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Abstract: Carbon nanomaterials have attracted significant research attention as core materials in
various industrial sectors owing to their excellent physicochemical properties. However, because
the preparation of carbon materials is generally accompanied by high-temperature heat treatment, it
has disadvantages in terms of cost and process. In this study, highly sensitive carbon nanomaterials
were synthesized using a local laser scribing method from a copper-embedded polyacrylonitrile
(CuPAN) composite film with a short processing time and low cost. The spin-coated CuPAN was
converted into a carbonization precursor through stabilization and then patterned into a carbon
nanomaterial of the desired shape using a pulsed laser. In particular, the stabilization process was
essential in laser-induced carbonization, and the addition of copper promoted this effect as a catalyst.
The synthesized material had a porous 3D structure that was easy to detect gas, and the resistance
responses were detected as−2.41 and +0.97% by exposure to NO2 and NH3, respectively. In addition,
the fabricated gas sensor consists of carbon materials and quartz with excellent thermal stability;
therefore, it is expected to operate as a gas sensor even in extreme environments.

Keywords: carbon nanomaterials; laser scribing; gas sensor; polyacrylonitrile; stabilization; cop-
per particles

1. Introduction

Carbon nanomaterials have excellent electrical, mechanical, thermal, and chemical
properties, and they are applied in various fields, such as aerospace, construction, and
sporting goods [1–3]. In particular, owing to the excellent molecular adsorption behavior
resulting from conductivity and high specific surface area, their applications in the gas
sensor field are promising [4–6]. However, in general, the synthesis of carbon nanomaterials
has a disadvantage in terms of process time and cost, as it uses a high-temperature heat
treatment at ~1000 ◦C or higher [3,7–10]. By contrast, the laser scribing method has
the advantage of saving time and energy by enabling local carbonization in the desired
pattern in a short period [11–14]. Polyacrylonitrile (PAN) is a well-known precursor of
carbon materials and forms an intermediate in which nitrile groups are cyclized through
stabilization pretreatment [15–17]. Since the laser scribing method can carbonize only
cyclic polymers because of the fast process time and temperature changes [11], carbon
nanomaterials can be synthesized from stabilized PAN via laser scribing, resulting in the
desired shape and position.
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In this study, PAN polymer, which is difficult to carbonize by laser scribing [11], could
be successfully graphitized through stabilization pretreatment, and it is expected that by
using this method, the type of polymer capable of laser scribing can be expanded. After
coating the appropriate polymer above, direct pattern growth of carbon nanomaterials
using laser scribing is possible, and it is expected that the application field can be expanded.
Through this, as in this study, a directly pattered carbonization using laser scribing after
coating with suitable polymer on various substrates will be possible, and it is expected
that the application field can be expanded. For this purpose, the spin-coated thin PAN film
was molecularly cyclized via stabilization, and carbon nanomaterials were patterned in
the desired position and shape. This method was conducted as a process aimed to save
time and minimize energy consumption compared to heat treatment using a self-produced
LASER-assisted vacuum chamber. In addition, high-quality carbon nanomaterials were ob-
tained by complexing with copper particles, which act as catalysts for carbonization [18–20].
The chemical and morphological properties of the synthesized material were evaluated
using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) analysis, and scanning
electron microscopy (SEM) image analysis, and the dynamic response of hazardous gases,
such as nitrogen dioxide (NO2) and ammonia (NH3), was evaluated using a gas sensing
chamber. The results confirmed that the pattern-synthesized carbon nanomaterial has a
stereoscopic 3D structure that facilitates adsorption/desorption of gas molecules and, thus,
exhibits excellent performance as a NO2 gas sensor. At this time, target gas was detected
as changes in electrical properties due to the interaction with the carboxyl and hydroxyl
groups of the carbon material [4,21–25], the synthesized material has such suitable disorder
and oxygen group, which is advantageous for sensing. In particular, since the mixed copper
provides free electrons, the sensor showed enhanced responsivity in NO2 detection than
NH3, which operates by an electron donating effect of the sensor devise [26]. In addition,
the prepared gas sensor consists of thermally stable carbon materials and quartz [12,27,28];
thus, it is expected to operate as a gas sensor even in extreme environments [29,30].

2. Experimental
2.1. Materials

PAN (Mw 150,000) and copper powder (<100 nm) were purchased from Sigma-Aldrich,
Saint Louis, MO, USA. Dimethylformamide (DMF, 99.8%), ammonia water (25–30%), and
quartz plates (15 mm × 15 mm × 1 mm) were purchased from SAMCHUN Chemical,
DUKSAN Chemical, and HANJIN quartz, respectively.

2.2. Stabilization of Copper-Embedded PAN Thin Film

A schematic of the overall fabrication process is shown in Figure 1. First, PAN powder
was added to the DMF solvent (PAN/DMF = 10 wt%) and stirred for 12 h. Cu/DMF
solution was prepared by adding copper particles to DMF (10 wt%) and sonicated for
30 min. Further, the Cu and PAN solutions were mixed at a ratio of 0, 5, and 10 wt%,
respectively. The prepared Cu-embedded PAN (CuPAN) solution was dropped onto a
cleaned quartz substrate and spin-coated at 1000–1500 rpm for 30 s. The stabilized CuPAN
(S-CuPAN) was prepared via evaporation and stabilization at 100 and 280 ◦C for 1 h,
respectively (heating rate = 1 ◦C/min).
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Figure 1. Schematic of the synthesis process and photographs of LS-CuPAN.

2.3. Laser Scribing on S-CuPAN and Lift-Off Untreated Area

A pulsed ytterbium fiber laser (MFP-20, MAXPHOTONICS Co., LTD., Shenzhen,
China) was used to prepare the laser-scribed S-CuPAN (LS-CuPAN) under vacuum at-
mosphere (Figure S1). The specific parameters of the laser scriber are listed in Table 1.
To prepare the optimized LS-CuPAN, scribing conditions such as laser power and repeat
count were controlled. The distance of the laser spot was calculated using the scan rate
and frequency, as shown in Equation (1). In this study, we fixed the frequency, scan rate,
and spot spacing at 30 kHz, 450 mm/s, and 15 µm, respectively.

Distance (µm) = scan rate (mm/s)/frequency (kHz) (1)

Table 1. Specific parameters of laser scriber (MFP-20).

Parameter Wavelength
(nm)

Laser
Power

(W)

Scan
Speed
(mm/s)

Beam
Diameter

(µm)

Frequency
(kHz)

Data 1064 ± 4 1–20 0–1500 6–9 30–60

The LS-CuPAN was immersed in ammonia water for 30 min to remove the unexposed
area, and a locally patterned carbon nanomaterial channel (0.5 mm × 5 mm) was retained.

2.4. Gas Sensing

The LS-CuPAN gas sensor was measured to evaluate the dynamic response toward
NO2 and NH3 gases using a source meter (Keithley 236, Cleveland, OH, USA) and switch
system (Keithley 708A) (Figure S2). A 0.1 V DC potential was applied to the sensor, and
changes were continuously monitored. The LS-CuPAN-based chemical sensor experiments
were performed with chosen concentrations of the target gases diluted with air at a total
gas flow of 500 sccm. In addition, the LS-CuPAN-based chemical sensor was measured
at room temperature and atmospheric pressure. The injection and concentration of gases
were automatically controlled by a mass flow controller, and the duration of the target and
air as background gases were set to 10 and 50 min, respectively. The temperature of the
chamber was maintained at 25 ◦C during the measurements. The normalized resistance
response is defined as follows:

∆R/R0 (%) = (R − R0)/R0 × 100% (2)

where R0 and R are the resistance of the sensor in air and the target gas, respectively.

2.5. Characterization

Raman analysis and optical microscopy (OM) were performed using a Renishaw inVia
Raman spectroscope with a 514 nm excitation line. The morphology and chemical analysis
of the LS-CuPAN were characterized by a scanning electron microscope (SEM, VEGA3,
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TESCAN, Brno-Kohoutovice, Czech Republic) and an X-ray photoelectron spectroscope
(XPS, K-alpha (Al Kα), Thermo Fisher, Waltham, MA, USA).

3. Results and Discussion
3.1. Effect of Stabilization of CuPAN

Figure 2a shows the Vis-NIR spectra and photographs of a CuPAN spin-coated on
a quartz substrate at 1000 rpm before and after stabilization. The absorbance of CuPAN
and S-CuPAN at a laser wavelength of 1064 nm were 0.13 and 0.77, respectively, and
the inset photograph shows color changes from transparent brown before to black after
stabilization. In addition, the appearance after laser scribing each film shows that laser-
scribed CuPAN (L-CuPAN; without stabilization) exhibited almost non-carbonized parts,
whereas LS-CuPAN was carbonized to a clear black color. This phenomenon occurred
because the laser-exposed local region reached the carbonization energy after stabilization
by significantly increased laser absorption. Furthermore, the embedded Cu nanoparticles
were confirmed to act as the catalyst for carbonization.
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Figure 2. (a) Vis-NIR spectra and photographs of CuPAN and S-CuPAN and (b) Raman spectra of CuPAN, L-CuPAN,
S-CuPAN, and LS-CuPAN.

As shown in Figure 2b, the Raman signal was not observed in CuPAN, which re-
mained almost identical even after laser scribing (L-CuPAN). Lin et al. reported that
laser-induced carbonization is not applicable to step- and chain-growth polymers but only
to polymers with aromatic and imide repeat units because the laser scribing process is
fast and accompanied by rapid changes in temperature [11]. Therefore, it was confirmed
that pristine CuPAN with a linear chain did not carbonize by laser scribing. By contrast,
since the PAN polymer can be partially carbonized and cyclized through stabilization
pretreatment, it can be converted into a more easily carbonized form [15–17]. Therefore, in
S-CuPAN, broad carbon-related peaks, such as first-order scattered G- and D-bands and
second-order scattered 2D-band, were observed owing to the partial graphitic structure.
Furthermore, exceptional G, D, and 2D-bands are visible in LS-CuPAN because complete
carbonization by laser scribing from the stabilized form occurred. The improvement in
Raman bands corresponding to the graphitic carbon structure owing to the combination of
stabilization and laser scribing was verified.

3.2. Laser Scribing Conditions of LS-CuPAN
3.2.1. Spin-Coating Conditions of CuPAN Thin Film

During spin-coating with the CuPAN solution (10 wt%), the rotational speed was
changed from 1000 to 2000 rpm, and the resulting Vis-NIR spectra and thicknesses
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of the sample are shown in Figure 3a and Table 2, respectively (laser power = 4 W;
repeat count = 1 time). The thicknesses at 2000, 1500, and 1000 rpm were 12, 19, and 23 µm,
respectively, and the absorbance increased to 0.18, 0.37, and 0.77, respectively (at 1064 nm).
Since this absorbance changed the laser absorption of the precursor, it directly affected the
local carbonization quality during laser scribing.
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Figure 3. (a) Vis-NIR spectra and thickness of S-CuPAN and (b) Raman spectra of LS-CuPAN depend on spin-coating
conditions.

Table 2. Specific synthetic conditions of the LS-CuPAN and analytic results calculated from Raman spectroscopy.

Stabilization
Cu/PAN

Ratio
(wt%)

Spin
Coating

(rpm)

Thickness
(µm)

Absorbance
(a.u.)

Laser
Power

(W)

Repeat
Count
(times)

ID/IG I2D/IG

FWHM
of G + D′

(cm−1)

X 10 1000 31 0.13 4 - n/a n/a n/a
O 10 1000 23 0.77 4 - 1.45 0.26 111.5
O 0 1000 20 0.60 4 1 1.13 0.16 100.1
O 5 1000 22 0.74 4 1 1.08 0.33 82.6
O 10 1000 23 0.77 4 1 0.94 0.51 64.2
O 10 1000 23 0.77 4 1 0.94 0.51 64.2
O 10 1500 19 0.37 4 1 1.02 0.43 79.2
O 10 2000 12 0.18 4 1 1.43 n/a 107.7
O 10 1000 23 0.77 2 1 1.37 n/a 114.5
O 10 1000 23 0.77 3 1 1.02 0.25 87.3
O 10 1000 23 0.77 4 1 0.94 0.51 64.2
O 10 1000 23 0.77 5 1 1.09 0.23 94.8
O 10 1000 23 0.77 6 1 1.75 n/a 109.3
O 10 1000 23 0.77 4 1 0.94 0.51 64.2
O 10 1000 23 0.77 4 3 1.08 0.25 92.7
O 10 1000 23 0.77 4 5 1.64 n/a 118.3

Figure 3b and Table 2 show the Raman spectra, calculated ID/IG, I2D/IG, and full
width at half maximum (FWHM) of the G + D′-band after laser scribing. First, ID/IG was
1.43, and the 2D-band was almost not observed at 2000 rpm; thus, it was confirmed as
an amorphous graphitic structure containing considerable disorder. This phenomenon
is a result of a decrease in laser absorption owing to the low thickness. By contrast, the
Raman spectra of LS-CuPAN at 1000 rpm exhibited distinctive G-, D-, and 2D-band, and
ID/IG decreased to 0.94, which is lower than that of ID/IG (1.02) at 1500 rpm. In addition,
the FWHM of the G + D′-band was calculated to be 64.2 cm−1, which is less than 1500
and 2000 rpm, and this value was caused by a decrease in the disorder-induced D′-band,
located on the right shoulder of the G-band, and an increase in the uniform carbon bonding.
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Therefore, since LS-CuPAN at 1000 rpm has a high laser absorption, an enhanced graphitic
structure was verified to form with less disorder [31–33].

3.2.2. Weight Ratio of Cu Particle to PAN

Raman spectra of S-CuPAN and LS-CuPAN when the weight ratio of Cu to PAN
is 0, 5, and 10 wt% are shown in Figure 4a and Figure S3 (rotational speed = 1000 rpm,
laser power = 4 W, repeat count = 1 time). As shown in the spectrum of S-CuPAN (10 wt%),
carbon-related bands are observed because they are partially carbonized through stabiliza-
tion even without laser scribing, as mentioned above. However, because of a high ID/IG
(1.45) and a weak 2D-band (I2D/IG = 0.26), it is considered an amorphous structure con-
taining numerous disorders. It has similar characteristics at both 0 and 5 wt%. By contrast,
after laser scribing, ID/IG gradually decreased to 1.13, 1.08, and 0.94, and I2D/IG increased
to 0.16, 0.33, and 0.51 with weight ratios of 0, 5, and 10 wt%, respectively. In addition,
since the FWHM of the G + D′-band also decreased from 100.1 to 64.2 cm−1, the disorder
decreased and the uniformity of carbon bonding increased. Therefore, high-quality carbon
was formed at the higher ratio of Cu/PAN, and it was confirmed that Cu particles acted as
a catalyst through the absorption of laser energy during the carbonization of PAN [18–20].
However, at a high Cu ratio, the viscosity increased rapidly, and spin-coating was not per-
formed well. Thus, 10 wt% was considered the most appropriate concentration. Additional
chemical analysis of the concentration of Cu particles will be discussed later in the XPS
analysis.
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3.2.3. Optimization of the Laser Scribing Process (Power, Repeat Time)

Figure 4b and Table 2 show the Raman spectra and calculated ID/IG, I2D/IG, and
FWHM of the G + D′-band according to different laser powers with LS-CuPAN (10 wt%)
(rotational speed = 1000 rpm; repeat count = 1 time). As the laser power increased from 2
to 4 W, the sharpness of carbon-related scattering such as G, D, and 2D bands increased
and was observed. Furthermore, ID/IG decreased from 1.37 to 0.94 due to a decrease in
D-band, and I2D/IG increased from 0.11 to 0.51 due to an increase in 2D-band. However,
when the laser power was increased above 4 W, the carbon-related bands broadened. In
the case of 6 W, ID/IG was increased to 1.75, and the 2D-band almost disappeared. These
results indicate that the graphitic structure was decomposed, and an amorphous structure
was formed because of excessive laser exposure. Moreover, the FWHM of the G + D′-band
also had the lowest value of 64.2 cm−1 with 4 W, but the FWHM increased as the laser
power decreased or increased based on 4 W. Consequently, the quality of carbon increased
as the laser power increased, and LS-CuPAN with the least disordered graphitic structure
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was formed at 4 W. Decomposition occurred above that value because of excessive energy
accumulation.

Figure 5 shows photographs, optical images (OM), and Raman spectra according to the
repeat count of the laser scribing. First, as shown in the photograph of Figure 5a, S-CuPAN
was carbonized to the clearest black when the scribing count was 1, and this effect decreased
as the repeat counts increased three and five times. In addition, considering this as OM, the
scribing part is carbonized black in Figure 5b. However, when the repeat count increased
three (Figure 5c) and five times (Figure 5d), the carbonized part disappeared; consequently,
the quartz substrate was exposed five times. These results can also be described using the
Raman spectra in Figure 5e. As the repeat count increased from 1 to 5, the ID/IG increased
from 0.94 to 1.64, and the 2D band almost disappeared. Therefore, since an increase in
repeat count causes decomposition by inducing excessive energy accumulation, scribing
only once is considered an optimal condition. Consequently, the laser scribing conditions
for synthesizing the carbon nanomaterial pattern with the best quality were optimized for
4 W and one time.
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3.3. Chemical and Morphological Analysis of LS-CuPAN
3.3.1. X-ray Photoelectron Spectroscopy (XPS)

To confirm the chemical composition of the surface of the synthesized material, XPS
measurements were performed, as shown in Figure 6. To confirm the carbonization effect
during laser scribing, the C1s spectra were peak fitted. The narrow-scan C1s spectra of
S-CuPAN (Figure 6a) show that the main peak is 285.5 eV with a broad shoulder at higher
binding energy. The deconvoluted C1s spectra show that they are composed of functional
groups of C=C(sp2), C–C(sp3), C–N, C–O, and C=O located at 285.2, 285.7, 286.9, 287.8,
and 288.7 eV, respectively. In particular, the C–N bond peak derived from the nitrile group
of PAN was observed, and the specific portion of the sp3 C–C, C–O and C=O bonds was
relatively large. By contrast, the C–N peak almost disappeared in the spectra of LS-CuPAN
(Figure 6b), and the relative area of the sp2 C=C bond increased because of carbonization,
indicating a maximum intensity at 285.1 eV. Furthermore, FWHM was significantly reduced
from 3.3 to 1.5, and the distribution of the chemical bonds of carbon is more uniform than
that of S-CuPAN. These results confirmed that LS-CuPAN was synthesized into a graphitic
carbon structure via laser scribing.
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Figure 6c shows the atomic ratio (at %) of C1s according to the weight ratio (wt%)
of Cu to PAN. When the ratio of Cu was 5 and 10 wt%, the atomic ratio of C1s increased
by 13.62 and 19.70% after laser scribing, respectively. This implies that the higher the
proportion of Cu, the higher the carbonization efficiency. Cu is a well-known catalytic
transition metal for carbonization [18–20]. Therefore, the carbonization efficiency was
confirmed to be improved by increasing the Cu ratio owing to the catalytic effect, thereby
increasing the atomic ratio of carbon. Figure S4 shows the Cu2p spectra of S-CuPAN (a)
and LS-CuPAN (b). As shown in this figure, peaks corresponding to Cu2p1/2 and Cu2p3/2
were observed in S-CuPAN, and these peaks were observed even after laser scribing in
LS-CuPAN. These results indicate that the Cu particles were not decomposed and acted as
catalysts during laser scribing.

3.3.2. Scanning Electron Microscopy (SEM)

The macromorphology of the prepared LS-CuPAN was observed via SEM, and the
images are shown in Figure 7. The low-magnification image (Figure 7a) shows LS-CuPAN
with a diameter of 500 µs and quartz substrate after the removal of untreated S-CuPAN.
Figure 7b,c show SEM images with high magnification and tilting by 70◦. As illustrated by
these images, LS-CuPAN is a stereoscopic 3D structure formed as an aggregate of carbon
nanomaterials. Since this porous 3D structure contains numerous interspaces and voids, the
accessible surface area of the material can be increased [34–36]. Therefore, it is considered
suitable as a gas sensor material because it can improve the adsorption/desorption of gas
molecules.
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3.4. Gas Sensing Property

NO2 is an air pollutant emitted from combustion during industrial and recycling pro-
cesses, and NH3 also has harmful effects on the human body, causing skin and respiratory
diseases. Therefore, it is critical to detect gaseous substances to prevent damage from these
hazardous gases.
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Figure 8 shows the dynamic response of LS-CuPAN after exposure to 10, 50, and
100 ppm of NO2 and NH3 gases at room temperature (25 ◦C) and pressure (760 Torr). In
general, since the oxidizing NO2 molecule accepts electrons from oxygen on the sensor
surface, the hole conductivity of the sensor increases. By contrast, in reducing NH3
molecules, the lone-pair electrons of nitrogen donate electrons and the conductivity of the
sensor decreases [36]. Consequently, during exposure to 10, 50, and 100 ppm of NO2 (NH3)
gas environments for 10 min, the resistance responses were detected as −1.03 (0), −1.71
(0.76), and −2.41 (0.97)%, respectively (Figure S5. Resistance changing rates exposure
to different gas concentrations and Figure S6. Resistance response versus time). This
resistance response occurred as a result of the effective carbonization of CuPAN due to
improved absorbance and cyclization by stabilization as seen in Vis-NIR, and synthesized
LS-CuPAN has a carbon crystal structure having a suitable oxygen-derived disorder that
induces detection of NO2 and NH3, as shown in XPS and Raman results. Meanwhile, since
the operation of gas sensors is closely related to the adsorption/desorption behavior of gas
molecules on the surface, a three-dimensional (3D) structure is more advantageous than
a flat 2D structure [33–35]. Therefore, this sensing performance is caused by the porous
3D structure of LS-CuPAN, as mentioned above. In addition, when Cu nanoparticles are
complexed with carbon material, more free electrons are supplied to improve the chemical
adsorption of NO2 [37], confirming that the resistance response of NO2 is higher than that
of NH3.
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4. Conclusions

In summary, we successfully prepared a highly sensitive LS-CuPAN gas sensor from
the carbonization of a CuPAN composite via laser scribing, following spin-coating. The
CuPAN thin film fabricated on the quartz substrate was converted into a carbonization
precursor through stabilization and then patterned into a carbon nanomaterial using a
pulsed laser with the desired shape and position. In particular, the stabilization process was
essential in laser-induced carbonization because of enhanced absorbance and cyclization,
and the addition of copper promoted this effect as a catalyst. In this study, the optimal
conditions for rotational speed for spin-coating, weight ratio of Cu, laser power, and repeat
count were 1000 rpm, 10 wt%, 4 W, and one time, respectively. The synthesized LS-CuPAN
showed that ID/IG, I2D/IG, and FWHM of G + D′ were 0.94, 0.51, and 64.2 in Raman results,
respectively, and 79.2 at% of C1s was included through XPS. Moreover, it had a stereoscopic
3D structure that was easy for gas sensing, and when exposed to 10, 50, and 100 ppm
of NO2 (NH3) gas environments for 10 min, the resistance responses were detected as
−1.03 (0), −1.71 (0.76), and −2.41 (0.97)%, respectively. Therefore, the LS-CuPAN-based
gas sensor was more sensitive in NO2 than NH3 molecules.

In short, this study provided an effective method for manufacturing a carbon material
that can be patterned into the desired shape through a simple process. In addition, since
the fabricated LS-CuPAN consists of quartz and carbon material with excellent thermal
stability, it is expected to operate as a gas sensor even in extreme environments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13091423/s1, Figure S1. Photographs of (a) laser assisted CVD system, (b) operating
software, and (c) target sample in chamber (see the “Laser assisted CVD_chamber.mp4” video file),
Figure S2. Schematic of the gas sensing system, Figure S3: Raman spectra of S-CuPAN and LS-CuPAN
with different weight ratios of Cu to PAN, Figure S4: Cu2p spectra of (a) S-CuPAN (10 wt%), (b)
LS-CuPAN (10 wt%), and (c) atomic ratio of Cu in XPS analysis. Figure S5. Resistance changing rates
exposure to different gas concentrations. (a) Under NO2 10, 50, and 100 ppm, (b) under NH3 10, 50,
and 100 ppm. Figure S6. Resistance response versus time when (a) NO2 and (b) NH3 with different
concentrations.
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