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Abstract Disturbed metabolism as a consequence of obesity and diabetes may cause cardiac diseases (recently highlighted in
the cardiovascular research spotlight issue on metabolic cardiomyopathies).1 In turn, the metabolism of the heart
may also be disturbed in genetic and acquired forms of hypertrophic cardiac disease. Herein, we provide an over-
view of recent insights on metabolic changes in genetic hypertrophic cardiomyopathy and discuss several therapies,
which may be explored to target disturbed metabolism and prevent onset of cardiac hypertrophy.
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Society of Cardiology.

1. HCM: inefficient sarcomere
contraction as primary defect

Hypertrophic cardiomyopathy (HCM) is the most frequent inherited
cardiomyopathy with a recently reported prevalence of 1:200.2 HCM
has an extremely wide phenotypic variation. Its diverse appearance on
cardiac imaging has only been recognized fully in the past decade since
cardiac magnetic resonance has been introduced as the gold standard
imaging assessment for diagnostic characterization and follow-up of
these patients. The same genetic signature can translate into extreme
cardiac morphological findings extending from an almost normal

appearance or localized (segmental) hypertrophy to significant hypertro-
phy affecting predominantly the septum and/or the lateral wall and/or
the apex.3 Aside from the diastolic abnormalities of the hypertrophic
phenotype per se, additional pathophysiological consequences accom-
pany the HCM heart such as outflow tract obstruction where the mitral
valve becomes involved in the acceleration of flow seen in the
obstructed outflow tract. The latter may also result in mitral regurgita-
tion, all of which contribute to the symptoms experienced by these
patients. After the first identification of a sarcomeric gene mutation in
1989,4,5 more than 1400 mutations have been identified, mostly in genes
encoding sarcomeric proteins.6 Most mutations (�90%) are found in the
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thick filament proteins myosin heavy chain (MyHC, MYH7 gene) and car-
diac myosin binding protein C (cMyBP-C, MYBPC3 gene), and the thin fila-
ment protein troponin T (cTnT, TNNT2 gene). Initial studies on
mutation-induced changes in sarcomere function revealed an increase in
myofilament Ca2þ-sensitivity as opposed to a decreased myofilament
Ca2þ-sensitivity in dilated cardiomyopathy (DCM).7–11 The opposite
effects on myofilament Ca2þ-sensitivity appears to be a consistent obser-
vation for thin filament mutations causing HCM and DCM, respectively
(see also ‘Complex road from genotype to phenotype in dilated cardio-
myopathies’ in the current issue),8,11 while the increase in myofilament
Ca2þ-sensitivity appears to be mostly secondary to disease progression
in HCM with thick filament mutations.12 Rather than an increase in myo-
filament Ca2þ-sensitivity, a common cellular phenotype induced by HCM
sarcomere mutations is an inefficient sarcomere contraction, which is at-
tributed to diverse changes in sarcomere properties: (i) an increase in
myofilament Ca2þ-sensitivity, which coincides with an increase in adeno-
sine triphosphatase (ATPase) activity indicating increased adenosine tri-
phosphate (ATP) utilization at the sarcomeres13; (ii) a blunted length-
dependent activation, which will cause a less efficient sarcomere response
to increased stress14; (iii) increased kinetics of activation and relaxation,
which underlie increased tension cost, i.e. increased ATP utilization for
force development at the sarcomere level15–19; and (iv) reduced super
relaxed state of the cross-bridges, which will increase ATP utilization at
low diastolic cytosolic calcium levels.20 Evidence for a mutation-induced
reduction in the efficiency of cardiac performance in asymptomatic muta-
tion carriers comes from imaging studies combining [11C]-acetate posi-
tron emission tomography and cardiovascular magnetic resonance
imaging to assess myocardial external efficiency (MEE, i.e. the amount of
oxygen used for cardiac work).18,21,22 These studies revealed reduced
MEE in mutation carriers, indicating that inefficient cardiac contractility
precedes the development of hypertrophy. Thus, recent ex vivo and in vivo
analyses support the paradigm proposed by Ashrafian et al.23 that energy
depletion causes HCM.

2. Linking inefficient sarcomere
contraction with metabolic changes

Energy depletion induced by increased ATP utilization for sarcomere
contraction is expected to impair cellular mechanisms regulating Ca2þ

homeostasis and metabolism. Increased diastolic Ca2þ levels have been
reported in HCM mouse models and human HCM patient samples,19,24

indicating impaired Ca2þ handling. In addition, a reduced PCr (phospho-
creatine)/ATP ratio was observed in HCM with and without hypertro-
phy indicating deficits in cardiac energetics at an early stage of HCM.25 In
the healthy heart, creatine kinase (CK) catalyses the transfer of phos-
phate from PCr to adenosine diphosphate (ADP), thereby regenerating
ATP, while preventing accumulation of cytosolic ADP (Figure 1).
Reducing PCr or experimental inhibition of CK activity has been causally
linked to the development of heart failure, as it elevates left ventricle
end-diastolic pressure (i.e. diastolic dysfunction), reduces contractility
and increases mortality in rats.26–28 The consequence of low PCr and/or
a reduced CK activity is that cytosolic levels of ADP will increase.
Increases in (ADP) of >50% have been reported in HCM mouse mod-
els.16,29 Selectively increasing ADP levels without altering cytosolic ATP
levels has been shown to limit myocardial relaxation in rats.30 High ADP
levels impair relaxation of wild-type rat hearts via ADP-mediated defects
in sarcomere function.31 Moreover, ADP increased myofilament Ca2þ-
sensitivity in human HCM samples.32 Thus, enhanced Ca2þ-sensitivity is

caused directly by the mutation and indirectly via increased ADP levels
(Figure 2). These studies support the idea that energy depletion results in
elevations of ADP, thereby causes diastolic dysfunction.

3. Mitochondrial dysfunction

Impaired sarcomere energetics also provokes mitochondrial dysfunction,
increase reactive oxygen species (ROS) and lead to altered ion homeosta-
sis and lethal arrhythmias.33 Increased binding of Ca2þ to the myofilaments
(via increased Ca2þ-sensitivity) will reduce the Krebs cycle activity. At the
same time, high ATP utilization increases ADP, which will reduce the levels
of NADH and NADPH, thereby triggers oxidative stress. The composi-
tion of intracellular metabolic substrates is essential to regulate ATP pro-
duction and limit production of ROS by the mitochondria. In
mitochondria, ADP accelerates ATP production via oxidation of NADH
to NADþ. At the same time Ca2þ stimulates the Krebs cycle (conversion
of NADþ to NADH) to match the ADP-mediated reduction in NADH,
thereby maintaining the NADH/NADþ redox state.34,35 The mutation-
induced increase in myofilament Ca2þ-sensitivity will enhance ATP utiliza-
tion and increase ADP levels. The increase in ADP will increase oxidation
of both NADH and NADPH and perturb the NADH/NADþ balance.36

As NADPH is needed to detoxify ROS, the ADP-mediated NADPH oxi-
dation will reduce the mitochondrial capacity to lower ROS. Moreover, as
more Ca2þ will be bound to the sarcomeres due to the increased Ca2þ-
sensitivity, less Ca2þ will be available to stimulate the mitochondrial Krebs
cycle and regenerate NADH. Through these mechanisms, impaired sarco-
mere energetics may thus provoke mitochondrial dysfunction and increase
ROS.

4. Vascular endothelial dysfunction
and rarefaction

While inefficient sarcomere contraction and relaxation will increase en-
ergy demand of the heart, pathogenic vascular remodelling may disrupt
energy supply. HCM patients have abnormal myocardial perfusion re-
serve, which is more pronounced in the endocardium vs. mid and epicar-
dial layers. Reduced cardiac perfusion has been reported in HCM
patients, which was most severe in patients with a sarcomere muta-
tion.37,38 No microvascular dysfunction was observed in asymptomatic
mutation carriers.21 The observation of reduced coronary flow reserve
in HCM patients with normal coronary angiograms led to the concept of
microvascular (endothelial) dysfunction as secondary pathomechanism
in HCM development.39,40 Blunted coronary flow in response to adeno-
sine (i.e. endothelial dysfunction) has been observed in hypertrophied
and non-hypertrophied regions of the heart.40 These studies suggest
that mutation-induced cardiac contractile dysfunction precedes and pos-
sibly causes vascular (endothelial) dysfunction, which subsequently ini-
tiates remodelling (hypertrophy) of the heart. The inability of the
capillary network to match the hypertrophic and disarrayed myocardium
increases proportionately with the measured wall thickness on cardiac
imaging, i.e. the most hypertrophic segments have the poorest perfusion
reserve.41,42 Histological analysis revealed reduced capillary density (i.e.
rarefaction) in septal tissue samples from patients with obstructive
HCM.43 A significant proportion of patients with HCM progress to de-
velop myocardial replacement fibrosis, typically located within the area
of maximal wall hypertrophy. The presence of fibrosis appears to predict
those phenotypes that later progress onto heart failure44 or are more
likely to develop malignant ventricular arrhythmias.45

1274 J. van der Velden et al.



Figure 1 Excitation-contraction coupling in a healthy heart. Contraction is initiated upon Ca2þ entry in the muscle cell, which activates Ca2þ release from
the SR. Ca2þ binds to the myofilaments, which causes contraction. To relax Ca2þ detaches from myofilaments and is pumped back into the SR. A small frac-
tion of Ca2þ is removed out of the cell via the Naþ-Ca2þ exchanger (NCX). Mitochondria take care of sufficient ATP needed for proper contraction and re-
laxation of cardiomyocytes. In the healthy heart, CK catalyses the transfer of phosphate from phosphocreatine to ADP, thereby regenerating ATP, while
preventing accumulation of cytosolic ADP.

Figure 2 Excitation-contraction coupling in diseased heart and possible targets for therapy. Mutation-induced changes in myofilament properties increase
ATP utilization. Cellular metabolism changes as a consequences of mutation-induced and ADP-mediated increases in myofilament Ca2þ-sensitivity, impaired
mitochondrial function and reduced creatine kinase activity. Different therapies may target impaired metabolism in HCM.

Metabolic changes in hypertrophic cardiomyopathies 1275
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5. Changes in substrate metabolism
in hypertrophied muscle

The healthy heart has a wide substrate versatility because it is able to
metabolize fatty acids, carbohydrates, lactate, ketone bodies, and
specific amino acids.46 In normal condition, cardiomyocytes generate
more than two-thirds of the ATP by the oxidation of fatty acids and
the remainder one-third by the oxidation of other substrates such as
glucose. Interestingly, though, the oxidation of glucose is more energy
efficient than that of fatty acids (ATP/O ratio = 3.17 for glucose vs. ±2
to 2.5 for fatty acids). In the case of acute increases in cardiac load,
rapid supply of ATP is guaranteed by several mechanisms: increase in
coronary flow and in oxygen extraction from the arterial coronary
blood, and a metabolic shift from fatty acid oxidation to glucose oxi-
dation (the Randle cycle). This ‘glucose-fatty acid cycle’ is a homeo-
static mechanism that controls fuel selection and adapts substrate
supply and demands in normal tissues and in the blood.47 This shift
from fatty acid oxidation to increased glucose metabolism is common
in end-stage heart failure.48 As a consequence, fatty acids and their
derivatives accumulate into cells, causing lipotoxicity, 49 while glucose
oxidation increases. This shift occurs mostly in mitochondria (‘aero-
bic glycolysis’ by oxidation of pyruvate) in order to guarantee more
energy for the energy depleted failing heart. However, in failing
hearts, a large part of glucose is converted to lactate through anaero-
bic glycolysis, which is less energy efficient. In the heart, it is possible
that the latter process is the result of relative hypoxia caused by a re-
duced capillary density in combination with a higher workload of
the hypertrophied heart. Recent findings indicate a central role for
dihydrolipoyl succinyltransferase (DLST), the E2 subcomponent of
the a-ketoglutarate dehydrogenase complex, a rate-controlling tri-
carboxylic acid cycle enzyme, in cardiac oxidative metabolism and hy-
pertrophy. Its decrease in the diseased heart parallels a reduction of
oxidative metabolism, whereas its cardiac overexpression improves
oxidative metabolism and protects against cardiac hypertrophy and
dysfunction.50

6. Atrial fibrillation

A high incidence of atrial fibrillation (AF) is observed in HCM, which
worsens ventricular function. HCM patients with paroxysmal AF show
reduced exercise capacity and is associated with markedly increased risk
of death by stroke and heart failure.51,52 Moreover, AF is associated with
advanced disease progression in HCM patients.52 AF may be caused
by atrial dilatation in response to diastolic ventricular dysfunction.
However, it may also involve a direct effect of the mutant protein on
atrial myocyte function. A study in zebrafish harbouring an atrial-specific
myosin light chain (MYL4) mutation, which was associated with early-
onset AF in human, showed disrupted sarcomere structure, atrial en-
largement and AF-like electrical abnormalities.53 However, not all HCM
sarcomere mutations are expressed in atrial cardiomyocytes. In a recent
clinical study, no significant correlations were found between genotype
and onset or severity of AF in a HCM cohort with mutations in MYBPC3,
MYH7 and ‘other genotypes’ (including thin filament gene mutations
TNNT2, TNNI3, TPM1, and MYL2 and Z-line).54 Based on the latter study,
the authors proposed that intrinsic atrial myopathy may be caused by
rare (atrial-specific) mutations. If sarcomere mutations directly alter
functional and structural properties of atrial cardiomyocytes warrants
further experimental studies.

7. Non-myocyte compartment of
the hypertrophied heart

The pathophysiology of HCM is not limited to sarcomere defects within
cardiomyocytes but is also characterized by structural alterations in car-
diomyocytes and the non-myocyte compartment of the heart. In a
healthy heart,�70% of the cardiomyocyte volume consists of myofibrils.
This fraction is reduced in manifest human HCM, and largely explains the
decreased cardiomyocyte maximal force generation capacity observed
in HCM biopsies.55 Cardiomyocytes solely account for 25–35% of all
heart cells, while the non-myocyte populations are predominant and
consist mostly of endothelial cells and cardiac fibroblasts.56 Studies in
HCM mice identified the pro-fibrotic transforming growth factor beta
(TGF-b), most likely released from cardiac fibroblasts, as the main deter-
minant of non-myocyte proliferation and myocardial fibrosis observed in
HCM.57 Since cardiac fibroblasts are responsible for extracellular matrix
maintenance, and thus bridge biomechanical forces to and from cardio-
myocytes, it has been speculated that the high basal myocardial activa-
tion observed in HCM cardiomyocytes (i.e. exacerbated biomechanical
forces) is transmitted to the non-myocyte population, leading to in-
creased expression of pro-fibrotic TGF-b.58 This is supported by ex vivo
culture studies of both cardiac fibroblasts and cardiomyocytes that
showed increased expression of TGF-b following repetitive stretch pro-
cedures.59,60 Early manifestation of myocardial fibrosis is a hallmark of
HCM and correlates well with the degree of hypertrophy, diastolic
dysfunction and energy consumption,44,61 indicating that targeting the
extracellular matrix via TGF-b may represent a way to modify disease
progression.

8. Therapies

8.1 Targeting metabolism
On the basis of the consideration that inhibition of mitochondrial fatty
acid oxidation leads to cardiac hypertrophy, a study in rats has recently
shown that the restoration of fatty acid metabolism confers beneficial
effects on the hypertrophic heart.62 CD36-deficient (Cluster of differen-
tiation 36, a major sarcolemmal fatty acid transporter) spontaneously
hypertensive rats with established hypertrophy were treated with
Tricaprylin, a triglyceride of caprylic acid, that stimulates fatty acid oxida-
tion and maintains the cellular redox status. This treatment decreased
cardiomyocyte cross-sectional area and reduced interstitial fibrosis,
along decreased expression of BNP, calcineurin A and oxidative stress
biomarkers. Cardiac function and energetics were also influenced by
substrate availability. In fact, fenofibrate treatment in the absence of the
appropriate metabolic substrate resulted in the mobilization of endoge-
nous triglycerides and caused an imbalance of the cellular redox status,
leading to enhanced free radical production and adverse cardiac changes.
Conversely, medium-chain triglycerides have the capacity to bypass
CD36 and serve as substrate for fatty acid oxidation,63 maintaining the
intracellular redox status. Perhexiline is a metabolic drug which shifts
metabolism away from the preferred fatty acids toward carbohydrates,
and would thereby increase ATP supply. Perhexiline treatment en-
hanced glycolysis and protected against catecholamine-induced cardiac
damage in a mouse model of peripartum cardiomyopathy.64

Metabolic remodelling appears to be reversible as regression of left
ventricular hypertrophy is preceded by improved cardiac energy metab-
olism, as indicated in a mouse study of aortic constriction surgery

1276 J. van der Velden et al.
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followed by debanding.65 Debanding—unloading of the hyperpertrophic
heart—significantly reduced left ventricular mass and wall thickness,
along with profound changes in transcripts and proteins of cardiac sub-
strate metabolism. However, debanding did not normalize the tran-
scripts of proteins regulating glucose and fatty acid metabolism. This
paradox is likely explained by the fact that cardiac energy metabolism is
regulated at multiple levels, including many post-translational modifica-
tions. These data agree with the only partial reversal of depressed meta-
bolic gene expression in the failing heart after implantation of a left
ventricular assist device.66 Likewise, aortic valve replacement surgery in
patients with aortic valve stenosis increased MEE, but MEE was not cor-
rected to control values 4 months after surgery.67 Although only partial
correction of MEE was observed, the improvement of MEE closely cor-
related with increased exercise capacity.67 These studies involve a he-
modynamic, non-genetic overload of the heart, and may not translate
to genetic forms of HCM. However, therapy targeting metabolism
may be effective in HCM. Perhexiline treatment of HCM mice har-
bouring a MYBPC3 mutation improved some features of the HCM
phenotype (reduced cardiac mass), which was associated with meta-
bolic changes.68 Treatment of symptomatic HCM patients with im-
proved exercise capacity.69 The therapeutic benefit of perhexiline
may be the resultant of its multiple pleiotropic actions.70 Far from in-
ducing a simple shift from fatty acid to glucose oxidation, perhexiline
may cause complex rebalancing of carbon and nucleotide phosphate
fluxes to increase metabolic flexibility and to maintain cardiac out-
put.71 The benefit of metabolic drug therapy may depend on the abil-
ity of the heart to shift from mitochondrial lipid to glucose oxidation.
As described above, hypertrophied hearts shift their metabolism
from fatty acids to glucose utilization and glycolytic metabolism in an
attempt to optimize energetic status.72 Mitochondrial oxidative me-
tabolism decreases, while glycolysis as an alternate source of ATP
production increases. Accordingly, in vivo imaging studies in advanced
HCM patients suggest that metabolism shifted to the lower oxygen
consuming glucose metabolism.22 Though initially adaptive, in the
long run the (chronic) metabolic shift is detrimental for the heart as
increased glycolysis increases pyruvate and lactate. The latter is ac-
companied by accumulation of Hþ in the cytosol, which eventually
leads to elevated calcium (i.e. impaired relaxation).72 While several
pathways are activated in the severe (hypertrophic) stage of disease
as compensatory mechanism, paradoxically, chronic stimulation of
these pathways is detrimental. Likewise, chronic metabolic therapy
may be harmful for the heart. Based on positive effects of exercise in
cardiac disease, which is intermittent by its very nature, one may con-
sider if intermittent metabolic drug-therapy, as opposed to chronic
drug-treatment, represents a more effective and novel approach to
treat cardiomyopathy.

Noteworthy, combined proteomics and metabolomics analysis
revealed impaired energy generating pathways in mice with very high
creatine levels that subsequently develop cardiac hypertrophy and
dysfunction. Overall, these studies indicate that either low or very high
levels of creatine perturb cardiac performance, and suggests that there is
a therapeutic window of optimizing the cardiac energy balance in the
heart.73

In conclusion, the hypertrophied and failing heart shows several
metabolic changes. Improving the efficiency of energy generation in
the hypertrophied heart can be exploited in order to optimize
specific therapies. Metabolic alterations are (partially) reversible
and their early identification may represent a therapeutic option
(Figure 2).

8.2 Stimulation of b3-adrenergic receptors
Activation of b3-adrenergic receptors (b3AR) may be a way to modify al-
tered energetic status of the HCM heart. b3AR are expressed in human
cardiac myocytes and endothelial cells.74,75 They differ from the other
two bAR isotypes in a number of ways; (i) in cardiac muscle, they exert
effects that are antipathetic to those of b1-2AR on contractility (i.e. they
act as “endogenous b1-2AR blockers”)74; (ii) b3AR expression increases
in cardiac myocytes from diseased including failing, hearts74; (iii) b3AR
lack consensus sequences for phosphorylation by GRK2 or protein
kinase A (PKA) in their C-terminal tail, which attenuates or suppresses
their desensitization, depending on the cell context.76 These characteris-
tics make b3AR attractive targets in the context of heart failure, a
condition with prevailing hyperadrenergism, when b1-2AR usually are
desensitized/downregulated. Reduced b1AR signalling has also been ob-
served in human HCM evident from reduced PKA-mediated phosphory-
lation of sarcomeric target proteins.12,14 Decreased PKA-mediated
phosphorylation of troponin I (TnI) causes increased myofilament Ca2þ-
sensitivity, which will further exacerbate the energetic defect in HCM. In
human cardiac muscle, b3AR couple through G-alpha-i to activation of
the constitutive nitric oxide synthase (NOS),77 endothelial NOS and
neuronal NOS (nNOS), both expressed in cardiac myocytes.78 b3AR ex-
pression and activity correlates with tonic increases in cGMP.77

Downstream activation of cGMP-dependent kinase (PKG)-I-alpha is
expected to phosphorylate a number of targets functionally relevant to
both excitation-contraction coupling and cardiac muscle remodelling.
PKG modulates phospholamban phosphorylation to increase Ca2þ re-
uptake in the sarcoplasmic reticulum (SR),79 resulting in improved dia-
stolic relaxation as well as increased SR load. PKG phosphorylates TnI to
decrease myofilament Ca2þ-sensitivity (Figure 2).80 PKG also modulates
the phosphorylation of titin on specific residues, with putative improve-
ments in myocyte elastic properties.81 nNOS also modulates PKA-
mediated phospholamban phosphorylation and improves Ca2þ reuptake
in the SR through cGMP-independent effects on protein phosphatase.82

These effects should directly improve relaxation and decrease myofil-
ament Ca2þ-sensitivity, with expected beneficial effects on energetics in
HCM. In addition, b3AR uniquely exert antioxidant properties in hyper-
trophic cardiac muscle.83,84 This may counteract the adverse pro-
oxidant consequences of increased ADP and decreased Ca2þ uptake by
mitochondria. In addition, activation of the b3AR/NOS/cGMP pathway
attenuates hypertrophic remodelling in several mouse models of neuro-
hormonal or hemodynamic overload.78,83,85 Fibrosis is also decreased,
through b3AR modulation of paracrine signalling from cardiac myocytes
to fibroblasts, e.g. secondary to b3AR/nNOS anti-oxidant effects.83

Coronary perfusion is also expected to be improved, as b3AR expressed
in human coronary microvascular endothelial cells are coupled to both
nitric oxide and EDHF-dependent relaxations,75 as well as pro-
angiogenic effects.86 Finally, systemic activation of b3AR in beige/brown
fat may add indirect metabolic effects through increased lipolysis and im-
proved systemic insulin sensitivity.87 Direct effects on cardiac metabo-
lism, i.e. on the selection of energetic fuels (lipids versus glucose),
particularly in the stressed or failing heart, are currently being studied.

8.3 Targeting myosin
An alternative way to modify cardiac contraction is the use of small mole-
cules which directly target myosin. Omecamtiv mercabil (OM), a myosin
activator is currently tested in clinical trials in patients with systolic heart
failure.88 While a myosin activator may increase cardiac contractile perfor-
mance, it may come at the expense of increased cardiac oxygen
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.
consumption as the compound may also increase myosin ATPase activ-
ity.89 Interestingly, a recent study showed that OM increases contractility
at [Ca2þ], which are close to values at systole under basal conditions,
while it decreased force at high (maximal) Ca2þ activation.90 The latter
study showed that the effect of OM depends on the concentration of
both OM and intracellular Ca2þ levels, and the authors indicated that OM
may be used to increase contractility and enhance function of a failing
heart, while it may be used to reduce contractility in diastolic failure as ob-
served in HCM dependent on its activating and inhibitory actions, respec-
tively. A myosin inhibitor (mevacamten, also known as MYK-461), which
was shown to reduce contractility,91 and most likely reduces oxygen con-
sumption of the hypertrophied heart, suppressed HCM in a mouse mod-
els with MYH7 mutations.92 MYK-461 is currently tested in HCM by
Myocardia. The use of myosin activators and inhibitors is an attractive
novel approach to correct cardiac dysfunction, thereby influence
metabolism.

8.4 Genetic interventions
Recently, a novel role was identified for microRNA-146a in regulating car-
diac metabolism via suppression of oxidative metabolism.50 MicroRNA-
146a targets a key component of the a-ketoglutarate dehydrogenase
complex named DLST. Overexpression of DLST or inhibition of
microRNA-146a blunted the hypertrophic response upon pressure over-
load in mice, which coincided with partial maintenance of oxidative metab-
olism. Increased miRNA-146a has been linked with reduced cardiac erbB4
signalling, which is central in regulating glucose metabolism.93 While inhibi-
tion of microRNA-146a may directly improve metabolism of cardiac mus-
cle, energy supply may be improved via modulation of cardiac perfusion.
MiRNAs may thus represent targets to improve metabolism and energy
supply of the hypertrophied heart. In addition, mitochondrial-derived non-
coding RNAs that are likely involved in metabolic processes have recently
been found in patients with myocardial infarction and may be useful bio-
markers of cardiac diseases and/or prognostic markers.94

9. Conclusion

Studies in mice and human have indicated that metabolic changes in de-
velopment of HCM may represent an attractive therapeutic target.
Recent studies in HCM mouse models and human cardiac biopsies em-
phasized that, although the final clinical HCM phenotype may be inde-
pendent of genotype, the initial mutation-induced defects in sarcomere
function11,15,16 and subsequent changes in signalling pathways95 may sig-
nificantly differ based on the affected gene and even based on the specific
mutation. This emphasizes the need to study the early mutation-induced
changes in mitochondrial and metabolic pathways, which will aid in
the development of patient-tailored (mutation-tailored) preventive
therapies.
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