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ABSTRACT: Tetrabutylammonium decatungstate (TBADT) has emerged as an efficient and versatile photocatalyst for hydrogen
atom transfer (HAT) processes that enables the cleavage of both activated and unactivated aliphatic C−H bonds. Using a recently
developed oscillatory millistructured continuous-flow photoreactor, investigations of a decatungstate-catalyzed C(sp3)−H alkylation
protocol were carried out, and the results are presented here. The performance of the reactor was evaluated in correlation to several
chemical and process parameters, including residence time, light intensity, catalyst loading, and substrate/reagent concentration. In
comparison with previously reported batch and flow protocols, conditions were found that led to considerably higher productivity,
achieving a throughput up to 36.7 mmol/h with a residence time of only 7.5 min.
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■ INTRODUCTION

Over the past decade, photocatalysis has emerged as a powerful
methodology to enhance the greenness and sustainability of
many chemical transformations.1 Among the various photo-
catalytic methods, hydrogen atom transfer (HAT) processes
are particularly useful for the functionalization of substrates
containing unreactive C−H bonds without recurring to metal
catalysis or strong oxidants.2 Light-induced HAT catalysis can
proceed via three different pathways: direct HAT,3 indirect
HAT,4 and proton-coupled electron transfer (PCET)
processes.5 Among these, direct HAT processes are the most
reagent-economical, as the other two approaches require the
addition of additives to the reaction. Only a limited number of
catalysts are able to promote direct HAT upon absorption of
light, including aromatic ketones,6 eosin Y,3b uranyl salts,3c and
polyoxometalates, the latter mainly represented by tetrabuty-
lammonium decatungstate ([(nBu4N)4(W10O32)], TBADT).

7

The decatungstate anion has been proven to be a robust and
versatile catalyst for the functionalization of unactivated
aliphatic C−H bonds upon irradiation with near-UV light
(Scheme 1).7a Notable examples are alkylation,3a,8 arylation,9

fluorination,10 trifluoromethylation,11 and oxygenation.12

Although the synthetic utility of photochemical methods has
been amply demonstrated, their applications in industry are
still limited.13 Indeed, photochemistry suffers from light-
attenuation effects due to the Beer−Lambert law, which makes
traditional scale-up (enlarging reactor dimensions) strenuous.
When reactor vessels are scaled out beyond the laboratory
(mL) scale, a photon gradient becomes apparent between the
wall and the center of the reactor. To compensate for the “dark
zone” generated in the vessel, photochemical processes are
often run at prolonged reaction times, resulting in local
overirradiation, which in turn leads to the potential erosion of
yield and selectivity. To counteract such nonideal reaction

conditions, ensuring a homogeneous irradiation profile in the
reactors is most crucial in order to obtain the ideal
photochemical reaction conditions.14 Continuous-flow
(micro)reactors are often considered as a “go-to technology”
in order to address these issues. In flow photochemistry, the
reaction occurs in narrow transparent channels or thin fluid
beds, ensuring quasi-homogeneous irradiation and conse-
quently a higher selectivity and shorter reaction time due to
the increase in photon input per unit volume. Considerable
advances have been reported in this field in terms of both
reaction methodology and reactor design.14,15

Several large-scale photoreactions in flow have been
described in the past few years, mostly based on specific
reactor designs.16 Recently, the HANU reactor, a multipurpose
continuous-flow photoreactor developed by Creaflow,17 was
utilized for the multigram-scale synthesis of an N-arylpyrroli-
dine derivative via a heterogeneous Ni/photoredox dual-
catalyzed C−N coupling.18 This milli-structured photoreactor
combines an oscillatory flow regime and static mixing elements
along a narrow channel, ensuring good irradiation and mixing
properties (Scheme 1).19 In addition, the HANU reactor
comes in different sizes (reactor volumes of up to 150 mL) and
features narrow residence time distributions (RTDs), thus
holding considerable potential for scaling up photochemical
processes.
Following our interest in flow photochemistry14,16c,e,20 and

C−H functionalization8c,12,21 as enabling methods in organic
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synthesis, herein we present the optimization of a TBADT-
catalyzed C(sp3)−H alkylation process using the HANU
reactor. The radical addition of cyclohexane to the electron-
poor olefin 2-benzylidenemalononitrile, which occurs via the
mechanism shown in Scheme 1, was selected as a model
reaction.22 This conceptually simple transformation represents
an appealing and atom-economical protocol for C−C bond
formation.

■ EXPERIMENTAL SECTION
General Information. Commercially available chemicals

were purchased from Sigma-Aldrich and TCI and used as
received, unless otherwise noted. Solvents were purchased
from Biosolve. TBADT23 and 2-benzylidenemalononitrile24

were prepared according to literature procedures. All capillary
tubing and microfluidic fittings were bought from IDEX Health
& Science. BD Discardit II plastic syringes were purchased
from VWR Scientific. The photoreactor employed was a
HANU reactor (model HANU HX 15-316L-CUB), with a
reactor size of 540 mm × 60 mm × 60 mm, channel
dimensions of 480 mm × 20 mm × 2 mm, and a series of cubic
static mixing elements (2 mm× 2 mm × 2 mm) along its
length. The volume of the channel in the reactor is 15 mL, but
only half of the reactor was irradiated (see the Supporting
Information), so the volume considered was 7.5 mL. The light
source employed for the photochemical process (FireEdge
FE400 240 × 10AC 365-4W; input power of 240 W; optical
output power of 96 W) was purchased from Phoseon
Technology. Product purification was performed automatically
by a Biotage Isolera Four system with Biotage SNAP KP-Sil 10
or 25 g flash chromatography cartridges. TLC analysis was

performed using silica on aluminum TLC plates (F254,
Supelco Sigma-Aldrich) with visualization under UV light
(254 and 365 nm). 1H and 13C NMR spectra were recorded
with a Bruker Avance 400 spectrometer at 400 and 100 MHz,
respectively, and referenced to the internal deuterated solvent
(CDCl3) at 7.26 ppm (1H) and 77.2 ppm (13C). GC analyses
were performed on a GC-FID system (Shimadzu GC-2010)
with biphenyl as an internal standard.

Experimental Setup. As shown in Scheme 2, two syringe
pumps (Fusion 200 Touch, Chemyx Inc.) were used to inject

the two feeds. Feed 1: substrate solution (0.1−0.8 M) +
biphenyl (0.1 M) + TBADT (2−7 mol %), flow rate = 1 mL/
min. Feed 2: cyclohexane (5−15 equiv), flow rate = 0.11−0.86
mL/min according to the equivalents of cyclohexane. The two
feeds were mixed in a T-mixer and pumped into a feeding loop
(PFA tubing, 0.75 mm i.d., 10 mL volume, IDEX). Once the
reaction mixture was loaded into the loop (slug flow between
the two different phases), the resulting mixture was pumped
through the HANU reactor with acetonitrile via a six-way
valve.
Experimental parameters such as the flow rate (0.25−1 mL/

min) and light intensity were evaluated and optimized. At the
reactor outlet, the samples were collected in GC vials, diluted
with acetonitrile, and analyzed by GC-FID (for the detailed
GC method, see the Supporting Information). In order to
obtain the isolated products, the solvent (acetonitrile) was
removed in vacuo, and the dry crude material was purified via
flash chromatography (cyclohexane/EtOAc 95:5).

■ RESULTS AND DISCUSSION
Effect of Residence Time. For comparison purposes, we

first performed the reaction in a homemade capillary reactor
(PFA tubing, 0.75 mm i.d.), irradiated with a 36 W 365 nm
LED strip. With this setup, 74% conversion over a residence
time of 30 min was obtained (see the Supporting Information).
The reaction was then transferred to the HANU reactor with a
dedicated irradiation source. A screening of residence times
from 2.5 to 30 min revealed that full conversion was reached
after 7.5 min, corresponding to an 82% GC yield. Only a
slightly higher yield (88%) was obtained even at double the
residence time (see Figure S5). Because of the biphasic nature
of the reaction (the liquid phases of cyclohexane and
acetonitrile are immiscible), we envisaged that the use of a
pulsator might improve the mixing efficiency and film
refreshment at the window, possibly leading to improved
reaction rates and hence shortened residence times. Moreover,
a certain degree of pulsation was shown to be fundamental in
minimizing the RTD inside the HANU reactor, leading to plug

Scheme 1. TBADT-Catalyzed C(sp3)−H Alkylation Studied
in This Work

Scheme 2. Experimental Setup for Decatungstate
Photocatalysis in Flow
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flow behavior. On the basis of these studies,18,25 we performed
experiments at different residence times with a pulsation
amplitude corresponding to 5% of the maximum and a
frequency of 3 Hz.26 With this addition, higher conversions
and yields were obtained at residence times of ≤5 min in
comparison with the nonpulsated reaction (Figure 1, see also

Figure S5). However, full conversion was reached only at 7.5
min, which was thus chosen for further experiments. Although
no pulsation effect was observed at this residence time, 5%
pulsation was maintained to ensure a narrow RTD and
improved mixing, which is independent of the net flow rate
used.
Effect of Light Intensity. The effect of different light

intensities was then investigated in order to evaluate potential
light-limiting conditions. From the data reported in Figure 2, it
is clear that the photochemical process becomes light-limited
for optical output below 48 W (50% light intensity). At
maximum optical output (96 W), a sufficient number of

photons have been absorbed to allow full conversion, and thus,
this was chosen as optimal.

Effect of the Amount of Cyclohexane. We next
evaluated the effect of the cyclohexane stoichiometry on the
reaction (Figure 3). It is apparent that 10 equiv of cyclohexane

gave the optimal result. While a lower excess of cyclohexane
was insufficient to reach full conversion within a residence time
of 7.5 min, at higher excesses the reaction resulted in lower
selectivity due to the formation of larger amounts of side
products. Additionally, higher amounts of cyclohexane also
translated to a larger amount of immiscible phase, potentially
contributing to the lower yield under these conditions.

Effects of Substrate Concentration and Catalyst
Loading. With the aim of increasing the reaction throughput,
the effect the substrate concentration was studied in
combination with different catalyst loadings (Table 1). When
the concentration of the substrate was doubled to 0.2 M,
incomplete conversion and lower yields were obtained (entries
1 and 2). Doubling the catalyst loading to 4 mol % resulted in

Figure 1. Effect of residence time on conversion, yield, and
productivity. Reaction conditions: 0.1 M alkene substrate, 2 mol %
TBADT, 10 equiv of cyclohexane, 5% pulsation, 96 W 365 nm light.

Figure 2. Effect of light intensity on substrate conversion, yield, and
productivity. Reaction conditions: 0.1 M substrate, 2 mol % TBADT,
10 equiv of cyclohexane, 5% pulsation, 7.5 min.

Figure 3. Effect of cyclohexane excess on conversion, yield, and
productivity. Reaction conditions: 0.1 M substrate, 2 mol % TBADT,
96 W 365 nm light, 5% pulsation, 7.5 min.

Table 1. Optimization of Substrate Concentration and
TBADT Loadinga

entry
conc.
(M)

TBADT
(mol %)

conv.
(%)b

yield
(%)b

productivity
(g/h)

productivity
(mmol/h)

1 0.1 2 100 86 1.2 5.0
2 0.2 2 91 81 2.3 9.9
3 0.2 4 100 91 2.6 11.1
4 0.3 4 96 84 3.7 15.7
5 0.4 5 97 85 4.8 20.3
6 0.4 6 100 90 5.5 23.3
7 0.5 7 100 91 6.5 27.2
8 0.6 5 100 82 6.9 29.1
9 0.6 7 99 92 7.9 33.1
10 0.7 5 100 82 8.2 34.3
11 0.7 7 100 88 8.7 36.7
12 0.8 7 100 80 9.1 38.4

aReaction conditions: 10 equiv of cyclohexane, 96 W 365 nm light,
5% pulsation, 7.5 min. bDetermined by GC-FID with biphenyl as an
internal standard.
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full conversion and a 91% yield, which translates to a
productivity of 11.1 mmol/h (entry 3). Further increasing
both the substrate concentration and catalyst loading up to 0.7
M and 7 mol %, respectively, resulted in full conversion in 88%
yield and a throughput of 36.7 mmol/h (entry 11). Both the
use of 0.6−0.7 M concentrations in combination with a lower
catalyst loading (entries 8 and 10) and a further increase in
concentration to 0.8 M (entry 12) resulted in a significant drop
in yield. Loadings of TBADT higher than 7% were considered
not practical because of solubility limitations.
Comparison of Different Photoreactors and Scale-

Up. In order to compare the results obtained with the HANU
reactor to previously reported photochemical setups, we have
listed the published productivities for the same product in
Table 2. Although a direct comparison between the different
methods is challenging because of a lack of experimental
details, this table helps to put into perspective the potential of
this protocol. It can be seen that this protocol by far
outperforms other reactors/conditions reported in the
literature in terms of both productivity and space-time yield
(STY).27 Furthermore, the design concept of the HANU
reactor allows linear scalability by broadening the reactor
channel, since all of the critical process properties (e.g.,
channel dimensions, mass-, heat-, and light-transfer capabilities,
and RTD)17,18 are retained. Larger versions of the HANU
reactor (e.g., the HANU HX-150 with an internal volume of
150 mL) can enable further scale-up of this procedure.

■ CONCLUSION
We have illustrated the utility of a continuous oscillatory
millistructured photoreactor for the optimization of a photo-
chemical decatungstate-catalyzed C(sp3)−H alkylation. The
conversion, yield, and productivity of the reaction were
evaluated by changing various parameters, including residence
time, light intensity, reactant concentrations, and catalyst
loading. Following the optimization study, conditions leading
to a productivity of 36.7 mmol/h were found, and full
conversion was obtained after a residence time of only 7.5 min.
This investigation further demonstrated the efficiency of the
HANU reactor and its potential use for the scale-up of
photocatalytic transformations.
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Table 2. Literature Comparison of the Productivity of the C−H Functionalization of 2-Benzylidenemalononitrile to 2-
(Cyclohexyl(phenyl)methyl)malononitrile

reactor type catalyst
irradiation source (power

input)
reaction time/
temperature

productivity
(mmol/h)

STY
[mmol/(L/h)]

batch3b eosin Y (2 mol %) white LED (18 W) 24 h/60 °C 0.003 3
batch3c [UO2](NO3)2·6H2O (8 mol %) 456 nm LED (40 W) 24 h/r.t. 0.04 40
stopped-flow microtubing
reactor28

Mes-Acr+ClO4
− (2 mol %)/HCl

(5 mol %)
blue LED (81 W) 24 h/50 °C 0.112 4.1

capillary flow reactor28 Mes-Acr+ClO4
− (2 mol %)/HCl

(5 mol %)
blue LED (54 W) 6 h/50 °C 0.113 13.9

homemade capillary (this
work)

TBADT (2 mol %) 365 nm LED (36 W) 30 min/r.t. 0.74 148

HANU reactor (this work) TBADT (7 mol %) 365 nm LED (240 W) 7.5 min/r.t. 36.7 2447
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