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Abstract: Due to the poor dynamic positioning precision of the Global Positioning System (GPS),
Time Series Analysis (TSA) and Kalman filter technology are used to construct the positioning
error of GPS. According to the statistical characteristics of the autocorrelation function and partial
autocorrelation function of sample data, the Autoregressive (AR) model which is based on a Kalman
filter is determined, and the error model of GPS is combined with a Kalman filter to eliminate
the random error in GPS dynamic positioning data. The least square method is used for model
parameter estimation and adaptability tests, and the experimental results show that the absolute
value of the maximum error of longitude and latitude, the mean square error of longitude and latitude
and average absolute error of longitude and latitude are all reduced, and the dynamic positioning
precision after correction has been significantly improved.

Keywords: Global Positioning System (GPS); Time Series Analysis (TAS); Autoregressive (AR) model;
Kalman filtering; positioning precision

1. Introductions

The United States was the first country to start the new generation of space satellite navi-
gation and position system. Subsequently, Russia and China have studied global navigation
positioning systems and developed them rapidly. The research and development of GPS was
to serve military needs and, as early as 1972, the United States Navy transit project and the
Air Force 621B project realized the application of GPS. With the development of economic
globalization, smart phones, vehicles and ships, which are based on the combination of GPS
and modern technology, have gradually penetrated into people’s daily life [1]. A country’s
important national infrastructure needs a perfect and stable Global Positioning System, and
the precision is an important parameter in the development of GPS [2].

At present, there are two methods to improve the positioning precision of GPS. The
first is to use the Differential Global Positioning System (DGPS) [3]. However, this method
has several limitations: (1) the equipment limitations: the receiver of a differential signal
must be used in practical applications. (2) Restrictions of work area: the work area is limited
by the differential network of a wide area. (3) Non-autonomous: the transmitting source
is required to improve precision [4]. The other is to use the positioning data which are
collected by the receiver for error correction. This method has poor real-time performance
and is vulnerable to external interference [5,6]. Therefore, it is particularly important to
improve the positioning precision of GPS without changing the hardware device.

Scholars have built the error model of GPS to improve the positioning precision of
GPS. In Ref. [7], Zhao Shan et al. used the ARMA (3,2) model to obtain the single error
model of a user by the combination of position operation and clock displacement filtering,
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which has a certain stability. In Ref. [8], Liu Di et al. made a long-term observation of a
static point to obtain the same characteristics of error sequence and elevation error sequence
between longitude and latitude, and finally established the AR (n) error model of GPS.
In Ref. [9], Wang Rong et al. analyzed the error of GPS and established the error model of
GPS. In Ref. [10], Zhiqiang Liu et al. modeled the time-selective channel as an AR process
and used a Kalman filter to track the time change. In Ref. [11], Tan-Jan Ho et al. proposed a
framework modeling which is based on multiple AR models, and developed the channel
predictor MAR. In Ref. [12], Christos Komnanakis et al. used a Kalman filter to track
a low-order autoregressive model, which is similar to the change in multiple input and
multiple output channels.

The models used AR models based on time series by the scholars. If the output
sequence of a model is xt, there is a non-linear problem of parameter estimation, and the
algorithm is complex and difficult. In order to solve the non-linear problems and effectively
improve the positioning precision of GPS, we use the TAS and Kalman filter to analyze
the characteristics of positioning error data, set up the Autoregressive (AR) model of GPS,
complete the parameter estimation of the AR model by the least square method, and
estimate the state of the system by a Kalman filter, so as to make the positioning precision
more reliable and accurate [13].

2. The Error Model of GPS

The error data of GPS are a discrete random variable of time series, which is differ-
ent from the analyzed dynamic data because the time series is a realization of random
processes and has a different physical background [14,15]. The processing method of the
corresponding model is an approximate description according to the data characteristics,
to determine the type of model suitable for the time series [16].

There are three important models of finite order linear in TSA, Moving Average
(MA) model, Autoregressive (AR) model, and Autoregressive Moving Average (ARMA)
model [17]. The type of model can be determined by analyzing the autocorrelation and
partial correlation of the error signal, and the identification methods of the three models
are shown in Table 1.

Table 1. The correlation function characteristics of the model.

Model Autocorrelation Function Partial Autocorrelation Function

MA Truncation Trailing

AR Trailing Truncation

ARMA Trailing Trailing

As shown in Table 1, the autocorrelation function of MA is truncated, while the partial
autocorrelation function is trailing. The autocorrelation function and partial autocorrelation
function of ARMA are trailing. The autocorrelation function of AR has the trailing property,
while the partial autocorrelation function has the truncation property, where truncation
means that the time-order autocorrelation function or partial autocorrelation function
is 0 when the order is greater than a constant K. The trailing property means that the
autocorrelation function or partial autocorrelation function fluctuates near zero after a
certain order.

If a time series is generated by a certain type of model, it should theoretically have
corresponding statistical characteristics [18,19]. Therefore, the sample autocorrelation
function and partial autocorrelation function of time series can be calculated, and the
characteristics can be compared with the characteristics of a theoretical autocorrelation
function and partial autocorrelation function of different types of series, and then the model
type suitable for the series can be judged [20].
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The estimated value ρ̂k of the autocorrelation function is a measurement to describe
the dependence between values of random processes at different times.

After obtaining the error observation data Xi(i = 1,2,· · · ,N), the sample autocorrela-
tion function ρ̂k of the error sequence is

ρ̂k = γ̂k/γ0 (1)

where the estimate value of autocovariance is γ̂k=
1
N

N−k
∑
i=1

(Xi−XM)(Xi+k−XM), k = 0, 1, · · · .

The estimate data of mathematical expectation are XM.
Using a numerical method and MATLAB programming, the response simulations of

the autocorrelation function and partial autocorrelation function of longitude and latitude
are obtained.

By using γ̂k instead of γk, the estimation of the partial autocorrelation function can be
obtained recursively. If the autocorrelation function ϕ̂kk of the sample is truncated in step, it
can be determined as an AR (M) sequence. If ϕ̂kk is not truncated, it is an ARMA sequence.
From Figures 1a and 2a, the error autocorrelation sequences of longitude and latitude have
coordinates fluctuations near zero after order 4, the red line represents the autocorrelation
function data of latitude and longitude error. From Figures 1b and 2b, the autocorrelation
function of longitude and latitude shows trailing, and the partial autocorrelation function
shows truncation, the blue line represents the partial correlation function error data of
latitude and longitude error, * represents the data point of latitude and longitude error
per second. Therefore, the error of longitude and latitude can be expressed by the AR (M)
model, that is,

ϕ̂11 = γ̂1/γ̂0

ϕ̂ k + 1 k + 1 =

(
γ̂k+1 −

k

∑
i=1

ϕ̂kjγ̂k+1−j

)/(
γ̂0 −

k

∑
i=1

ϕ̂kjγ̂j

)
ϕ̂ k + 1 j = ϕ̂kj − ϕ̂ k + 1 k + 1 ϕ̂ k k + 1− j , j=1,2,· · · ,k

. (2)

The recursive formula of ρ̂k can be used to find ϕ̂kk by using ρ̂k instead of γ̂k.
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Figure 1. Autocorrelation and partial autocorrelation of longitude. (a) Longitude autocorrelation 
function, (b) longitude partial autocorrelation function. 

Figure 1. Autocorrelation and partial autocorrelation of longitude. (a) Longitude autocorrelation
function, (b) longitude partial autocorrelation function.
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Figure 2. Autocorrelation and partial autocorrelation of latitude. (a) Latitude autocorrelation func-
tion, (b) latitude partial autocorrelation function. 
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Figure 2. Autocorrelation and partial autocorrelation of latitude. (a) Latitude autocorrelation function,
(b) latitude partial autocorrelation function.

3. The Establishment of the Error Model of GPS
3.1. Preamble Data Processing

We use Google Earth, an interactive electronic map, to capture longitude and latitude
information and motion track. From Figure 3a,b, Figure 3a is the Google Earth motion map,
a red cross is the trajectory point and a square is an ordinary landmark. Figure 3b is partial
latitude and longitude data.
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Figure 3. Google Earth motion track map longitude and latitude information. (a) Google Earth
motion map. (b) Longitude and latitude coordinate information.

The longitude and latitude data are established in the WGS-84 coordinate system,
and the unit is degree-minute second. However, the data in the unit are required, and
coordinate projection is required [21]. The WGS-84 coordinate value is projected into the
rectangular coordinate value of the Gaussian projection plane by ARCGIS software [22]. As
shown in Table 2, the X coordinate is north latitude and the Y coordinate is east longitude.

Due to the randomness of the point position in the dynamic environment, the truth
value of the observed quantity cannot be obtained directly, which makes the error separa-
tion relatively difficult [23]. In order to obtain the position data in the dynamic environment,
we adopt the polynomial fitting method to separate the error and select the power series
fitting, and the fitting value is the true value of the motion trajectory [24]. According to the
polynomial approximation theory, the fitting value compares with the position data contin-
uously collected on this motion trajectory to obtain the estimation of the GPS measurement
error value, so as to separate the error data of GPS in the dynamic environment.
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Table 2. Rectangular coordinates of a Gaussian projection plane.

Point Number 1 2 3 4 5 6

X-coordinates 322,186.148 322,185.5618 322,159.4055 322,159.4055 322,158.8192 322,183.8031

Y-coordinates 3,801,532.042 3,801,501.221 3,801,470.887 3,801,470.887 3,801,440.067 3,801,408.76

Heights 395 391 388 385 383 385

Point number 7 8 9 10 11 12

X-coordinates 322,183.2169 322,208.2011 322,233.1854 322,233.1854 322,233.1854 322,232.5994

Y-coordinates 3,801,377.94 3,801,346.633 3,801,315.327 3,801,315.327 3,801,315.327 3,801,284.506

Heights 386 384 382 384 384 385

Point number 13 14 15 16 17 18

X-coordinates 322,232.0134 322,231.4273 322,256.4121 322,255.8262 322,255.2402 322,255.2402

Y-coordinates 3,801,253.686 3,801,222.866 3,801,191.559 3,801,160.739 3,801,129.918 3,801,129.918

Heights 386 385 384 381 380 380

Point number 19 20 21 22 23 24

X-coordinates 322,254.6543 322,254.6543 322,228.4972 322,202.34 322,480.8022 322,480.8036

Y-coordinates 3,801,099.098 3,801,099.098 3,801,068.764 3,801,038.43 3,801,022.048 3,801,022.039

Heights 381 381 384 386 384 385

The estimated value of GPS measurement error is as follows:

X̂GPS = xi−f(b,t) (3)

where xi is the measured value. f(b, t) =
n+1

∑
i=1

bitn+1−i is an n-order power function

fitting polynomial model. Coefficient bi is a χ2 solution with minimum quantity,

χ2(b) = ∑N
i=1

(
xi−f(b,ti)

∆xi

)2
, ∆xi is the deviation between the original data and the fitted

value. If the order of the model polynomial is too low, the fitting is rough. If the order is
too high, overfitting will make the model contain data noise. In practical applications, it is
necessary to judge whether the fitting is appropriate by the value of fitting factor Q. If Q is
close to 0.5, it indicates that the fitting is good.

Q
(
χ2, N− n− 1

)
= 1− P(χ2 < (N− n− 1)) (4)

where P is the probability, N is the number of samples, and n is the order of the model.
The calculated Q value is 0.408 after fitting. In Figure 4, there is the large fluctuation

of some points which is caused by large-scale movement, not a bad value. In Figure 5, it is
the result of error separation of the dynamic position data. Taking the fitting value as the
true value estimation of the motion trajectory, and comparing it with the data of position,
the error value of dynamic measurements can be obtained by the motion trajectory.

3.2. Determination and Parameter Estimation of AR Model Order

It is known that the order of the AR (M) model is the determination of the AR model
order when the probability of the partial autocorrelation function falling within the interval∣∣∣ 2√

n

∣∣∣ exceeds 95% [25]. We take 2√
n = 2√

329
= 0.11 and obtain Tables 3 and 4 by a

MATLAB programming calculation, and the partial autocorrelation functions of longitude
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and latitude are truncated in 10 steps. The error model of GPS can be expressed as AR (10),
that is,

y(k) =
10

∑
i=1

ϕiy(k− i) + b(k) (5)

where ϕi is an autoregressive coefficient, b(k) is the white noise with mean value of 0 and
variance of θ2.
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Figure 5. The error sequence of GPS. (a) The error sequence of longitude. (b) The error sequence
of latitude.

As the least square estimation is a precise estimation of model parameters, the es-
timation precision is high [26]. Therefore, the least square method is used to estimate
parameters. It is

ϕ̂L =
(

XTX
)−1

XTY. (6)

The variance of b(k) is:

θ2 =
1

I− n

I

∑
t=n+1

≤
(

y(k)− ϕ1y(k− 1)− · · · − ϕiy
(

k2 − n
))

. (7)

The autoregressive coefficient and noise variance obtained by the least square method
are shown in Table 4.
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Table 3. Partial correlation function of longitude and latitude.

Order Number Partial Correlation Function
of Longitude

Partial Correlation Function
of Latitude

1 −0.2150 −0.2805

2 −0.7232 −0.4044

3 −2.5410 0.6886

4 1.5189 −1.9369

5 0.5226 2.1126

6 0.6765 0.6765

7 0.4181 0.4181

8 0.2553 0.2553

9 0.1881 0.1745

10 0.1089 0.1090

11 0.1063 0.1012

12 −0.1034 0.0989

13 −0.0217 0.0976

14 0.0344 0.09675

15 0.10384 0.09243

16 −0.0531 0.0881

Table 4. The data of autoregressive coefficient and noise variance.

Longitude Latitude

Order Number Autoregressive
Coefficient ϕi

Noise Variance θ2 Autoregressive
Coefficient ϕi

Noise Variance θ2

1 0.5750

6.07993 × 10−6

0.9146

8.0237 × 10−6

2 0.2136 0.0211
3 0.0846 0.0104
4 0.0722 0.0123
5 −0.0485 −0.0035
6 0.0074 −0.4411
7 0.0276 0.3617
8 0.0030 0.0561
9 0.0661 0.0032

10 0.0127 0.0064

3.3. Applicability Test of AR Model

The applicability of the model is essentially to test whether it is a white noise sequence,
and the most important problem is to test the independence of the sequence [27]. When
the number of samples is enough, the autocorrelation functions of residual error are
uncorrelated and approximate to the normal distribution.

ρ̂k =
i−k

∑
i=1

b̂1b̂1+k

/[
i

∑
t−1

b̂
2
]

. (8)

At the significance level α = 0.05, |ρ̂k| ≤
1.96
N0.5 , it is acceptable to assume that ρ̂k = 0 is

independent.
The green symbol is the residual value within the confidence interval, and the red

symbol is the residual value outside the confidence interval. The steadiness of the model
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is also an indicator to test the residual sequence. It can be seen from Figure 6 that the
autocorrelation coefficient of residual sequence fluctuates randomly with 0 as the mean in
the 95% confidence boundary, and the residual sequence data of the longitude and latitude
are stable, which indicates that the model has a high degree of fitting with the actual system
and the model meets the requirements. Therefore, the AR (10) model is more suitable for
GPS longitude and latitude error time series.
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4. The Application of Kalman Filter in the Error Model
4.1. Discretization of State Equations of Continuous Systems

The actual physical system is generally continuous, and the dynamic characteristics
are described by continuous differential equations. Therefore, the discretizations of the
system equation and the observation equation are needed [28,29].

The system state equation describing the dynamic characteristics of the physical
system is:

.
X(t) = f(t)X(t) + g(t)v(t) (9)

where the driving source v(t) of the system is the white noise process, which is{
E[v(t)] = 0

E[v(t)vT(τ)] = qσ(t− τ)
(10)

where q is v(t) variance intensity matrix. σ(t-τ) is a function of Dirac σ.
According to the linear system theory, the discretization of the system state equation is:

X(tk+1) = a(tk+1, tk)X(tk) +
∫ tk+1

tk

a(tk+1, τ)g(τ)v(τ)dτ (11)

where the one-step transfer matrix a (t k+1, tk
)

satisfies the equation:

ak+1,k = a(tk+1, tk) = I + Tfk +
T2

2!
f2
k +

T3

3!
f3
k +

T4

4!
f4
k + · · · (12)

where fk= f(t k), T = tk+1−tk. The equation is the real-time calculation formula of a one-
step transfer matrix.

The discretization state equation of continuous system also includes the equivalent
discretization of the excited white noise process v(t).

Vk =
∫ tk+1

tk

φ(tk+1, τ)g(τ)v(τ)dτ. (13)
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Equation (11) can be abbreviated as:

Xk+1 = ak+1,kXk + Vk (14)

where Xk= X(t k). Then, for V(k) defined in Equation (13), it is:{
E[Vk] = 0

E[VkVT
j ] =

∫ tk+1
tk

φ(tk+1, tk)g(t)qgT(t)φT(tk+1, tk)dt = Qδkj
(15)

where, δkj is Kronecker δ function. The variance matrix Qk of Vk satisfies the following
equation:

M1 = gkqgk
T (16)

Mi+1 = fkqgk
T (17)

Qk = TM1 +
T2

2!
M2 +

T3

3!
M3 +

T4

4!
M4 + · · · (18)

where, gk= g(t k), the Equation (16) is the real-time calculation formula of Qk.

4.2. The Basic Equation of Discrete Kalman Filter

Kalman is linear minimum variance estimation [30]. For Kalman model, the state
equation and observation equation of discrete linear system are respectively:

Xk = ak,k−1Xk−1 + ξk−1Vk−1 (19)

Yk = ckXk + Wk (20)

where, ak,k−1 is one step transition matrix of time, which is tk−1 to tk. ck is the measurement
matrix. ξk−1 is the system noise driving. Wk is the observation noise sequence. Vk−1 is the
excitation noise sequence of the system. Both Vk and Wk are satisfied

E(V K) = 0, E(V KVT
j ) = 0,= QKδKj

E(W K) = 0, E(W KWT
j ) = 0,= RKδKj

E(W KVT
j ) = 0

(21)

where, Qk is the variance matrix of the system noise sequence, it is a non-negative matrix.
Rk is the variance matrix of noise sequence on both sides, it is positive definite matrix.
δkj is Kronecker δ function.

If Xk is conformed to Equation (19), the measured value Yk is conformed to Equation (20),
the system noise Vk and the measurement noise Wk are conformed to Equation (21), and the
system noise variance matrix Qk is non-negative definite, the measurement noise variance
matrix RK is positive definite, and the measurement of time K is Yk, the equation can be
solved for XK estimation X̂K.

Then 

Xk|k−1 = ak,k−1X̂k
Pk|k−1 = ak,k−1Pk−1aT

k,k−1 + ξk−1Qk−1ξ
T
k−1

Kk = Pk|k−1cT
k

(
ckPk|k−1cT

k + Rk

)−1

X̂k = X̂k|k−1 + Kk

(
Yk − ckX̂k|k−1

)
pk = (I−Kkck)Pk|k−1(I−Kkck)

T + KkRkKk
T

(22)

where, Xk|k−1 is the one-step prediction equation of state. Pk|k−1 is the one-step prediction
of mean square error. Kk is the gain equation of filter. X̂k is the estimation equation of filter.
pk is the optimal mean square error at time K.

As long as the initial value X̂0 and P0 is given, according to the measurement Yk at
time k, the estimated state X̂K(k = 1, 2, 3, · · · ) at time k can be deduced.
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4.3. Kalman Filter Based on AR Model

The state vector of GPS is

x(k− 1) =


x(k− 10)
x(k− 9)

...
x(k− 1)

 (23)

The model is based on x(k) =
10

∑
n=1

ϕnx(k− n) + b(k), the state space model of Kalman

filter model is Equations (9) and (10), where Vk and Wk have statistical characteristics of
Equation (21).

The process noise turn the difference equation of AR (10) model into state Equation (24),
it is


x(k− 9)
x(k− 8)

...
x(k)

 =


0 1 0 · · · 0
0 0 1 0 0
...

...
...

0 0 · · · · · · 1
ϕ10 ϕ9 · · · · · · ϕ1




x(k− 10)
x(k− 9)

...
x(k− 1)

+


0
0
...
0
1

V(k) (24)

Let


0 1 0 · · · 0
0 0 1 0 0
...

...
...

0 0 · · · · · · 1
ϕ10 ϕ9 · · · · · · ϕ1

 = A,


0
0
...
0
1

 = B, Equation (24) can also be abbrevi-

ated as
x(k) = Ax(k− 1) + BV(k) (25)

The observation equation is

y(k) = x(k) + W(k) = Cx(k) + W(k) (26)

where, C =
[

0 0 · · · 0 1
]
.

Because the statistical characteristics of V(k) and W(k) are consistent with Kalman
filter, the recursive expression of Kalman filter based on AR model is show as:

X̂k|k−1 = AX̂k−1
Pk|k−1 = APk−1AT + BQk−1BT

Kk = Pk|k−1cT
(

cPk|k−1cT + R
)−1

X̂k = X̂k|k−1 + Kk

(
Yk − ckX̂k|k−1

)
Pk = (I−Kkck)Pk|k−1

(27)

where, Xk|k−1 is the one-step prediction equation of filter state. Pk|k−1 is the one-step
prediction of mean square error. Kk is the gain equation of filter. If the Kalman filter gain
value Kk is very small, the filtering result is closer to the recursive result of the system state
estimation value. If Kk is large, the filtering result is closer to the state variable calculated of
the observed value. X̂k is the estimation equation of filter. pk is the optimal mean square
error at time K.

There are two ways to deal with Q: one is that Q is a certain value. The second is
that Q is an uncertain random variable. Therefore, the Q value in this paper is a definite
value, which is the process noise variance of the system, and its value is σ ∗ I10order. When
the state transition process has been determined, the smaller of Q is the better. When Q
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gradually increases, the convergence of filter slows down and the disturbance of the state
variable becomes larger. The value of R is related to the characteristics of the device and is
the input value of the filter.

5. Simulation and Analysis
5.1. AR (10) Model Kalman Filter Experiment

The dynamic error model (AR model) of GPS uses a Kalman filter, Q/R is 0.1/0.5, and
the order of the AR model is determined to be 10. The error filtering results of longitude
and latitude are shown in Figure 7.
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Figure 7. The error filtering results of longitude and latitude. (a) The error of longitude. (b) The error 
of latitude. 

In Figure 7, the blue curve is the error data of original longitude and latitude, the 
green curve is the error of longitude and latitude after the Kalman filter, and the red curve 
is the ideal error. The blue and green lines do not completely coincide, and the green lines 
after the Kalman filter are smoother. There are several points with large amplitude in the 
figure, which are caused by excessive movement when collecting data. In order to analyze 
Figure 7, Table 5 is shown below for explanation. 

  

Figure 7. The error filtering results of longitude and latitude. (a) The error of longitude. (b) The error
of latitude.

In Figure 7, the blue curve is the error data of original longitude and latitude, the
green curve is the error of longitude and latitude after the Kalman filter, and the red curve
is the ideal error. The blue and green lines do not completely coincide, and the green lines
after the Kalman filter are smoother. There are several points with large amplitude in the
figure, which are caused by excessive movement when collecting data. In order to analyze
Figure 7, Table 5 is shown below for explanation.

Table 5. The original error sequence and filtered error sequence of longitude and latitude.

Absolute Value of
Maximum Error/m Mean Square Error/m Mean Absolute Error/m

Longitude original error sequence 1.8125 0.266574 0.179414

Longitude filtered error sequence 1.2597 0.242909 0.169197

Latitude original error sequence 1.594 0.206185 0.123304

Latitude filtered error sequence 1 0.185163 0.116725

The analysis of data is carried out, and the absolute value of maximum error, mean
square error, and mean absolute error are selected to reflect the changes in data before and
after the filtering model. It can be seen from Table 5 that the absolute value of the maximum
error of longitude and latitude after filtering is reduced by 30.50% and 37.26%. The mean
square errors of longitude and latitude were reduced by 8.878% and 10.12%. The mean
absolute errors of longitude and latitude were also reduced by 5.695% and 5.336%.

5.2. Compared Experiment of AR Model

In order to further prove the effectiveness of the model in this paper, a new set of GPS
data is collected, and an AR model based on a different order Kalman filter is established
and compared with the model. Q/R is 0.1/0.5, the longitude and latitude error curve of
each model is shown in Figure 8.
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error of latitude. 
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error of latitude.

In Figure 8, the red line is the error of expectation, the blue line is the error of mea-
surement, and the brown line the error of the AR (10) model. In order to more intuitively
compare the error of each model, the longitude and latitude error data of each model are
given in Tables 6 and 7.

Table 6. The longitude errors of different models.

Absolute Value of
Maximum Error/m

Mean Square
Error/m

Mean Absolute
Error/m

Original error 0.9474 0.209081 0.278591

AR (6) 0.5683 0.137044 0.177516

AR (7) 0.5633 0.137429 0.177733

AR (8) 0.5584 0.137194 0.177533

AR (9) 0.5614 0.137537 0.178879

AR (10) 0.5526 0.130864 0.176819

AR (11) 0.5605 0.137209 0.180477

AR (12) 0.5692 0.135520 0.179191

AR (13) 0.5528 0.135469 0.191706

AR (14) 0.5597 0.135521 0.177114

AR (15) 0.5628 0.137509 0.182409

AR (16) 0.5658 0.138854 0.186109

It can be seen from Tables 6 and 7 that the absolute value of the maximum error of
longitude and latitude in this paper has been reduced by 41.67% and 52.25%, respectively.
The mean square errors of longitude and latitude were reduced by 37.41% and 39.48%,
respectively. The mean absolute errors of longitude and latitude were also reduced by
36.53% and 23.26%, respectively. Although the errors of other order models are also
greatly reduced with a Kalman filter, the AR (10) model in this paper is selected after order
determination and adaptability tests, so the positioning accuracy of this model is better
than other models.
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Table 7. The latitude errors of different models.

Absolute Value of
Maximum Error/m

Mean Square
Error/m

Mean Absolute
Error/m

Original error 0.9248 0.209406 0.270833

AR (6) 0.4301 0.127979 0.213698

AR (7) 0.4346 0.128573 0.212659

AR (8) 0.4379 0.129551 0.211016

AR (9) 0.4392 0.130159 0.211360

AR (10) 0.4258 0.126727 0.207835

AR (11) 0.4395 0.131173 0.209522

AR (12) 0.4322 0.128886 0.210099

AR (13) 0.4256 0.127212 0.209449

AR (14) 0.4416 0.127643 0.210880

AR (15) 0.4360 0.130439 0.212706

AR (16) 0.4546 0.133593 0.214826

6. Conclusions

In this study, the error of GPS is researched, and the statistical characteristics of GPS
are analyzed and simulated. The least square method is applied to estimate the parameters,
and obtain the basic equation of a discrete Kalman filter by the continuous Kalman filter.
To eliminate the random error of GPS dynamic positioning data, the error model of GPS
is combined with a Kalman filter and the experimental results show that the smaller the
mean square error, the better the precision of the prediction model on the experimental
data. The dynamic positioning precision after correction has been significantly improved,
and this method can effectively improve the positioning precision of GPS and support for
the application of GPS.
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