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Abstract

Motivation: Accurate contact predictions can be used for predicting the structure of proteins. Until

recently these methods were limited to very big protein families, decreasing their utility. However,

recent progress by combining direct coupling analysis with machine learning methods has made it

possible to predict accurate contact maps for smaller families. To what extent these predictions

can be used to produce accurate models of the families is not known.

Results: We present the PconsFold2 pipeline that uses contact predictions from PconsC3, the

CONFOLD folding algorithm and model quality estimations to predict the structure of a protein. We

show that the model quality estimation significantly increases the number of models that reliably

can be identified. Finally, we apply PconsFold2 to 6379 Pfam families of unknown structure and

find that PconsFold2 can, with an estimated 90% specificity, predict the structure of up to 558 Pfam

families of unknown structure. Out of these, 415 have not been reported before.

Availability and Implementation: Datasets as well as models of all the 558 Pfam families are avail-

able at http://c3.pcons.net/. All programs used here are freely available.

Contact: arne@bioinfo.se

1 Introduction

A few years ago maximum entropy methods revolutionized the ac-

curacy of contact predictions in proteins (Weigt et al., 2009; Burger

and van Nimwegen, 2010; Aurell, 2016). This enabled the predic-

tion of accurate protein models using no information from homolo-

gous protein structures (Marks et al., 2011; Morcos et al., 2011). It

has been shown that accurate protein structures can be obtained for

soluble proteins (Marks et al., 2011), membrane proteins (Nugent

and Jones, 2012; Hopf et al., 2012; Hayat et al., 2015) and even dis-

ordered proteins (Toth-Petroczy et al., 2016). These methods have

also been used to predict interactions between proteins (Weigt et al.,

2009; Ovchinnikov et al., 2014; Hopf et al., 2014).

Until recently such methods have been limited to very large pro-

tein families (Kamisetty et al., 2013; Skwark et al., 2014). However,

by the inclusion of additional information and improved machine

learning methods it is now often possible to obtain accurate contact

maps for families as small as a few hundred effective sequences

(Michel et al., 2017; Jones et al., 2015; Wang et al., 2017).

Pfam contains today approximately 16 000 protein families that

vary in size between a few tens to hundreds of thousands effective

sequences. About half (46%) of these protein families contain no

representative structure, i.e. there is more than 7500 protein families

without a structure. The families with structure are on average

larger than the ones without, median size 680 versus 134 effective

sequences, i.e. most of the families without a structure are too small

for maximum entropy contact prediction but might be within reach

for methods that combine DCA and advanced machine learning.

Now, we ask the question how many of these roughly 7500 pro-

tein families without a structure can be modeled reliably by using

state of the art contact prediction methods. To the best of our know-

ledge the largest effort to model protein families was performed by

the Baker group who modeled structures for 614 families by includ-

ing a very large set of sequences from meta-genomics (Ovchinnikov

et al., 2017). However, their approach for contact prediction was

based on a maximum entropy method (Antala et al., 2015) and not

the newer methods using machine learning.

The PconsFold2 pipeline is described in Figure 1. Given an input

sequence PconsFold2 generates four alignments. These alignments

are then used by PconsC3 (Michel et al., 2017) to predict four differ-

ent contact maps. The 2.5L (L¼ length of sequence) top ranked
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contacts are then used to fold the protein. In contrast to PconsFold

(Michel et al., 2014), PconsFold2 uses CONFOLD (Adhikari et al.,

2015), i.e. the NMR protocol of CNS (Brunger, 2007) and not

ROSETTA (Leaver-Fay et al., 2011) to generate 50 models for each

contact map. This makes the pipeline much faster but possibly

slightly less accurate.

The final step in the pipeline is the model quality assessment. In

addition to existing model quality assessment methods, we intro-

duce PcombC. PcombC is a linear combination of three separate as-

sessment scores: Pcons (Lundström et al., 2001), ProQ3D (Uziela

et al., 2017) and the agreement between predicted and observed con-

tacts in the model.

Finally, we apply PconsFold2 to 6379 Pfam families without a

known structure. Using the cutoffs for a false positive rate of 10%,

we do identify 558 protein families where the first ranked model is

estimated to be correct by one of the three model quality estimators.

Out of these 558 Pfam families 415 are not present in the earlier

studies by the Baker group (Ovchinnikov et al., 2017, 2015).

2 Methods

2.1 Datasets
There are 16 295 protein domain families in Pfam 29.0. Out of these

7733 domains have a known structure with a HHsearch (Söding,

2005) hit in PDB with an E-value of <10– 3 that covers at least 75%

of it’s representative sequence. For each Pfam family, we assign a rep-

resentative sequence. We refer to the length and properties of a Pfam

family by the representative sequence. The representative sequence of

a Pfam domain with known structure is set to be the protein sequence

ranked first by HHsearch against the PDB database bundled with

HHsuite (Meier and Söding, 2015) (date: September 7, 2016)

The test dataset was generated from 626 Pfam domains that

were randomly selected from 6925 domains with known structure

that are longer than 50 residues.

From the remaining Pfam domains, we excluded all Pfam do-

mains that can be found in the pdbmap file from Pfam release 29.0

and those shorter than 50 residues. This results in a set of 7537

Pfam domains with unknown structure. For each of these sequence,

we define the highest ranked sequence in the HHblits (Remmert

et al., 2012) alignment against uniref20 (date: February 26, 2016) to

be the reference sequence of the family.

2.2 Alignments
The input to direct coupling analysis (DCA)-based contact predic-

tion methods is a multiple sequence alignment. These alignments

were generated using both HHblits and Jackhmmer (Eddy, 2011),

each at E-value thresholds of 1 and 10–4. HHblits was run against

the uniprot20 database from HHsuite (date: February 26, 2016).

The parameter -all has been used and -maxfilt and -realign_max

were set to 999999 as in (Michel et al., 2017). Jackhmmer searches

were performed against Uniprot90 (Magrane and Consortium,

2011) (April 13, 2016) and were run for five iterations with both

-E and -incE set to the respective E-value cutoffs. The searches were

started from the Pfam representative sequence, i.e. the Pfam align-

ments were ignored. Alignment (family) size is measured in effective

sequences (Meff) as defined in (Ekeberg et al., 2013).

2.3 Contact prediction
PconsC3 is used to predict contacts between pairs of amino acids in

the Pfam reference sequences. To overcome the limit of DCA meth-

ods requiring large alignments, PconsC3 combines the results of

such methods with contacts predicted by a machine-learning based

method (Michel et al., 2017). It then uses a similar pattern recogni-

tion approach as PconsC2 (Skwark et al., 2014) to iteratively in-

crease the quality of the predicted contact map. PconsC3 was run as

described earlier (Michel et al., 2017). However, PconsFold2 uses

all four alignments as inputs predicting one contact map for each

alignment. Contact map quality is measured in positive predictive

value (PPV) over the same number of top-ranked contacts that were

used during folding [2.5 � sequence length (L)]. It should be noted

that most earlier papers report the PPV for L or even fewer contacts.

The average contact score for a contact map refers to the mean

PconsC3 score of these 2.5 L contacts.

2.4 Model generation
Contacts predicted by PconsC3 are then applied as distance re-

straints between the Cb-atoms (Ca in the case of glycine) during pro-

tein structure prediction. We use CONFOLD (Adhikari et al., 2015)

for this task. Secondary structure predictions from PSIPRED (Jones,

1999) are also used as inputs. When folding a protein using

CONFOLD a fixed number of contacts are used. Here, contacts are

sorted by their PconsC3 score and a threshold is set on the number

Fig. 1. PconsFold2 workflow. Given an input sequence four alignments are created using HHblits and Jackhmmer at two different E-value thresholds of 1 and

10–4. Based on these alignments PconsC3 generates four contact maps. The 2.5L (L¼ length of sequence) top ranked contacts are then used by CONFOLD to gen-

erate 50 models for each alignment, resulting in 200 models for each query sequence. These models are finally ranked by a model quality assessment program
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of top-ranked contacts to use. This threshold is based on the length

of the sequence as an input to CONFOLD, which folds the protein

using CNS (Brunger, 2007). It is to be noted that, we only run the

first stage of CONFOLD and omit the refining second stage in order

to keep runtime low. For each alignment, we generate 50 models re-

sulting in a pool of 200 models per Pfam family.

2.5 Model ranking
The CONFOLD pipeline generates several models that by default are

ranked by the CNS contact energy (NOE). This is the sum of all viola-

tions of all contact restraints used to generate a model. In order to

make this score comparable between targets, we normalize it by the

length of the input protein sequence and refer to it as CNS-contact.

In addition to using the CNS contact energy, we also used

ProQ3D (Uziela et al., 2017) and Pcons (Lundström et al., 2001).

Further, we developed PcombC a linear combination between the

scores of ProQ3D, Pcons and PPV, similar to what we used in

CASP4 (Wallner et al., 2003) and CASP5 (Wallner and Elofsson,

2005a). Coefficients have been determined using a grid-search on a

10 � 10 � 10 grid with values ranging from 0 to 1 and a step size of

0.1, optimizing the area under the ROC-curve for determining

whether a model is correct or not (TM-score threshold of 0.5). In

order for the score to remain within the same scale as the input

scores, the coefficients have been normalized to:

SPcombC ¼
0:3

1:9
� SPcons þ

0:6

1:9
� SProQ3D þ

1:0

1:9
� PPV

2.6 Evaluation
Model quality is measured in template modeling score (TM-score) scores

(Zhang and Skolnick, 2004). For the ROC-analysis, we set a TM-score

threshold of 0.5 to distinguish between correct and incorrect models.

2.7 Runtime
The running time of the folding step was measured on a single core

of an Intel Xeon E5-2690 v4 processor. For the test dataset, it takes

around 30 s on average to generate one model with a minimum of 4s

per model for the shortest family (50 residues) and 245s for the lon-

gest (524 residues).

3 Results

3.1 Utilization of predicted contacts
First, we set out to find the best way to generate models using con-

tacts predicted from PconsC3 (Michel et al., 2017) and the

CONFOLD (Adhikari et al., 2015) folding algorithm. Preliminary

data indicated that using a threshold for the number of contacts uti-

lized during folding of 2.5 times the length of the sequence is close

to optimal. Using this threshold, we then investigated the effect of

the number of generated models on the quality of the best and top-

ranked model. Here, the CNS-contact score from CONFOLD is

used to rank the models. Increasing the number of generated models

from the default 20 to 50 does not increase the quality of top-

ranked models (average TM-score 0.40). However, the average TM-

score of the best among all generated models increases from 0.43 to

0.45. Increasing the number of models further (up to 200) only gen-

erates a marginal improvement of the best TM-score to 0.46. We

thus decided that generating 50 models for a given contact map is a

good tradeoff between model qualities and running time.

It has previously been observed that the quality of predicted con-

tacts depends on the underlying alignment (Skwark et al., 2013). We

therefore tried to identify the optimal alignment method and E-value

cutoff. In addition, we investigated whether model quality can be

improved by using a set of alignments with varying methods and E-

value thresholds instead of a single fixed alignment. In Figure 2, it

can be seen that the performance is similar for all four alignment

methods used both regarding the agreement with the contact map

and the average TM-score of the generated models, see Table 1.

However, the quality of both the top-ranked (0.42) and best possible

model (0.49) is improved slightly when using a combination of all

alignments. Therefore, we decided to use this for the pipeline.
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Fig. 2. Family size in effective sequences of the benchmark dataset against (a) PconsFold2 model quality in TM-score of the top-ranked models and (b) against

contact map quality in PPV. Lines show moving averages for using the HHblits alignment at E-value 10–4 (cyan), HHblits at E-value 1 (blue), Jackhmmer at E-value

10–4 (orange), Jackhmmer at E-value 1 (red) and all four alignments combined (black). Circles show individual results when using all four alignments combined

Table 1. Performance for different alignment methods

PPV to native TM-score (top) TM-score (max)

All 0.35 0.42 0.49

HHblits 10–4 0.34 0.40 0.45

HHblits 100 0.34 0.40 0.45

Jackhmmer 10–4 0.35 0.41 0.46

Jackhmmer 100 0.33 0.40 0.44
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3.2 Overall performance
Figure 2 shows the performance of the pipeline of the top-ranked

model against the family size, measured in effective sequences of the

underlying alignment. Here, models were ranked by their CNS-

contact score as described above. Generally, both contact prediction

accuracy and model accuracy clearly depends on family size with

Table 2. Fraction of correct models and contact maps

Meff >0.5 PPV (%) >0.5 TM-score (%)

<100 0 3

100–1000 22 34

>1000 35 51
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Fig. 3. TM-score of the models using CONFOLD and CNS-contact ranking against (a) PPV of the underlying 2.5L contacts to the native structure and (b) the aver-

age score of these contacts
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Fig. 4. Model quality in TM-score on the benchmark dataset of the top-ranked models against (a) PcombC score (scoring function of the PconsFold2 pipeline), (b)

ProQ3D score, (c) Pcons score and (d) and (d) CNS contact energy normalized by sequence length. Pearson correlations r and average TM-scores (<TM>) are shown,

black lines represent moving averages with a window of 60 proteins. For CNS-contact, the Pearson correlation has been calculated on log10(CNS-contact)
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correlations of 0.30 for PPV and of 0.41 for TM-score. However,

what might be most notable is that there is a large variation between

different proteins. Some protein families with as few as 100 effective

sequences both have good contact predictions and good final mod-

els, while some proteins with 105 are no better than completely ran-

dom models. This indicates that we need to use other evaluation

procedures to identify the correct models.

Table 2 further reveals that for families smaller than 100 effect-

ive sequences, structure prediction has a success rate (percentage of

models that are above 0.5 TM-score) of only 3%. As soon as the

family becomes larger than 100 effective sequences the number of

correct models increases rapidly. The success rate is 34% for fami-

lies between 100 and 1000 effective sequences and 52% for large

families with more than 1000 effective members.

3.3 All contact maps do not generate good models
Next, we compared the quality of the models (TM-score) with the

accuracy of the predicted contacts (PPV), Figure 3a. Clearly, there is

a strong Pearson correlation (r¼0.63). There is also a weaker cor-

relation (r¼0.45) between the strength of the PconsC3 contact pre-

diction and the quality of the model, Figure 3f.

From Figure 3, it is clear that there exist a number of bad models

for large families with good contacts and also good models for small

families with weakly predicted contacts. This indicates that it is not

sufficient to only use the contact map or number of sequences in the

alignment for identification of the successfully predicted protein

models. Instead it might be better to evaluate the models directly.

3.4 Model quality assessment
To estimate the quality of a protein model, model quality assessment

methods can be used. Model quality estimators can be divided in

consensus and single model methods. Here, we have used the Pcons

consensus method to predict a quality score for each model based on

a comparison of all models against each other (consensus method;

Wallner and Elofsson, 2005b). For single model quality estimation,

we have used ProQ3D a method that assesses the quality of a single

model using deep learning (Uziela et al., 2017). Both of these meth-

ods have been shown to perform among the best methods in CASP.

It is also possible to evaluate the quality of a model by compar-

ing how well it satisfies the predicted contacts. This can be done by

either just counting the number of fulfilled contacts (PPV) or using

the CNS-NOE energy. Both these methods perform very similar in

terms of this evaluation (data not shown). We thus only report

CNS-contact in all further analysis.

We have also developed a combined model quality estimator,

PcombC, using all three methods. PcombC is a linear combination be-

tween the scores of these three methods, similar to what we used in

CASP4 (Wallner et al., 2003) and CASP5 (Wallner and Elofsson,

2005a). PcombC has been optimized for discriminating between accur-

ate and inaccurate models. This has the advantage of being able to in-

terpret the predicted score in terms of absolute model quality, enabling

statements about the confidence of a predicted model being correct.

Figure 4 shows how the scores of different QA tools predict TM-

score. As before, for each family in the test set we ranked all models by

each QA score and selected the top ranked model. Pearson correlation (r)

is highest for PcombC, followed by Pcons and ProQ3D, while the CNS-

contact energy correlates slightly worse. However, the average TM-score

of the top-ranked model is almost identical for all four methods.

3.5 ROC-curve
In order to estimate model quality when there is no known structure

available it needs to be predicted as accurately as possible. The goal

is not only to select the best models from a set of predictions but

also to predict how much these models can be trusted. Figure 5

shows the false positive rate (FPR) for different quality assessment

(QA) tools when classifying predictions into correct (TM-score-

�0.5) or incorrect (TM-score<0.5) models.

Although the overall number of correct top-ranked models does

not change much (number of true positives at FPR¼1.0), there are

differences in the ability of the different scores to classify the models.
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Fig. 5. ROC-like plot for different ways of evaluating and ranking the models

in the benchmark dataset. While the x-axis shows true positive rate on a

logarithmic scale, the y-axis shows the number of proteins with TM-

score�0.5. The horizontal line indicates the best possible outcome, i.e. the

number of families with TM-score�0.5 when ranking the models by TM-

score

Table 3. ROC analysis when classifying whether a model is correct

(TM-score� 0.5) or not

# Models at FPR

Method 0.01 0.1 1.0

PcombC 87 (29%) 152 (50%) 221 (72%)

Pcons 37 (12%) 136 (45%) 227 (74%)

ProQ3D 42 (14%) 114 (37%) 210 (69%)

CNS-contact 46 (15%) 106 (35%) 214 (70%)

PconsC3 score 3 (1%) 64 (21%) 214 (70%)

Meff 1 (0.3%) 40 (13%) 214 (70%)

best possible 305 305 305

Table 4. Number of Pfam families with unknown structure that can

be modeled at 1% and 10% FPR of which the overlap with the

Baker studies are given by number in parenthesis

0.01 0.1

ProQ3D 36 (10) 225 (75)

PcombC 42 (21) 179 (74)

Pcons 18 (9) 218 (91)

CNS-contact 62 (13) 232 (38)

Union 114 (35) 558 (143)

All 6379 (558) 6379 (558)
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It can be seen that all methods evaluating the model quality are sig-

nificantly better than just using the number of effective sequences or

the PconsC3 scores, see Figure 5.

Table 3 also shows that the combined method, PcombC, clearly

is better at identifying methods than any of the individual methods.

At a FPR of 10% PcombC identifies 152 models compared with

106–136 for the individual methods. At the more strict 1% FPR

PcombC identifies 29% of the models compared with 12–15% for

CNS-contact and ProQ3D and Pcons.

The results shown here indicate that a combination of QA meth-

ods along with contact map agreement provides a significant im-

provement in detecting correct models over the best single methods.

It can be used to reliably predict model accuracy while at the same

time being more sensitive than previous methods.

4 Discussion

We then applied PconsFold2 as well as all quality assessment tools

to the set of Pfam domains without known structure. This resulted

in predicted structures for 6379 Pfam families (85% of all Pfam do-

mains with unknown structure) 4. Based on the results from the

ROC analysis on the test dataset, we set the score cutoffs at FPR

0.01 and 0.1. We then use these cutoffs to estimate how many Pfam

families of unknown structure can be predicted accurately (TM-

score�0.5) at a given FPR. The union is defined as the non-

overlapping number of families for which any quality assessment

method predicts a model to be accurate.

At 0.01 FPR, or 99% specificity, models for a total of 114 Pfam

families are predicted to be accurate, Table 4. This number increases

almost four fold to 558 families, when allowing for a FPR of 0.1.

More than 74% of these families do not overlap with other large

scale structure prediction studies (Ovchinnikov et al., 2017, 2015).

This indicates that our approach of using improved contact predic-

tion combined with model quality assessment is complementary to

using larger sequence databases and a more extensive folding

procedure.

In Table 5, it can be seen that the average length of the success-

fully predicted models is shorter than for the average length of all

models. The PconsC3 scores are also stronger, as expected.

However the number of effective sequences and other properties are

surprisingly not that different.

Of the 558 models predicted at a FPR of 10% 143 have also

been predicted by the Baker group. The comparison of these models

is not absolutely trivial as different protein sequences have been

used. However, in 74% of the cases our models have a TM-align

score of 0.50 or higher indicating that they represent the same fold.

In some cases, where the models differs it appears as our models are

mirror images of the Baker models.

Figure 6 shows a side-by-side comparison of PconsFold2 models

(a) and (c) with those predicted by the Baker group (b) and (b) for

two exemplary Pfam domains. PF02660 in Figure 6a and b is a

Glycerol-3-phosphate acyltransferase transmembrane protein

domain family. The TM-score between the two models is 0.79. It

can be seen that PconsFold2 misses helical regions in the termini

(red and blue ends of the model). The models for the Glycosyl trans-

ferase WecB/TagA/CpsF family of PF03808 in Figure 6c and d have

an agreement of 0.75 TM-score. Again in the PconsFold2 model the

secondary structural elements are not as defined as in the Rosetta

model by the Baker group. It is to be noted though that the

PconsFold2 models are taken directly from the output of

CONFOLD stage 1 and have not been further refined.

5 Conclusion

In this study, we first present a novel protein folding pipeline,

PconsFold2 that combines contact prediction, structure generation

and model quality estimations. We show that the model quality esti-

mation is an important step in the pipeline as the number of models

that reliably can be predicted increases significantly when it is

included. We also use this pipeline to predict the structure of 6379

Pfam families of unknown structure. At a FPR of 10% we find 558

Pfam families. The structure of 74% of these has not been reported be-

fore in any prediction study. Further, these models are obtained with-

out the use of meta-genomic data, and the number of accurate models

might therefore increase significantly if such sequences were included.
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Table 5. Properties of Pfam families that can be modeled accurately at FPR 0.1

<PconsC3 score> Helix Sheet Coil <Meff > <Length > Transmembrane <TM-score >

Union 0.41** 0.33* 0.18* 0.5 427* 104** 0.11** 0.56

PfamPDB 0.45** 0.34 0.21** 0.46** 1075** 126** 0.04** 0.53

NoPDB 0.32 0.36 0.15 0.50 300 187 0.25

Note: Statistical significant differences from a students t-test at P-values 0.01 and 10–5 are marked with * and **, respectively, for all columns except the last.

Fig. 6. Comparison for two example Pfam families (a) PconsFold2 model for

PF02660, (b) model by the Baker group for the same family, (c) PconsFold2

model for PF03808 and (d) model by the Baker group for the same family
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