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AbstrAct
Parkinson’s disease (PD) is a progressive neurological condition caused by the 

degeneration of dopaminergic neurons in the basal ganglia. It is the most prevalent 
form of Parkinsonism, categorized by cardinal features such as bradykinesia, rigidity, 
tremors, and postural instability. Due to the multicentric pathology of PD involving 
inflammation, oxidative stress, excitotoxicity, apoptosis, and protein aggregation, it 
has become difficult to pin-point a single therapeutic target and evaluate its potential 
application. Currently available drugs for treating PD provide only symptomatic relief 
and do not decrease or avert disease progression resulting in poor patient satisfaction 
and compliance. Significant amount of understanding concerning the pathophysiology 
of PD has offered a range of potential targets for PD. Several emerging targets 
including AAV-hAADC gene therapy, phosphodiesterase-4, potassium channels, 
myeloperoxidase, acetylcholinesterase, MAO-B, dopamine, A2A, mGlu5, and 5-HT-

1A/1B receptors are in different stages of clinical development. Additionally, alternative 
interventions such as deep brain stimulation, thalamotomy, transcranial magnetic 
stimulation, and gamma knife surgery, are also being developed for patients with 
advanced PD. As much as these therapeutic targets hold potential to delay the 
onset and reverse the disease, more targets and alternative interventions need to 
be examined in different stages of PD. In this review, we discuss various emerging 
preclinical pharmacological targets that may serve as a new promising neuroprotective 
strategy that could actually help alleviate PD and its symptoms.

INtrODUctION

Parkinson’s disease (PD) is the most common 
neurodegenerative disorder after Alzheimer’s disease 
(AD), affecting > 1.5% of the global population. PD is 
characterized by progressive loss of dopaminergic neurons 
in the substantia nigra pars compacta (SNpc) region of 
the brain. The incidence of PD increases with age, and 
mean age of onset is about 65 years. Fresh evidences are 
insinuating towards epigenetic changes such as histone 
modifications as one of the leading factors behind brain 
aging and PD [1]. The lack of dopamine (DA) causes the 
classical motor symptoms of bradykinesia, rigidity, and 
resting tremors [2]. However, other neuronal fields and 
neurotransmitter systems including the locus coeruleus, 
the dorsal motor nucleus, the substantia innominata, 
the autonomic nervous system, and the cerebral cortex 

are also involved in PD [3]. As a consequence of this 
other symptoms including cognitive decline, sleep 
abnormalities, depression, and gastrointestinal and 
genitourinary disturbances are also developed. These 
“non-motor” symptoms progress and dominate in 
advanced stages of PD. It is projected that the number 
of patients with PD will increase to 8.7 million by 2030. 
Men are more susceptible to PD than women [2]. Years of 
genetic investigations in PD have led to the discovery of 
several heritable and sporadic forms of this disorder. The 
typical form of PD occurs in a sporadic idiopathic fashion 
[4] and hereditary factors are minimally associated with 
early-onset PD [5]. Comprehensive analyses of patients 
with mutations in PINK1, DJ1, LRRK2, UCHL1, MAPT, 
GBA, NAT2, INOS2A, GAK, HLA-DRA, APOE, and 
SNCA have significantly increased our understanding 
regarding the morphological, and pathological aspects 
seen in clinical and preclinical stages of PD [6, 7]. 
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Other anticipated causes include environmental toxins, 
medications, and viruses that result in increased 
oxidative stress [8, 9]. Patients are classically diagnosed 
with PD based on thorough neurological and physical 
examinations. The diagnosis is made when two of the four 
classical symptoms of PD are present [10]. An accurate 
PD diagnosis is aided by DA transporter single photon 
emission computed tomography [11]. However, sensitivity 
and accuracy of this scan for diagnosing PD are equal to a 
clinical diagnosis; thus, raising doubts about the benefits 
of using a brain scan to confirm the diagnosis [12]. 
Despite these advances, a post-mortem neuropathological 
examination of brain tissue is the ultimate choice to 
precisely confirm the diagnosis of PD [13].

Levodopa (L-DOPA) was introduced almost 
40 years ago and remains the best functional therapy 
for decreasing PD symptoms. However, the effects of 
L-DOPA tend to decrease as the disease advances. It 
gradually becomes difficult to manage symptoms and 
patients invariably develop motor impediments that 
comprise of motor fluctuations, dyskinesia, freezing, and 
fall [14]. Numerous other drugs from different classes 
are available to treat PD, and usually involve layering 
different treatments in a polypharmaceutical approach. 
More advanced DA agonists, such as pramipexole and 
ropinirole approved in 1997, were designed to selectively 
stimulate DA 2 receptors. Other key drug classes including 
the catechol-O-methyltransferase (COMT) inhibitors 
and monoamine oxidase (MAO) inhibitors have been 
approved to treat PD. As such, no single treatment 
is considered completely efficacious throughout the 
progression of PD; therefore the treatment is addressed 
according to the patient’s disease severity and progression 
[15]. However, due to the side-effects associated with 
L-DOPA, nearly half of PD market sales are driven by 
advanced DA agonists along with COMT and MAO 
inhibitors. Nevertheless, the availability of generic 
versions of the DA agonists’ pramipexole and ropinirole 
will limit growth across all major markets. Competition 
from generic compounds is most prominent in the United 
States, and it will remain the biggest market for PD 
until 2019. Germany is projected to produce the highest 
sales for PD drugs in 2019, whereas France will remain 
the smallest PD market until 2019 [15]. Symptomatic 
therapies will not take the place of existing drugs even 
though the market will rise due to new therapies in the 
pipeline. However, the existing landscape of therapeutic 
options will be revolutionized with development of 
neuroprotective candidates. Disease-modifying therapies 
for PD will change once the target genes and proteins that 
mediate the degeneration of dopaminergic neurons in the 
SN are identified. Nevertheless, it will take another decade 
until significant disease-modifying targets are identified 
[15]. Several emerging targets including AAV-hAADC 
gene therapy, phosphodiesterase-4, potassium channels, 
myeloperoxidase, acetylcholinesterase, MAO-B, DA, 

A2A, mGlu5, and 5-HT-1A/1B receptors are in different 
stages of clinical development. In this review, we discuss 
various emerging preclinical pharmacological targets that 
may serve as a new promising neuroprotective strategy 
that could actually help alleviate PD and its symptoms.

IMPOrtANcE OF tArGEt 
IDENtIFIcAtION AND VALIDAtION 
FOr bEttEr DrUG DIscOVErY

Discovering a new target from an original idea 
and launching the final product is a multifaceted process 
that involves around $1 billion and can take 12-15 years. 
Awareness of a target can come from various sources 
including academic, clinical, and commercial sectors. 
Once the target is selected, the therapeutic industry and 
academic centers develop a number of early procedures 
to identify lead molecules that possess appropriate 
characteristics for acceptable drugs [16]. Two main reasons 
contribute to drug failure. The first is a lack of safety 
and the second is ineffectiveness in humans. Therefore, 
a key step for developing a new drug is identifying and 
validating the target. A target is a comprehensive term 
applied to a variety of biological entities, including 
enzymes, substrates, metabolites, receptors, ion channels, 
transport proteins, DNA, RNA, ribosome, monoclonal 
antibodies, and various physiological mechanisms [17]. 
A target must be safe, potent, and efficacious to be 
functional; it should also satisfy clinical and commercial 
needs and should be druggable. A “druggable” target 
means it is available for developing a putative drug 
molecule. The molecule can be a small or large biological 
molecule but should elicit a biological response that can 
be measured in vitro and in vivo. Certain target classes 
are more amenable to discovering small molecule drugs, 
such as G-protein-coupled receptors, whereas antibodies 
are better at blocking protein/protein interactions. Proper 
identification and validation of the target allows us to learn 
the role of target modulation during mechanism-based side 
effects. Bioinformatics is one of the prime technique that 
helps to identify, choose, and prioritize probable disease 
targets [18]. The literature has a variety of sources, 
including publications, patent information, proteomics 
data, gene expression data, transgenic phenotyping and 
compound profiling data. Additional approaches for 
identification include investigating mRNA/proteins and 
their role under pathological conditions. Another excellent 
method is to look for genetic polymorphism and its 
consequence on disease progression. [19]. Furthermore, 
mutations in human phenotypes can nullify or exacerbate 
certain receptor, such as mutations in voltage-gated 
sodium channel NaV1.7; results in insensitivity or 
oversensitivity to pain [20, 21]. Phenotypic screening is 
another method that can be used to recognize pertinent 
disease targets [22].

Validation techniques for drug targets include using 
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in vitro and in vivo tools and modulating a preferred target 
under disease conditions [23]. Reliability of these results 
increases significantly using a multi-validation approach 
[16]. Antisense technology is a powerful method that uses 
chemically modified RNA-like oligonucleotides designed 
to be complimentary to a region of a desired mRNA 
molecule [24]. The effects of antisense oligonucleotides 
are reversible compared with the gene knockout approach, 
and sustained presence of the antisense is required 
to inhibit the desired protein [25]. Nevertheless, the 
chemistry associated with synthesizing oligonucleotides 
has resulted in molecules with restricted bioavailability 
and strong toxicity, making in vivo use problematic [16]. 
As an alternative, transgenic animal are an attractive 
option for validation, as phenotypic changes resulting 
from gene manipulation can be observed. However, using 
transgenic animals is time-consuming and expensive. 
Hence, small interfering RNA (siRNA) has become 
popular for target validation. However, delivery to the 
target cell can be a problem with siRNA methodology 
[26]. Monoclonal antibodies are an another brilliant target 
validation tool, as they bind with a major region of the 
desired molecule surface, and thus help to selectively 
bind the target with high affinity. The only disadvantage 
of this technique is that antibodies cannot cross the cell 
membrane and cannot bind intracellular targets. Recently, 
chemical genomics has emerged as a systemic application 
of molecules to target identification and validation. 
Chemical genomics is nothing but the study of genomic 
responses to chemical compounds. This approach helps 
early identification of novel targets and drug [27].

EMErGING NEW PrEcLINIcAL 
EVIDENcE OF tENtAtIVE PD tArGEts

Existing PD therapy include re-formulating 
conventional drugs already approved for PD, chemically 
modifying compounds that are accepted for other 
indications, developing novel small-molecules and gene 
therapy-based approaches. The pipeline for the therapeutic 
development of new targets appears to be dynamic on the 
surface. However, if conventional dopaminergic therapy 
is removed from the picture, the existing landscape is far 
less promising [28]. Most of the drugs approved for PD 
do not have adequate efficacy nor do they avert disease 
progression. Consequently, there is a critical need to 
discover novel therapies to overcome the disadvantages 
associated with current therapies. In the following 
section, we will discuss some emerging pharmacological 
PD targets with substantial preclinical evidence (as also 
depicted in Table 1) that can be further considered for 
clinical investigations to develop new PD therapeutic.

Micro-rNA as a PD target

Micro-RNAs (miRNAs) are small non-coding, 
single stranded RNA molecules consisting of 22 
nucleotides. miRNAs control gene expression by base 
pairing to mRNA and trigger translation repression 
[29]. Abnormal miRNA expression has been associated 
with various neurological disorders, such as AD, PD, 
Huntington’s disease, amyotrophic lateral sclerosis, 
schizophrenia, and autism. Un-regulated miRNAs in 
patients suffering from PD could be used as biomarkers 
for early identification and monitoring disease progression. 
Ascertaining the role of miRNAs in cell processes and 
learning how disorganized miRNA expression accounts 
for neurological effects is crucial for discovering new 
therapeutic strategies for PD. miRNAs have great 
therapeutic potential, particularly if it can be demonstrated 
that a single miRNA can activate or inhibit several desired 
genes, making it possible to modify a whole disease 
phenotype by modifying a single miRNA molecule. 
Hence, understanding the mechanisms by which miRNAs 
participates in the pathogenesis of PD may offer novel 
targets to researchers to develop pioneering therapies [30]. 
Certain miRNAs are highly elevated in brain tissues of 
patients with PD. miRNA-301b, miRNA-373, miRNA-
26b, miRNA-224, miRNA-21, and miRNA-106b are few 
of the miRNAs found in PD brain tissues that actively 
participate in the autophagy pathway carried out by 
chaperone [31]. Malfunctioning of this pathway has been 
suggested to disorder degradation of the alpha-synuclein 
(α-syn) protein, which contributes to Lewy Body (LB) 
pathology [32]. The effect of miRNA-128 overexpression, 
a negative regulator of transcription factor EB (TFEB), 
was examined by Decressac and Bjorklund. In this study, 
the AAV vector was used to overexpress miRNA-128 in 
midbrain dopaminergic neurons. They demonstrated that 
miRNA-128-facilitated suppression of TFEB, aggravated 
the toxicity of α-syn by inhibiting autophagy, and 
consequently favored formation of toxic oligomers [33].

Since, quantifying specific pathogenic proteins 
in the neuronal population is essential for survival of 
neurons involved in PD pathogenesis, evaluating the 
role of miRNAs is important for treating PD [34]. Choi 
et al. demonstrated that miRNA-7, confers protection 
in 1-methyl-4-phenylpyridinium (MPP+)-induced 
cytotoxicity to differentiated human neural progenitor 
ReNcell VM cells, primary mouse neurons and also 
to dopaminergic SH-SY5Y cells. With the help of 
quantitative proteomic analysis, Choi and colleagues 
also determined that RelA, which is a constituent of 
nuclear factor-kappaB (NF-κB), was downregulated by 
miRNA-7. Latter on RelA mRNA was confirmed as a 
target for miRNA-7 and is essential for MPP+-induced 
cell death. These outcomes describe a novel mechanism 
by which suppression of NF-κB is responsible for the 
cell death mechanism following MPP+-induced toxicity, 
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and, thus, propose miRNA-7 as a therapeutic target for 
PD [35]. In a very recent study, kabaria and colleagues 
demonstrated that miRNA-7, decreases expression of 
Keap1 by targeting the 3’-untranslated region (UTR) of 
its mRNA in SH-SY5Y cells which consequently amplifies 
nuclear factor erythroid 2-related factor 2 (Nrf2) activity. 
In addition, miRNA-7 was found to augment the level of 
reduced form of glutathione and decrease the intracellular 
hydroperoxides level, suggesting its anti-oxidative effect. 
These conclusions signify to a novel mechanism by which 
miRNA-7 exhibits its cytoprotective effects by activating 
the Nrf2 pathway [36]. In vitro and in vivo data have 
confirmed that dopaminergic neurons depend profoundly 
on a functional miRNA network. In a study that examined 
the role of miRNAs in mammalian midbrain dopaminergic 
neurons, miRNA-133b was found to be precisely 
expressed in midbrain dopaminergic neurons of healthy 
individuals but midbrain tissue from patients with PD 
entirely lacked this type of miRNA. It was proposed that 
the development and operation of midbrain dopaminergic 
neurons is regulated by miRNA-133b through a negative-
feedback mechanism, which contains paired-like 
homeodomain transcription factor Pitx3 [37].

Sequence analysis of human α-syn showed that 
the entire UTR of the α-syn gene is highly conserved, 
insinuating a role for miRNA regulation [38]. Until now, 
miRNA-153 and miRNA-7 are the only two miRNAs 
that have been shown to directly aim α-syn. These two 
miRNAs downregulate α-syn mRNA and protein levels 
by binding to the 3′-UTR of α-syn [39]. Additional cellular 
studies have demonstrated that miRNA-7 decreases 
α-syn-induced neurotoxicity in a cellular model [40]. 
Additionally, miRNA-29a, miRNA-1, and miRNA-22 are 
less expressed in patients with PD compared to control 
subjects [41]. Thus, indicating that specific miRNAs 
could serve as effective biomarkers in patients with PD. 
A similar study performed using plasma from patients 
with untreated PD and control subjects found seven 
upregulated miRNAs, such as miRNA-454, miRNA-
125a-3p, miRNA-137, miRNA-181c, miRNA-193a-3p, 
miRNA-196b, and miRNA-331-5p in PD patients. Based 
on these evidences, miRNAs have tremendous potential to 
be developed as biomarkers or therapeutics for PD [42].

Alpha7 nicotinic receptor as a PD target

Neuronal acetylcholine receptors (nAChR) are 
pentameric ligand-gated ion channels that consist of 
different combinations of α and β transmembrane subunits 
[43-45]. The α7 receptor is membrane-bound receptor 
and consists of five identical α subunits, with five agonist 
binding sites. α7 nAChRs are highly expressed in the 
hippocampus, medial habenula, thalamus, hypothalamus, 
geniculate nuclei, colliculi cortex, and amygdala, but are 
scarcely expressed in forebrain, striatum, medulla, and 
numerous brain nuclei [46]. The notion that nicotine might 

be useful to treat PD initially came from epidemiological 
data [47, 48]. The outcome of these experiments, combined 
with the discovery that nicotine enhances dopamine release 
[49, 50] suggested that nicotine might be responsible for 
the beneficial results of smoking in patients with PD. A 
protective role for α7 nAChRs against degeneration of 
dopaminergic neurons originated from experiments that 
used nicotine as a nAChR agonist [51-53]. Early reports 
by Janson et al. showed that nicotine dosed at or before 
the time of lesioning considerably increases nigral and 
striatal dopaminergic markers in rats [54, 55]. Later on, 
the neuroprotective ability of nicotine was established 
in several rodent models simulating damage to the 
dopaminergic nigrostriatal pathway. The evidence includes 
neuroprotection against 6-hydroxydopamine (6-OHDA)-
induced nigrostriatal damage in rats [56] and protection 
against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP)-induced degeneration of nigrostriatal neurons 
in mice. Nevertheless, these results were not consistent 
enough to establish the neuroprotective potential of 
nicotine [57-59]. Subsequent experiments in parkinsonian 
nonhuman primates revealed that nicotine increased 
striatal dopaminergic components, including the DA 
transporter, tyrosine hydroxylase (TH), the vesicular 
monoamine transporter and DA [60, 61]. Data obtained 
from nonhuman primates with simulated PD strongly 
indicated the neuroprotective potential of nicotine. Other 
nAChRs subtypes, besides α7 nAChRs, are also protective 
against nigrostriatal damage. The α4β2 nAChR agonist 
ABT-089 confers neuroprotection in 6-OHDA-induced 
damage nigrostriatal neurons in rats [62]. In contrast, 
nicotine assisted neuroprotection against nigrostriatal 
damage was not reproduced in α4β2 nAChR knockout 
mice [63]. This result pinpoints the importance of 
β2 nAChRs for the effect of nicotine. One possible 
mechanism by which nicotine exhibits its protective role 
might be through chaperoning β2 nAChRs to the cell 
surface. Chaperoning could change the structures and 
functions of the endoplasmic reticulum, the secretory 
vesicles, and the Golgi apparatus of cells thereby reducing 
endoplasmic stress and enhancing cell survival [64, 65]. 
Drugs with different levels of agonistic efficacy, such as 
the allosteric α7 nAChR modulator galantamine and the α7 
agonists ABT-107 and DMXB, are neuroprotective against 
6-OHDA-induced damage to nigrostriatal neurons in rats 
[62, 66, 67]. Moreover, the α7 agonist PNU-282987 is also 
neuroprotective for MPTP-induced damage to nigrostriatal 
neurons in mice [68]. In contrast, the α7 nAChR antagonist 
methylycaconitine blocks the neuroprotective effect of 
nicotine [69]. These data indicate an important role for 
these receptors in protection against nigrostriatal damage. 
Nicotine may also be useful to manage levodopa-induced 
dyskinesias (LIDs). Experimental data from nonhuman 
primates and rodents indicate that drugs interacting with 
nAChRs may reduce LIDs [70]. Preliminary experiments 
with the general nAChR agonist nicotine showed a 60% 
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table 1: Emerging pre-clinical pharmacological targets for Parkinson’s disease (PD)
target Pharmacological Model Experimental Outcomes ref.

BAG1 SH-SY5Y cells and
C57BL/6J mice

BAG1 protects against mutant α-syn and 
rotenone-induced cell death. BAG1 also protects 
dopaminergic cells in the SN against MPTP-induced 
toxicity in vivo.

[279, 280]

Adenosine A2A 
Receptor MPTP-intoxicated Marmosets

Istradefylline (Adenosine A2A Receptor antagonist) 
effectively alleviates motor impairments in 
combination with low dose dopaminergic drug 
without aggravating dyskinesia.

[281, 282]

5Alpha-Reductase MPTP-intoxicated Mice
Dutasteride (5Alpha-Reductase inhibitor) 
significantly prevents the demise of dopaminergic 
neurons in MPTP-intoxicated mice.

[283, 284]

CB2 Receptor
Intrastriatal injections of LPS into  
C57BL/6J, male wild-type or CB2 
knockout C57BL/6J mice 

Genetic deletion of CB2 receptors exacerbates 
LPS-induced inflammation. Stimulating CB2 
receptors with HU-308 decreases the LPS-induced 
proinflammatory response.

[285, 286]

Cyclin D3/CDK6 6-OHDA-induced toxicity in SH-SY5Y 
cells

Sodium butyrate and suberoylanilide hydroxamic 
acid stabilizes the proliferative activity of PD 
lymphoblasts and decreases 6-OHDA-induced 
cell death in neuronal cells by preventing over-
activation of the cyclin D3/CDK6/pRb cascade.

[287]

PDE7 Ex vivo cultures obtained from male Wistar 
rats

Inhibiting PDE7 induces proliferation and growth 
of embryonic ventral mesencephalic-derived 
neurospheres and adult progenitor cells in vivo in 
the SNpc, as well as increases Nurr1 and TH MAP-
2 expression in neural stem cells obtained from 
ventral mesencephalon.

[288, 289]

SIRT2 LUHMES cells and MPTP model of PD

AK7 (SIRT2 inhibitor) protects dopaminergic 
neurons against α-syn-induced neurotoxicity in 
differentiated LUHMES cells and in MPTP model 
of PD.
AK7 prevents dopamine loss, encourages long-term 
endurance of dopaminergic neurons, and conserves 
functional performance.

[290, 291]

Trib3
PC12 cells and rat dopaminergic ventral 
midbrain neurons exposed with 6-OHDA,  
MPP+, or α-syn fibrils

Toxin-induced upregulation of Trib3 protein 
increases neuronal cell death. Trib3 knockdown 
protects PC12 cells and ventral midbrain 
dopaminergic from all toxins.

[292, 293]

SK channel Rotenone intoxication of human post 
mitotic dopaminergic neurons

Stimulating SK channels decreases mitochondrial 
membrane potential and maintains cell viability, the 
dendritic network, and ATP levels after rotenone 
insult.

[294, 295]

Sigma-1 Receptors Intrastriatal injection of 6-OHDA in mice

PRE-084 (sigma-1 receptor agonist) facilitates 
steady and substantial development of impulsive 
forelimb use and augmented density of 
dopaminergic fibers in the utmost denervated 
striatal regions.

[296, 297]

Ribosomal protein 
s15

Drosophila and human neuronal PD 
models

Phosphorylation of ribosomal protein s15, a 
substrate of LRRK2, is essential for the toxicity-
related effects of the common G2019S LRRK2 
mutation in human dopamine neurons and in 
G2019S the LRRK2 mutated Drosophila model 
of PD.

[298, 299]

Prolyl Hydroxylase 
Domain

Inducible genetic dopaminergic 
glutathione depletion model

Antagonizing the  prolyl hydroxylase domain  
pharmacologically via 3,4-dihydroxybenzoate 
substantially lessens mitochondrial dysfunction 
and damage to dopaminergic neurons in the SNpc.

[300, 301]

VDR and
NMDAR

Haloperidol-induced
Parkinsonism in mice

Vitamin D3 treatment enhances neural activity, 
motor-cognitive function, glia/neuron survival, and 
expression of neurofilaments. Inhibiting NMDAR 
and co-treatment enhances motor-cognitive 
functions but not as much as values detected post 
VDR stimulation.

[302, 303]
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decrease in LIDs in parkinsonian rodents and monkeys, 
indicating efficacy across species [52, 71-74]. Similarly 
varenicline, another general nAChR agonist [75], reduces 
LIDs by 50% [76]. Notably, pharmacological effects 
of nicotine were still observed in chronically treated 
nonhuman primates for over 1 year [73]. Nicotine 
decreases LIDs, regardless of route of administration. 
At least 1 month is required to observe the peak anti-
dyskinetic effect of nicotine [74]. However, it also took 
1 month to completely abolish the anti-dyskinetic effect 
of nicotine [76]. These observations suggest that long-

term molecular changes are most likely responsible for 
mediating the reduction in LIDs by nicotine. For example, 
the α7-agonist ABT-107 decreases LIDs by 60%, which 
continued for several months [76]. Interestingly, the ABT-
107-induced anti-dyskinetic effect persisted for about 1 
month after termination, suggesting long-term molecular 
changes. Another α7 agonist ABT-126 produced similar 
results [77]. Dosing the α7 nAChR agonist AQW051 
to Macaca fascicularis also yielded a 60% reduction 
in LIDs, with no further deterioration of parkinsonism 
[78], indicating the effectiveness of α7 nAChR agonists 

LHb 6-OHDA-induced PD model
LHb lesions decrease apomorphine-induced 
rotational behavior. The lesions also increase 
dopamine levels in the striatum of PD model of 
rats.

[304, 305]

HIF-1α MPP+-intoxicated SH-SY5Y cells Orexin-A is an inducer of HIF-1α that diminishes 
MPP+-induced cell injury. [306, 307]

ATF4 Overexpressed or silenced ATF4 in 
cellular models of PD

Silencing ATF4 in neuronal PC12 cells boosts 
cell death in response to either 6-OHDA or MPP+. 
Overexpression of ATF4 decreases cell death 
caused by dopaminergic neuronal toxins.

[308, 309]

Hsp70 H4 cells transfected with α-syn
CBX treatment activates heat shock factor 
1 and thereby induces Hsp70. Hsp70 abates 
α-syn aggregation and prevents α-syn-induced 
cytotoxicity.

[310, 311]

LAMP2A
SH-SY5Y neuroblastoma cell line stably 
expressing LAMP2A; primary cortical 
cultures with high CMA activity and a rat 
synucleinopathy model

Overexpressing LAMP2A enhances CMA activity 
and protects against  neurotoxicity caused by 
α-syn. Co-injection of LAMP2A with α-syn 
reverses α-syn neurotoxicity

[312, 313]

TFEB Induction of autophagy by CCI-779

CCI-779 inhibits mTOR, which increases nuclear 
translocation of TFEB, stimulates clearance of 
toxic oligomeric α-syn, and confers protection of 
nigral dopamine neurons against α-syn toxicity. 
Similarly, Rapamycin was observed to decrease 
Tau phosphorylation by inhibiting mTOR in 
senescence-accelerated OXYS rats.

[33, 314, 
315]

PGC-1α PGC-1α transgenic mice Over-expressing PGC-1α in mice protects against 
MPTP-induced neuronal degeneration. [316, 317]

T-type Ca2+

channels 6-OHDA lesioned rats
Local administration of a T-type Ca2+ channel 
antagonist significantly decreases locomotor 
deficits.

[318, 319]

HDAC6
PC-12 cells overexpressing human mu-
tant (A53T) α-syn and SH-SY5Y cells 
intoxicated with MPP+

Overexpressing α-syn upregulates HDAC6 ex-
pression in close association with α-syn to form 
aggresome-like bodies. HDAC6 deficiency ob-
structs formation of aggresome-like bodies and 
restricts autophagy in response to MPP+-induced 
stress.

[320, 321]

PI3K/Akt signaling 
pathway MPP+-intoxicated PC12 cells

Treatment with tetrahydroxystilbene glucoside 
attenuate loss of cell viability, release of lactate 
dehydrogenase (LDH), and inhibits apoptosis in a 
dose-dependent manner probably by activating the 
PI3K/Akt signaling pathway

[322, 323]

Abbreviations: BAG1: Bcl-2-associated athanogene-1, α-syn: α-synuclein, SN: substantia nigra, MPTP: 1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine, CB2: cannabinoid type-2, LPS: lipopolysaccharide, 6-OHDA: 6-hydroxy dopamine, PD: 
Parkinson’s disease, PDE7: phosphodiesterase-7, SNpc: substantia nigra pars compacta, SIRT2: Sirtuin-2, Trib3: Tribbles 
pseudokinase-3, MPP+: 1-methyl-4-phenylpyridinium, SK channel: small-conductance Ca2+-activated K+ channel, VDR: 
vitamin D3 receptor, NMDAR: N-methyl-D-aspartate receptor, LHb: lateral habenula, HIF-1α: hypoxia inducible factor 
1-alpha, ATF4: activating transcription factor 4, Hsp70: Heat shock protein-70, CBX: carbenoxolone, CMA: chaperone-
mediated autophagic, TFEB: transcription factor EB, mTOR: mechanistic target of Rapamycin, PGC-1α: peroxisome 
proliferator-activated receptor-gamma coactivator-1α, HDAC6: histone deacetylase-6, PI3K/Akt: phosphatidylinositol 
3-kinase/ protein kinase B 
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in nonhuman primates. In conclusion, drugs that are 
agonistic to α7 and β2 nAChR diminish LIDs by up to 
60% with no harmful effects on parkinsonism. Since α7 
nAChR might signify ideal drug target to improve LIDs 
in PD. Numerous intracellular mechanisms have been 
presented that facilitate the beneficial effects of activating 
α7 nAChRs against noxious insults. Mitogen-activated 
protein kinases have been associated with α7 nAChR 
assisted neuroprotection against a range of toxicities 
to PC12 cells, spinal cultures, and keratinocytes [79-
82]. Further downstream mechanisms related with α7 
nAChR assisted neuroprotection include increases heme 
oxygenase [83], phospholipase C [80], nerve growth factor 
[84], and proinflammatory cytokines such as interleukin-
1β (IL-1β) and tumor necrosis factor-α (TNF-α) [85]. In 
contrast, nitric oxide (NO) [86], caspases, and reactive 
oxygen species (ROS) [83] are associated with the 
toxic effects of α7 nAChR. Taken together, these results 
suggest α7 nAChRs are important targets for developing 
therapeutic approaches for PD.

Alpha synuclein as a PD target

Growing evidence from various experimental 
studies demonstrates that the α-syn protein, which is 
the main constituent of LBs, aggregate and accumulate 
intraneuronally in the brains of patients with PD. However, 
the association between this protein and the beginning 
of symptomatic behaviors linked with PD remains to be 
explored [87]. Reports suggest that expression of α-syn 
participates in dopamine biosynthesis by decreasing the 
action of TH or altering its phosphorylation [88, 89]. 
The functional ability of α-syn is very strictly related 
to its structure. Hence, understanding the structure and 
normal function of α-syn will help to learn about its 
involvement in PD. Human α-syn is a small acidic protein 
composed of 140 amino acids and is coded by the α-syn 
gene [90]. Recent data has revealed that α-syn at Ser129 
is prominently phosphorylated in patients with PD [91]. 
Mutation in the α-syn gene, reduced rate of degradation or 
likely modifications of α-syn, such as missense mutations, 
truncations, or chemical modifications due to oxidative 
stress are some of the prime reasons behind misfolding 
and aggregation of α-syn. These mutations are focused at 
the α-syn N-terminus, indicating that they hinder regular 
cellular function [87]. Current in vivo outcome [92] have 
indicated that suppressing α-syn may protect dopaminergic 
neurons. Silencing the human α-syn gene with miRNA-30-
hSNCA (a miRNA-30 transcript) at striatal dopaminergic 
terminals decreases the motor abnormalities seen in 
α-syn expressing rats and guards against damage to SN 
dopaminergic neurons. Conversely, efforts to silence the 
human α-syn gene with a small hairpin (sh)RNA in rat 
SN protected only against human α-syn-induced forelimb 
dysfunction but had no protective effect on DA neurons 
[93]. Moreover, high levels of shRNA α-syn are toxic 

to DA neurons, while lower levels of human α-syn gene 
silencing protect neighboring neurons. Taken together, 
these findings suggest that silencing the human α-syn 
gene may be a new therapeutic tool to control behavioral 
dysfunctions in PD. A number of clinical studies have 
shown the potential use of α-syn as a biomarker for PD in 
cerebrospinal fluid (CSF) [94].

Bearing in mind the several advantages of using 
biomarkers, researchers have begun to measure α-syn in 
peripheral organs of patients with PD. Wang, Gibbons et 
al. reported that patients with PD have increased levels 
of α-syn in cutaneous autonomic fibers [95]. This might 
clarify the incidence of autonomic dysfunction in patients 
with advanced PD [96]. Fresh data reveal that α-syn 
protein, its gene expression, and its signaling pathways is 
a challenging but effective way to alter motor behavioral 
insufficiencies and physiological deficits related with 
synucleinopathies. Additionally, many original compounds 
have been acknowledged as feasible to hinder or reverse 
the aggregation process [97]. Toth and coworkers used 
a combination of experimental and computational 
techniques [98] and discovered a small-molecule drug-
like phenylsulfonamide compound (ELN484228) with the 
capability to bind monomeric α-syn and, therefore, reduce 
its transfer to mature synapses. These findings suggest 
that changing the properties of α-syn may have potential 
therapeutic benefits for battling PD. An alternative 
method to targeting this protein is to diminish Ser129 
phosphorylation by obstructing the relevant kinases. 
Phosphorylation of α-syn appears to play an important 
role in the formation of the fibrillar aggregates causing 
PD pathology, since increased phosphorylation of α-syn 
is directly proportional to aggregation and toxic buildup 
in neurons [99]. Nevertheless, this tactic presents a 
potential restriction as numerous kinases are capable of 
phosphorylating α-syn. To tackle this issue, improvement 
of protein dephosphorylation has also been projected by 
Braithwaite and associates [100]. Hence, change in α-syn 
phosphorylation holds tremendous potential as a strategy 
to develop disease-modifying therapeutic interventions. 
Lately, numerous reports have described prion-like 
dispersal of misfolded α-syn [101-103]. Hence, there has 
been increased development of immunotherapies targeting 
clearance of α-syn aggregates and oligomers, [104, 105].

As toxic oligomeric forms of α-syn can enter 
and gather in the plasma membrane, get secreted and 
circulate extracellularly, it provides us a strong evidence 
for immunotherapy [104, 106] and also encourages 
development of oligomer specific antibodies [107]. 
Vaccination against α-syn can occur either by active 
or passive immunity. Active immunity involves 
stimulating the host to produce antibodies against α-syn 
aggregates, while passive immunization involves external 
administration of anti-α-syn antibodies to patients. The 
reason for the immunization to α-syn is to wash out these 
neurotoxic aggregates and impede neuron-to-neuron 
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propagation [108]. In recent evidence, monoclonal 
antibody against α-syn was found to antagonize entry 
and cell-to-cell transfer of α-syn in primary neurons 
[109]. Further, Games and associates found that passively 
immunizing mThy1-α-syn transgenic mice with the 
truncated α-syn C-terminus mitigated axonal and synaptic 
pathology, salvaged loss of TH fibers in the striatum, 
and regulated motor and memory dysfunction [110]. 
Immunotherapy targeting α-syn remains puzzling, as 
fundamental mechanisms are not fully understood. Thus, 
further clinical work is needed. Several in vivo models 
of PD have revealed that neuroinflammation is not only 
an initial event but also fast-tracks the progression of 
nigral cell death. Yan and colleagues confirmed that 
dopaminergic neurodegeneration prompted by misfolded 
α-syn was intensified by activation of microglia through 
α-syn phagocytosis and release of cytokines and ROS 
[111]. α-syn released from injured dopaminergic 
neurons activates microglia and stimulates the release 
of proinflammatory mediators, causing the chronic and 
progressive dopaminergic neural degeneration linked 
with PD [112, 113]. Nevertheless, the relationship between 
PD-associated α-syn aggregation and microglial-induced 
neuroinflammation remains obscure. A recent article 
indicates that Toll-like receptor (TLR) 4 and TLR2 was 
observed to be essential for α-syn assisted activation of 
microglia [111, 114, 115]. Also, α-syn fibrils induced 
release of IL-1β from monocytes is facilitated by TLR2 
[116]. Furthermore, the ability of microglia to detect 
misfolded α-syn increases the neurotoxic effect through 
the production of proinflammatory cytokines and ROS 
[117, 118]. Additionally, α-syn triggers constituents of 
innate and adaptive immune systems in patients with 
PD, which can alter pathological processes in animal 
models of PD [119, 120]. In fresh evidence by Thome and 
colleagues fractalkine signaling was observed to increase 
the inflammatory response in α-syn model of PD. Hence 
this report indicates that fractalkine is essential in the 
development of synucleinopathies, and could tentatively 
be a target for neuroprotective therapies for PD [121]. 
Therefore, studies are now focused on delineating the 
mechanisms and pathways linking neuroinflammation 
and α-syn.

rho kinase as a PD target

Rho is a small GTP-binding protein that plays a 
crucial role in many cellular functions. RhoA is a member 
of the Rho family and participates in cellular mechanisms 
that act on its direct downstream effector Rho-associated 
kinase (ROCK) [122]. Irregular activation of the RhoA/
ROCK pathway is seen in models of inflammatory 
demyelinating diseases, stroke, spinal cord injury, 
AD, and other diseases [29, 123]. A number of key 
mechanisms associated with activation of ROCK also 
play a major role in the degeneration of dopaminergic 

neurons [122]. Inhibiting ROCK confers protection to 
dopaminergic neurons in a MPTP/MPP+-induced in vitro 
and in vivo model of PD [124-127]. ROCK inhibitors 
protect dopaminergic neurons in a primary neuroglia 
mesencephalic culture intoxicated with MPP+ [125-
127]. Labandeira-Garcia and associates reported that 
NADPH-oxidase through NF-κB, triggers ROCK, which, 
in turn, stimulates NADPH-oxidase [122]. This finding 
is congruent with earlier experiments in peripheral cells 
showing that NADPH-oxidase-derived superoxide 
actuates NF-κB [128], and NF-κB stimulates ROCK [129]. 
More than a few experimental studies have shown that 
activating microglia and generating ROS with NADPH-
oxidase represent the early phases of dopaminergic 
cell death and that both aspects act synergistically with 
other elements to induce dopaminergic cell death as 
the primary stage of PD pathology [130]. Additionally, 
ROCK and the angiotensin (AT) system help deciding 
the fate of dopaminergic neurons. AT1 and AT2 receptors 
and NADPH oxidase have been found in dopaminergic 
neurons and nigral glial population [131]. In line with 
these observations a decrease in AT1 receptor levels, 
decreased MPTP-induced expression of RhoA and ROCK 
activity in the mouse SN. In cultured cells, the additive 
effect of MPP+ and AT-II-induced dopaminergic neuron 
death was also antagonized by the ROCK inhibitor 
Y-27632, indicating a vital interaction between the AT-II/
AT1 and the RhoA/ROCK II pathway in MPTP-induced 
dopaminergic neuron death [126]. This evidence reveals 
that activating ROCK and NADPH may be strongly 
involved in the AT-II-induced inflammatory response, 
which is blocked by ROCK inhibitors.

Labandeira-Garcia and coworkers demonstrated 
that estrogen impedes the MPTP or 6-OHDA-induced 
neuroinflammatory response and dopaminergic cell 
death [122]. Also, inhibiting the nigral rennin-AT 
system works in favor with the anti-inflammatory and 
neuroprotective effects of estrogen [132-134]. Reports 
by Rodriguez and Dominguez reconfirmed these findings 
by demonstrating the protective effect of the ROCK 
inhibitor Y-27632 in dopaminergic cell death induced by 
estrogen depletion [135]. In addition, candesartan an AT1 
receptor antagonist, blocks the estrogen-induced increase 
in ROCK activity [135]. Taken together, these outcomes 
recommend that stimulating ROCK might play a crucial 
role in increased susceptibility of dopaminergic neurons 
after the reduction in estrogen. Latter it was found that 
this outcome was facilitated by stimulating the AT-II/
AT1 pathway. Several mechanisms seem to be associated 
in ROCK-induced dopaminergic susceptibility and the 
neuroprotective effects induced by the ROCK inhibitors 
[122]. Many prospective ROCK targets in apoptotic 
signaling have been proposed, including interactions with 
the pro-apoptotic factors glycogen synthase kinase 3 beta, 
Bcl-2 proteins, and protein kinase B [136]. The axon-
stabilizing effects in injured neurons may denote another 
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mechanism of neuroprotection for dopaminergic neurons 
after inhibiting ROCK [137]. Concurrent treatment with 
a ROCK inhibitor substantially augmented the number of 
surviving dopaminergic neurons [125, 127]. Nevertheless, 
glial cells play an important role in the neuroprotective 
effects of ROCK inhibition on dopaminergic [124, 
125, 127] and other neurons [138]. Inhibiting ROCK 
decreases cell size and number of filopodia associated 
with microglial activation. In addition, ROCK inhibitor 
subdues activation of NADPH-oxidase and blocks 
the release of inflammatory cytokines, such as TNF-α 
and IL-β [76, 127]. In conclusion, ROCK is associated 
with a large number of cellular processes; thus, several 
mechanisms may be responsible for its protective effect 
on dopaminergic neurons.

Leucine-rich repeat kinase 2 as a PD target 

Non-synonymous point mutations in the leucine-
rich repeat kinase 2 (LRRK2/PARK8) gene is the 
leading genetic reason for autosomal dominant PD. 
Mechanisms specific to LRRK2 are being revealed with 
fresh discoveries of LRRK2 substrates [139]. The LRRK2 
gene encodes a 286 kDa protein and is located on human 
chromosome 12. Cellular LRRK2 carries out numerous 
functions including modulation of protein translation 
[140, 141], changing microtubule dynamics [142], 
participating in endocytosis [143] and autophagy [144]. 
G2019S is the most common PD-associated LRKK2 
mutation identified compared to other mutations. Majority 
of patients with LRRK2 PD lose SN neurons having 
fluctuating levels of LB inclusions, tau neurofibrillary 
tangles, or a combination of both [145]. Consequently, 
targeting LRRK2 is a striking option for developing PD 
therapeutics. Communication between the Roc-COR 
domains is significant for controlling LRRK2 GTPase 
activity because of the enzymatic capacity of LRRK2 
mutants. Decreased GTPase activities in Y1699C and 
R1441C mutants suggest that the GTP-bound state is 
related with the disease. Hence, variations in LRRK2 
GTPase activity either by obstructing the GTP-binding 
site of the ROC domain or by increasing GTPase activity 
embraces the therapeutic potential for LRRK2-associated 
PD. Nevertheless, no such study has attained this objective 
[146].

Mutations in the LRRK2 kinase domain change 
kinase activities, indicating that the pathogenicity of 
LRRK2 is facilitated through a non-kinase mechanism 
[146-148]. Therefore, the current attention on LRRK2 
is based on inhibition of its kinase domain. Oxidative 
stress induced by LRRK2 was salvaged by DJ-1 in a 
neuroblastoma cell line [149], suggesting that antioxidants 
are potential inhibitors of LRRK2 kinase toxicity. The 
selection of small molecule inhibitors mostly depends on 
their capability to antagonize LRRK2 phosphorylation 
sites, such as, constitutive phospho sites, LRRK2 auto-

phosphorylation sites, and those altered in the inhibitor-
resistant mutant [150]. Numerous lead molecules have 
been identified for LRRK2 that are specific, potent, brain 
penetrating and have druggable attributes that will lead 
to a clinical trial [151]. Another promising possibility is 
to search for mutation-specific inhibitors that have no 
effect on wild-type LRRK2. However, the pathogenic role 
of mutant LRRK2 is not understood making the clinical 
endpoint difficult to predict [151]. Moreover, destabilizing 
microtubules has been proposed as a junctional point 
of idiopathic and genetic forms of Parkinsonism. As 
microtubule dysfunction occurs in patients with PD and 
mitigating this flaw restores control of the PD phenotype 
[142], controlling microtubule dynamics could serve as 
a potential therapeutic target. LRRK2 is also strongly 
associated with autophagy [152] and endocytosis [153]. 
Therefore, the endolysosomal and autophagosome-
lysosome pathways are prospective target points to 
correct the effects of LRRK2. Use of LRRK2 inhibitors 
as a therapeutic option needs to be investigated in-depth, 
as LRRK2 significantly participates in immune function, 
metabolism, and kidney homeostasis [154].

Nuclear receptor related 1 protein as a PD target 

Nuclear receptor related 1 protein (Nurr1) is a 
member of the ligand-stimulated transcription factors 
called nuclear receptors. Nurr1 does not have a 
hydrophobic site for ligand binding as in other nuclear 
receptors; thus, nuclear receptor function is ligand-
independent [155, 156]. Nurr1 plays an important role 
in the development and specification of midbrain DA 
neurons throughout life [157]. Deficiency of Nurr1 in 
developed DA neurons results a decrease in DA neuron 
markers and motor impairments simulating early 
symptoms of PD. Removing Nurr1 from grown-up 
rodents results [158] in decreased expression of genes 
related with oxidative phosphorylation and mitochondrial 
function, suggesting a role for Nurr1 in the preservation 
of midbrain dopaminergic neurons [159-161]. Puigserver 
and colleagues performed a large meta-analysis of 
genome-wide gene expression studies and revealed that 
genes encrypting proteins participating in oxidative 
phosphorylation are highly dysfunctional in the remaining 
dopaminergic neurons of patients with PD [162]. The 
precise mechanism by which Nurr1 activates or inhibits 
these mitochondrial genes is not clearly known. However, 
other transcription factors essential for expressing nuclear 
respiratory genes, such as the nuclear respiratory factors 
NrF1 and NrF2, or the transcriptional co-activator 
peroxisome proliferator-activated receptor-γ co-activator 
1α, which is the chief controller of mitochondrial 
biogenesis and cellular respiration, might functionally 
bind with Nurr1 [162]. Neuroprotective effect by CREB 
in neurons exposed to oxidative stress and the regulation 
of neuroprotective genes is facilitated by Nurr1 [163]. 
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Also, increased expression of survival-promoting brain-
derived neurotrophic factor is facilitated by increased 
Nurr1 expression induced by the NMDA receptor [164]. 
Nurr1 agonist increases transcriptional activation of 
dopaminergic specific genes and decreases the expression 
of proinflammatory genes in microglia [165]. Nurr1 is 
identified to be activated in mouse microglia in vivo 
after stereotaxic injection of lipopolysaccharide (LPS). 
Apart from having vital roles within dopaminergic 
neurons, Nurr1 has been projected to be part of an anti-
inflammatory pathway in astrocytes and microglia that 
guard dopaminergic neurons from inflammation induced 
cytotoxicity [166]. In line with these reports, treatment 
with a Nurr1 agonist conferred neuroprotective and anti-
inflammatory effects in 6-OHDA lesion model of PD 
[167]. Lately, pathologic α-syn aggregates were found 
to downregulate Nurr and its transcriptional targets in 
midbrain DA neurons [119, 168]. Numerous additional 
genes may be downregulated due to the toxicity of 
α-syn. α-Syn may impede glial cell-derived neurotrophic 
factor (GDNF)-signaling by inhibiting Nurr1 and its 
transcriptional target Ret [169]. Overexpressing α-syn 
blocks GDNF signaling and inhibits the ability of GDNF 
to protect dopaminergic neurons against α-syn-induced 
toxicity [170]. Taken together, these findings suggest 
that the GDNF-Ret-Nurr1 pathway is an exciting target 
for PD therapeutic interventions. Outcomes from various 
experiments have suggested that nuclear α-syn may be 
responsible, at least in part, for the pathological process, 
and that Nurr1 is one of its targets that is affected directly 
or indirectly [171, 172]. Therefore, decrease in expression 
of Nurr1 could spur dysfunction of dopaminergic neurons 
and collude the progression of PD; thereby making this 
protein a promising therapeutic target for PD [169].

Glucagon-like peptide 1 receptor as a PD target

Currently there has been a gush of interest 
in glucagon-like peptide 1 receptor (GLP-1R) as a 
prospective target for PD therapies. Under normal 
physiological conditions, the GLP-1 is released from 
intestinal epithelial cells in anticipation of high glucose 
and acts on pancreatic β-cells, liver, and muscle to 
reduce glucose levels. Several GLP-1R agonists have 
been used to treat type-II diabetes. Various experiments 
have indicated a connection between PD and type-II 
diabetes, as both diseases share molecular networks, 
such as inflammation [173]. GLP-1R agonist exenatide 
has growth factor-like properties and numerous positive 
effects in animal models of neurodegenerative disease and 
acute brain injury, such as preserving synapse plasticity, 
stimulating neurogenesis, decreasing protein aggregation 
and inflammation [174]. Although the fundamental 
mechanisms are not fully clarified, one effect of GLP-
1R stimulation is to trigger the transcription factor cyclic 
adenosine monophosphate response element binding 

protein, which is associated with neuronal survival and 
synaptic plasticity. A recent clinical trial involving patients 
with PD administered daily injections of exenatide for 
12 months. Exenatide was found to improve motor and 
cognitive functions [175] over 12 months even though 
the drug was eliminated from the system [176]. Although 
these data hints at a disease-modifying effect, the results 
should be considered cautiously, as control patients were 
not given placebo. Presently, a controlled phase II trial in 
patients with PD is ongoing, using a slow-release form 
of exenatide (Bydureon), which is taken in a once/week 
injection. Even if exenatide has shown encouraging 
results, several other pharmacological approaches 
targeting GLP-1R are marketed for type-II diabetes and 
possibly have a more promising profile. For example, the 
GLP-1R agonists liraglutide and lixisenatide have lengthy 
half-lives, are effective in in vivo AD models [177-179], 
and can normalize Ca2+ levels in human neuroblastoma 
cells [180]. In the immediate future, several trials will aim 
to achieve disease modification in PD through chronic 
dosing of different GLP-1R agonist.

Acid-sensing ion channel as a PD target

Conserving the physiological pH of interstitial fluid 
is critical for normal cellular functions. Tissue acidosis 
is a common pathological variation causing abnormal 
activation of acid-sensing ion channels (ASICs), which 
may considerably contribute to mitochondrial dysfunction, 
inflammation, and other pathological mechanisms, 
including stroke, pain, and psychiatric conditions. 
Hence, it has become clear that ASICs are important in 
the development of neurological diseases [181]. Intra 
and extracellular pH is sustained between 7.3-7.0 under 
normal physiological conditions. However, increased 
neuronal excitability changes cellular pH to trigger 
various ion channels and receptors in cell membranes, 
including voltage-gated and ligand-gated ion channels 
[182, 183]. ASICs, which were first cloned by Waldmann 
and associates [184], are stimulated in response to acidic 
extracellular pH [185]. Nevertheless, the practical roles 
of ASICs in central and peripheral components of the 
nervous system remain to be determined. At present, 
neurodegenerative diseases including PD and AD, 
are treatable but can’t be cured by existing mode of 
treatment. Pre-clinical and clinical studies have suggested 
that overload of Ca2+, oxidative stress, mitochondrial 
dysfunction, energy metabolism, and acidosis are involved 
in neurodegenerative processes. These mechanisms 
frequently result in tissue acidification causing lactic 
acidosis, which further exacerbates neuronal damage. 
Similar observations have also been reported in the brains 
of patients with PD and in the typical MPTP-induced PD 
animal model [186, 187].

One study showed that mitochondrial ASIC1a might 
be a significant modulator of mitochondrial permeability 
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transition pores and increase neuronal death due to 
oxidative stress [188]. Furthermore, Arias et al. discovered 
that MPTP-treated mice have brain acidosis and that 
treatment with the ASIC inhibitors amiloride and PcTx-
1 confers protection against degeneration of SN neurons 
by preventing apoptosis and by decreasing DA and its 
transporter [189]. Moreover, the absence of endogenous 
parkin protein or mutations in the parkin gene cause 
irregular ASIC currents resulting in protein degradation 
and dopaminergic neuronal injury, indicating that ASIC 
currents may facilitate the essential pathology in PD [190]. 
Exposing rat microglial cells to LPS also increases ASIC1 
and ASIC2a expression levels and stimulates production 
of inflammatory cytokines [170]. These reports indicate 
that controlling microglial ASIC function might control 
the disease pathology in PD.

Dopamine heteroreceptor complexes as PD target 

The finding that DA-1 receptor (D1R) and D2R 
exists in the brain in the form of heteroreceptor complexes 
helped in understanding the therapeutic actions and side 
effects of L-DOPA and DA receptor agonists in the 
treatment of PD [191, 192]. Various heteroreceptors, 
including adenosine-A2A-D2R (A2AR-D2R), A2AR-
D2R-metabotrophic glutamate receptor (A2AR-D2R-
mGluR5), D2R-N-methyl-D-aspartate receptor (D2R-
NMDAR), D1R-D3R, A1R-D1R, D1R-NMDAR, and 
A1R-D1R-D3R heteroreceptor complexes could be 
potential targets for alleviating the side effect effects 
associated with L-DOPA. The finding that coactivation of 
the D1R and D2R protomers leads to calcium signaling in 
the striatum [193] suggested that the mental side effects of 
DA agonist treatment, such as gambling, psychosis, and 
hallucinations, can include stimulation of the D1R and 
D2R protomers of this heteroreceptor complex.
D1r-D3r heteroreceptor complexes

An abnormal increase in D1R protomer signaling 
produces LID [194]. Therefore, antagonizing over-
activated D1R protomer signaling in various types of 
homo and heteroreceptor complexes could be a promising 
target for treating LID.
D2r-D3r heteroreceptor complexes

A detailed understanding of the function and 
potential dysfunction D2R-D4.2R and D2R-D4.4R 
heteroreceptor complexes in PD is lacking. However, due 
to the activity of antiparkinsonian drugs, such as L-DOPA 
and apomorphine, on D4Rs, they also act on D2R-D4.2R 
and D2R-D4.4R heteroreceptor complexes, which could 
open new doors by increasing the plasticity of responses 
to L-DOPA treatment [195].

A2Ar-D2r heteroreceptor complexes

Fuxe and colleagues demonstrated antagonistic 
A2AR-D2R interactions at the level of D2R recognition 
in striatum from naive and hemiparkinson rats [196] and 
also at the level of the striatopallidal GABA pathway and 
its brain circuits in a naive rat model of PD [197]. These 
findings lead to the hypothesis that A2AR antagonists 
could be novel antiparkinsonian drugs by acting the 
A2AR homomer and protomer in the striatopallidal 
GABA neurons through antagonistic A2AR-D2R receptor-
receptor interactions [198] resulting in antidyskinetic 
actions, which could help lessen the wearing off of the 
therapeutic effects of L-DOPA.
A2Ar-D2r-mGlur5 heteroreceptor complexes

Due to the supremacy of co-activated A2AR and 
GluR5R receptor protomer signaling, chronic treatment 
with D2R agonists and L-DOPA is been often observed 
to produce a strong inhibition of D2R protomer signaling 
in A2AR-D2R-mGluR5 heteroreceptor complexes 
[199]. Therefore in the treatment of PD, we might need 
to aim A2AR and mGluR5 receptors located on striato-
pallidal GABA neurons by co-antagonizing them via 
using heterobivalent compounds. These compounds will 
encompass A2A antagonistic and mGlu5 antagonist/
negative allosteric modulator properties to eliminate the 
inhibition on D2R protomer signaling [195].
D2r-NMDAr (Nr2b containing) heteroreceptor 
complexes

Liu and coworkers established that the NR2B 
subunit of the NMDAR directly binds with the D2R 
[200]. Based on this finding, it is plausible to consider 
aiming D2R-NMDAR (NR2B containing) heteroreceptor 
complexes by co-treatment of a NR2B-selective NMDA 
antagonist with an mGluR5 antagonist/negative allosteric 
mGluR5 modulator to treat PD.
A1r-D1r heteroreceptor complexes

Similar to antagonistic A2AR-D2R interactions, 
there is also an existence for antagonistic interactions 
between A1R-D1R in the modulation of GABA release 
in hemi-parkinsonian rat [198] and also in D1R agonist-
stimulated motor effects in rodents [201]. Interestingly, it 
is worth to note that A1R agonists in rabbits can neutralize 
D1R agonist-stimulated oral dyskinesias [202]. Therefore 
with respect to the function of D1Rs in facilitating LIDs 
[203], these findings suggest the possibility that initial co-
treatment with A1R agonists in A1RD1R heteroreceptor 
complexes can neutralize the development of LIDs. 
Hence, pharmacology of A1R should be investigated 
in cellular models with A1R-D1R and A1R-D1R-D3R 
heteroreceptor complexes as targets. Cumulatively the 
existing investigations on D1R and D2R heteroreceptor 
complexes in the basal ganglia propose a novel molecular 
mechanism for understanding the loss of efficacy of 
L-DOPA and DA receptor agonists and the development 
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of dyskinesias by L-DOPA and DA receptor agonist.
In addition to the above mentioned heterereceptor 

complexes, growth hormone secretagogue receptor 
(GHSR1a) also is documented to form dimer with D1R. 
GHSR1a is a biological target of ghrelin peptide that is 
extensively disseminated throughout the brain. GHSR1a 
and D1R have been demonstrated to be co-expressed in 
areas including ventral tegmental areas, SN, and midbrain. 
Dimerization of D1R with GHSR1a amplifies cAMP 
signaling and subsequently D1R signaling. This suggests 
that dimerization is associated with mood, learning, and 
memory [204].

AtP13A2 as a PD target

The significance of ATP13A2 also known as PARK9 
in PD has increased with the finding that mutations in this 
gene cause Kufor-Rakeb syndrome (KRS) which is an 
autosomal recessive, juvenile-onset form of parkinsonism 
[205]. With the knowledge that ATP13A2 is a disease-
insinuating gene; a series of laboratory studies were 
initiated to unravel the molecular function and classify the 
pathophysiological mechanisms that result in the clinical 
phenotype. Early indications from various disease models 
suggested that ATP13A2 participates in Mn+2 and Zn+2 
metabolism [206, 207], mitochondrial bioenergetics [208-
210], and in the autophagy-lysosomal pathway [209, 211, 
212]. Moreover, ATP13A2 has been exposed to control 
α-syn metabolism, one of the major components of LB 
[212]. Detecting this monogenic form of PD has spurred to 
a number of experiments examining the role of this gene 
in sporadic PD. Numerous solo heterozygous ATP13A2 
mutations have been recognized with greater incidence in 
early-onset PD as compared to that in healthy controls, 
indicating that these mutations are an age-of-onset 
modifier or a risk factor for PD [213, 214]. Preliminary 
indications signifying the role of ATP13A2 in sporadic 
PD came from the observation that ATP13A2 mRNA 
levels increase in surviving dopaminergic SN neurons 
from brains of patients with sporadic PD [215]. Another 
distinct finding also confirmed a noticeable increase in 
the ATP13A2 protein in the SN and other brain regions 
of patients with sporadic PD [210]. Consequent studies 
consistently reported substantial changes in ATP13A2 
levels in the brains of patients with sporadic PD [211, 
216]. Additional evidence for a role of ATP13A2 in 
sporadic PD comes from the consequences of its absence. 
Functional ATP13A2 appears to be indispensable for 
breaking down hoarded or aggregated α-syn [212, 217]. 
Any slight deviation in its competence over a lifetime 
could contribute to the progression of synucleinopathy. 
Moreover, participation of ATP13A2 in externalization 
of α-syn through exosomes may be important in the 
development of PD, either by removing α-syn from the 
cytoplasm or by disseminating the protein into neighboring 
cells [207]. ATP13A2 may also unravel the relationship 

between α-syn metabolism and mitochondrial dysfunction 
in patients with sporadic PD. Mounting evidence puts 
mitochondrial dysfunction during neurodegeneration at 
the center of both familial [218, 219] and sporadic PD 
[220, 221]. Cell lines derived from a patient with KRS 
[208, 222] and mammalian ATP13A2-silenced cell lines 
[209, 210] had pathogenic changes in mitochondria 
function. The function of ATP13A2 in lysosomes and 
mitochondria appears to be directly connected to its role 
as a Zn+2 transporter and signifies the common fiber that 
connects these two apparently dissimilar organelle systems 
in PD [217, 222]. Dysregulation of zinc connected to 
insufficiency of ATP13A2 could clarify the established 
link between sporadic PD, higher brain zinc levels, and 
other tissues [223, 224]. Taken together these evidences 
back the participation of ATP13A2 in numerous 
overlapping pathogenic pathways intimately associated 
with PD. Additional examination on the expression levels 
of ATP13A2 as a target and their functional significances 
in these mechanisms, using suitable PD models, will 
be essential to widen the learning of ATP13A2 in PD 
pathogenesis.

Glutaredoxin as a PD target

Mutations in LRRK2 are related to autosomal 
dominant PD, and many of these mutations are observed 
to increase cellular ROS levels. Therefore, antioxidant 
proteins are essential to reinstate the redox balance and 
preserve cell viability. Studies in the past decade have 
begun to establish the prominence of redox proteins 
in facilitating neuroprotection in PD models [225]. 
Glutaredoxin (Grx) is small redox enzyme that precisely 
catalyzes the removal of glutathione from cysteine 
residues [226], thereby reinstating the function of proteins 
whose function is altered upon glutathionylation [227]. 
Grx1 is a well-recognized major deglutathionylating 
enzyme, exhibiting about 5000-fold greater catalytic 
competence for deglutathionylation compared to Trx1 
[228]. The primary finding demonstarting that Grx1 
participates in protecting dopaminergic neurons was 
observed when Grx1 mRNA and protein levels were 
elevated in mouse brain homogenate post-MPTP 
treatment [229], indicating a homeostatic upregulation 
of the chemical intoxication. Another study reported that 
female mice have higher Grx1 content than that of males 
and are more resistant to MPTP-induced dopaminergic 
cell death [230]. Supplementary experiments provided 
additional evidence that Grx1 facilitates neuronal 
protection. Treating SH-SY5Y cells with the pro-oxidant 
drug L-DOPA increased apoptosis. After examining 
the mechanism of drug-induced cell death, Grx1 was 
particularly inactivated compared to other redox enzymes 
[231]. This finding led to the suggestion that Grx1 plays 
an important role upholding neuronal cell viability. To 
check this concept, Grx1 was silenced in SH-SY5Y cells. 
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Cells exposed to Grx1-siRNA presented an increased level 
of apoptosis, similar to control cells with non-targeting 
siRNA [231]. This result was also confirmed by Grx1 
knockdown of Neuro-2a cells via shRNA, resulting in 
cell death [232]. Taken together, these results suggest 
that Grx1 plays a neuroprotective role in cultured cells. 
Although promising results have been seen in vitro, the 
neuroprotective role of Grx1 has not been investigated in 
vivo and its implications for PD in humans [233]. Johnson 
and colleagues examined the role of Grx1 in conferring 
protection to dopaminergic neurons in a C. elegans PD 
model. C. elegans worms overexpressing α-syn, TH, 
LRRK2-G2019S, and LRRK2-R1441C in dopaminergic 
neurons, simulating both familial and sporadic PD 
model, were crisscrossed with worms missing the Grx1 
homolog called GLRX-10. Each of the hybrid worm lines 

missing the Grx1 homolog displayed a significantly more 
severe PD phenotype compared to the control worms 
with endogenous GLRX-10. Moreover, re-expression 
of wild-type GLRX-10, in the dopaminergic neurons 
of the GLRX-10−/−/LRRK2-R1441C worms salvaged 
the exacerbated PD-like phenotypes [225]. Johnson and 
coworkers also inspected Grx1 content in brain samples 
of patients with and without PD. Immunoblot analysis 
of midbrain homogenates showed an overall reduction 
in the Grx1 protein in the midbrains of patients with PD 
compared to control subjects. Additionally, midbrain tissue 
slices revealed that more dopaminergic neurons were 
devoid of Grx1 in patients with PD compared to those in 
control subjects. Overall, these data contributes to the in 
vivo evidence that Grx1 protects dopaminergic neurons in 
familial and sporadic PD. Also, it reveals that Grx1 protein 

Figure 1: Preclinical targets for Parkinson’s disease (PD). As illustrated, there are eight capsules, each signifying various targets 
acting on particular pathological process and/or outcome of PD.
Abbreviations: ASICs, Acid Sensing Ion Channels; LRRK2, Leucine-rich repeat kinase 2; Grx, Glutaredoxin; miRNA, Micro-RNA; Nurr1, 
Nuclear receptor related 1 protein; GPR109, Niacin receptor 1; α7-nAChR, Alpha-7 Nicotinic Acetyl Choline Receptors; DA-Hetero-R, 
Dopamine Hetero Receptors; mGlu-R, Metabotropic Receptor; α-Syn, Alpha Synuclein; ATP13A2, ATPase Type 13A2; Hsp70, Heat Shock 
Protein; GLP-1R, Glucagon-like peptide 1; PDE7, Phosphodiesterase-7; HIF-1α, Hypoxia-inducible factor 1-alpha; CB2-R, Cannabinoid-2 
Receptor; SK Channels, Small conductance calcium-activated potassium channels; VDR and NMDR, vitamin D3 receptor; NMDAR, 
N-methyl-D-aspartate receptor; LHb, lateral habenula; GPR109A, Niacin Receptor 1.
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content is reduced in PD brains, indicating that decreased 
Grx1 with aging precedes PD [225]. Furthermore, Johnson 
and colleagues found that loss of the Grx1 homolog in 
worms aggravated LRRK2-induced dopaminergic 
neuronal toxicity. Over production of DA or α-syn was 
observed to be responsible for the loss of Grx1 which 
further worsened PD phenotypes in models of sporadic 
PD. However, re-expression of the catalytically active 
site of the Grx1 homolog avoided the intensified toxicity. 
Largely these data noticeably implicates that reversible 
protein glutathionylation is the most likely mechanistic 
base for the catalytic role of Grx1 in facilitating protection 
to dopaminergic neuronal against the oxidative stress 
associated with overexpression of mutant α-syn or 
LRRK2. Thus, elimination of the glutathione modification 
from vital regulatory proteins by Grx1 is obligatory to 
reinstate their function and preserve cellular homeostasis 
and cell survival. Based on the available data and the need 
to combat oxidative stress in PD, Grx1 can serve as a 
novel therapeutic strategy for PD [225].

Metabotropic glutamate receptor as a PD target

Nickols and Conn have reported all pertinent 
preclinical indications that will lead to expanding 
mGlu4 receptor-positive allosteric modulators (PAMs) 
and mGlu5 receptor negative allosteric modulators 
(NAMs) as potential anti-parkinsonian drugs [234]. 
One major drawback in the existing treatment of PD is 
motor fluctuations and LIDs. No treatments are available 
for LIDs except weak NMDA channel blockers and 
amantadine. In a recent report by Xia and associates, it 
was demonstrated that the selective mGluR5 antagonist, 
2-methyl-6- (phenylethynyl) pyridine in the presence 
of rotenone intoxication, mitigates DNA damage in 
MN9D dopaminergic neurons by decreasing intracellular 
calcium release which further decreases mitochondrial 
dysfunction and endoplasmic reticulum stress caused by 
ROS [235]. mGlu5 receptor NAMs have demonstrated in 
vivo activity by decreasing both LIDs and parkinsonian 
motor symptoms. These drugs may protect nigral 
dopaminergic neurons in rodents and non-human 
primates [236, 237]. Mavoglurant (AFQ056) is an mGlu5 
receptor NAM that exhibits substantial anti-dyskinetic 
activity without restricting the therapeutic efficacy of 
L-DOPA in preliminary, Phase 2a, and Phase 2b clinical 
trials [238]. However, mavoglurant was discontinued, 
as it was not found active in further studies. Due to the 
phenotypic response by glutamate in manifesting motor 
behavior, it is plausible that mGlu5 receptor blockade is 
a reliable strategy to treat LIDs. Similarly, dipraglurant, 
another mGlu5 receptor NAM, showed good safety and 
acceptability profile with noteworthy efficacy against LIDs 
in a Phase 2a study [238]. Nevertheless, all of these studies 
were short-term and it remains unclear whether mGlu5 
receptor NAMs can change synaptic plasticity underlying 

LIDs or whether they have symptomatic effects.
The mGlu4 receptor is another recognized target 

for treating PD, and several orthosteric agonists and 
mGlu4 receptor PAMs have presented symptomatic 
efficacy in experimental models of parkinsonism [234, 
239]. Stimulating mGlu4 receptors could attenuate the 
degeneration of dopaminergic neurons in PD [240, 
241]. Jeff Conn and colleagues discovered that mGlu4 
receptors form homodimers at striatopallidal synapses, 
whereas they form inter-group heterodimers with mGlu2 
receptors at corticostriatal synapses. PHCCC, an mGlu4 
receptor PAM, selectively triggers mGlu4 receptor 
homodimers, whereas other PAMs, such as VU0155041 
and Lu AF21934, also stimulate mGlu4/mGlu2 heteromers 
[242]. It will be exciting to associate the activity of the two 
dissimilar categories of PAMs in models of parkinsonism. 
mGlu3 receptor PAMs still have the potential as disease-
modifying agents in PD since, mGlu3 receptors activate 
the production of neurotrophic factors such as GDNF and 
transforming growth factor-β [243].

Niacin receptor 1 as a PD target

Niacin receptor 1 (GPR109A) is a high-affinity 
niacin receptor that is overexpressed in the SN of patients 
with PD. Niacin is the primary source to synthesize NAD-
NADH, which is required for DA production. Hence, 
niacin supplementation might assist three purposes. 
First, DA synthesis in the striatum could increase by 
supplying NADPH, and a higher NAD/NADH ratio 
would boost mitochondrial functions and decrease 
inflammation through GPR109A-related mechanisms 
[244]. The neuroprotective role of niacin in PD was 
suggested by an unreliable report [245]. Furthermore, 
various reports have documented that chronic use of 
levodopa decreases the level of niacin by interfering with 
tryptophan breakdown. Tryptophan metabolism itself is 
impaired in patients with untreated PD [246, 247]. Long-
term niacin deficiency causes mitochondrial dysfunction, 
oxidative stress, and death of DA producing cells in 
the SN [248]. Therefore, the decrease in mitochondrial 
function may actually be an outcome of inflammation 
resulting from chronic niacin deficiency. Niacin is a 
very important factor for producing NADPH. An altered 
NAD-NADH ratio is implicated in ATP depletion 
and mitochondrial dysfunction, resulting in neuronal 
death in neurodegenerative diseases, such as PD [244]. 
NADPH is required to synthesize of tetrahydrofolate, 
which is crucial coenzyme required for DA synthesis. 
With decreased levels of niacin in PD, NADPH levels 
decrease and lessen striatal DA production. Therefore, it 
is reasonable to deliver a natural source for the coenzyme 
rather than supplying a ready-made coenzyme, which is 
niacin [244]. Wakade and colleagues suggested that niacin 
plays a significant role protecting dopaminergic neurons 
in PD via the GPR109A pathway, either by augmenting 
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blood supply to hypoperfused areas in the brain or by 
increasing anti-inflammatory mechanisms. GPR109A is 
also called hydroxycarboxylic acid receptor 2 (HCAR2), 
HM74a in humans, and PUMA-G in mice. GPR109A is 
a G-protein-coupled high-affinity niacin receptor [249] 
and beta-hydroxyl butyrate is its physiological ligand 
[250]. GPR109A is expressed in different human tissues, 
including the brain [251]. However, immune cells express 
the highest amount of the GPR109A protein in humans 
[251]. GPR109A and its ligands have been recognized for 
their anti-inflammatory properties in a range of in vivo 
and in vitro experimental models, including the retina, 
skin, and gut. Although the anti-inflammatory effect of 
GPR109A has not been shown in the brain, one report has 
indicated that GPR109A agonists subdue LPS-induced 
inflammation via the NF-κB pathway in the gut [252]. 
Also, activation of GPR109A in mouse macrophages by 
interferon gamma substantiates the role of GPR109A in 
inflammation [253]. However knocking down GPR109A 
has no effect on NAD-NADH or DA production. NADH 
is required for DA synthesis and cultured PC12 cells show 
increased TH and DA levels [254] by augmenting the 
reuse of quinonoid dihydrobiopterin to tetrahydrobiopterin 
[255]. Additionally, systemic administration of NADH 
increases urinary excretion of homovanillinic acid, which 
is suggestive of increased endogenous L-DOPA synthesis 
[256]. Therefore, DA may be augmented directly by 
supplying NADH in vitro. Niacin is involved in many 
other signaling pathways, including increasing nitric 
oxide, arachidonic acid, and prostaglandin D2 and E2 
levels [257, 258]. Niacin also stimulates adiponectin 
levels. Adiponectin may be neuroprotective by reducing 
oxidative damage [259, 260]. Therefore, GPR109A could 
be useful to battle acute or chronic inflammation in PD 
[244] and reduce PD progression.

Apolipoprotein E as a PD target

The Apolipoprotein E (APOE) gene is situated 
on chromosome 19 and encrypts a plasma glycoprotein 
composed of 299 amino acids, which is linked with low 
density lipoprotein (LDL), very low density lipoprotein 
(VLDL), and high-density lipoprotein (HDL) [261]. 
APOE is synthesized ubiquitously in the body, including 
the brain, liver, skin, and in macrophages [262]. Several 
major APOE isoforms have been described, such as E2, 
E3, and E4. Six different APOE phenotypes are detectable 
due to two single nucleotide polymorphisms at amino 
acid positions 112 and 158. These mutations could 
change the protein charge and stability; thus, inducing 
unique physiological functions. APOE decreases blood 
lipid and lipoprotein levels. APOE acts as a ligand for 
members of LDL receptor family and mediates removal 
of lipoproteins from the circulation for excretion via the 
liver. APOE forms VLDL and chylomicrons and changes 
the activity of other lipid metabolism-influenced proteins 

and enzymes, such as lipoprotein and lipase hepatic lipase. 
New data suggest that APOE and its isoform function 
beyond lipid metabolism to encompass maintenance of 
normal brain function [263]. Numerous APOE isoforms 
with structural differences have been discovered that 
serve functions in mitochondrial signaling, neuronal 
signaling, neuroinflammation, brain lipid transport, and 
glucose metabolism. Understanding the mutations in 
APOE, their isoforms, and their structural properties will 
help determine role in various diseases and to advance 
therapeutic strategies. Targeting APOE could help with 
risk assessment, diagnosis, prevention, and treatment of 
various neurodegenerative and cardiovascular diseases 
in humans. APOE is mostly manufactured by astrocytes 
or by neurons under certain pathological conditions [264, 
265]. The human brain comprises up to 25% of the body’s 
cholesterol, which is indispensable for myelin production, 
function, and its integrity. Cholesterol is a crucial 
constituent of axonal growth and synaptic formation, 
which are vital for learning and memory [266, 267]. 
Regulating cholesterol in the central nervous system (CNS) 
is independent of the peripheral system. Any dysfunction 
in CNS cholesterol could have influence on aging and the 
development of certain neurodegenerative diseases. APOE 
delivers cholesterol to neurons [268, 269], but the BBB 
limits the interchange of lipoproteins and APOE between 
the peripheral and CNS systems. One study reported that 
brain injury causes an increase in APOE protein content in 
the brain [270] but the mechanisms relating APOE to all 
of these biological processes have been elusive. Recently, 
association between APOE and PD has been demonstrated 
[271, 272]. Maximum studies were unsuccessful to testify 
any relation between APOE ε4 and vulnerability to PD and 
PD-associated cognitive dysfunction [273, 274]. Various 
experiments have shown that APOE ε4 is a risk factor for 
age of onset and reduced cognitive functioning associated 
with PD. Though, ε2 is considered a weak or inconsistent 
risk factor for PD [274-277], but a meta-analysis suggested 
that the ε2 allele is related with advanced risk for PD [72, 
278]. However, another study reported that the ε4 allele 
is associated with PD development [271]. Until now, 
experiments concentrating on the role of APOE in PD 
remain largely inconclusive and more studies are needed 
to determine whether APOE is a PD target.

cONcLUsION AND PErsPEctIVE

Irrespective of the intensive research from the past 
few decades, all existing therapies for PD are focused on 
providing symptomatic relief and not towards achieving 
neuroprotective or disease-modifying strategies. 
Therefore, there is a serious need for an exemplar shift 
in discovering novel and effective targets that cures or 
stops the advancement of PD. However, discovering a 
definitive cure for PD is a highly difficult task, as many 
obstacles need to be handled for the development of 
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effective disease-modifying or neuroprotective treatment. 
Novel targets can be discovered by the development of 
translationally accurate disease models, as current models 
of PD do not sufficiently simulate the advanced nature 
of the disease. Furthermore, a multi-target therapeutic 
approach (polypharmacology) might also combat 
the disease from various pathways, thus significantly 
improving the likelihood of disease modification. In our 
existing write-up and also as illustrated in Figure 1, we 
have summarized recent findings concerning preclinical 
investigations of various targets linked to PD. Current 
developments in understanding the molecular and cellular 
mechanisms of PD have facilitated us with a quick 
progress in identifying new PD targets. Additionally, 
multiple models can also be used to measure whether a 
target is capable of impacting different stages involved in 
PD pathogenesis. Quite a few targets have been examined 
in clinical trials designed to evaluate disease modification 
in PD, but all haven’t been satisfactorily fruitful. Over 
the past 3 years, clinical trials exploring the possibility 
of coenzyme Q10, creatine, dopaminergic receptor, 
adeno-associated virus serotype 2 (AAV)-neuturin, and 
PPAR-γ receptors have reported negative outcomes. 
Regardless of these drawbacks, clinical trials presently 
are testing the potential of targets such as, calcium 
channel blocker, adenosine receptor, neuronal nicotinic 
receptor, glutathione, AAV2-GDNF, as well as active and 
passive immunization against α-syn as disease-modifying 
therapies. We believe that rather than achieving short term 
benefits for PD, setting long-terms goals by carrying out 
integrative research by merging or collaborating academic 
and industrial outcomes would manifest an actual therapy 
for PD.
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