transmission out of bats to other organisms.

In summary, A3 enzymes shaped the evolution of SIV and HIV through the ongoing
suppression and avoidance related to Vif. As we learn of more viruses that are restricted
by A3s in a deamination-dependent manner it would be interesting to realize if there are
parallels with the SIV and HIV paradigm or new ones to be discovered. There is still much
to learn about A3s and lentiviruses as we discover more A3 polymorphisms, ability of
A3s to hetero-oligomerize, and the fate of A3-induced mutations in an organism over the
lifetime of an infection.
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