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A 3D model of atrial electrical activity has been developed with spatially heterogeneous electrophysiological properties. The
atrial geometry, reconstructed from the male Visible Human dataset, included gross anatomical features such as the central and
peripheral sinoatrial node (SAN), intra-atrial connections, pulmonary veins, inferior and superior vena cava, and the coronary
sinus. Membrane potentials of myocytes from spontaneously active or electrically paced in vitro rabbit cardiac tissue preparations
were recorded using intracellular glass microelectrodes. Action potentials of central and peripheral SAN, right and left atrial, and
pulmonary vein myocytes were each fitted using a generic ionic model having three phenomenological ionic current components:
one time-dependent inward, one time-dependent outward, and one leakage current. To bridge the gap between the single-cell ionic
models and the gross electrical behaviour of the 3D whole-atrial model, a simplified 2D tissue disc with heterogeneous regions was
optimised to arrive at parameters for each cell type under electrotonic load. Parameters were then incorporated into the 3D atrial
model, which as a result exhibited a spontaneously active SAN able to rhythmically excite the atria.The tissue-based optimisation of
ionicmodels and themodelling process outlined are generic and applicable to image-based computer reconstruction and simulation
of excitable tissue.

1. Introduction

Mathematical models have been valuable tools in the field of
electrophysiology, providing quantitative insights of natural
processes.Themajority of these models are generic in a sense
that they describe a biological phenomena documented over
a number of observations.However, sometimes the interspec-
imen variability is important per se in understanding the
mechanisms underlying a biological process and/or how it
is modulated by pathological, pharmacological, or environ-
mental factors. For such studies, it is advantageous to develop
subject-specific biological models for each particular case
investigated. Generic quantitative conclusions can be then
drawn from a family of subject-specific models. However, as
in nature, subject-specific models should not be developed in
isolation but be able to operate within a larger encompassing
biological context (a higher scale of modelling hierarchy in
physiome terminology [1]) and still produce useful predic-
tions. The influence of the surrounding environment on the

behaviour of each subject should be built into the subject-spe-
cific models. In this study a methodology for subject-specific
modelling is presented, using cardiac atrial electrophysiology
as a basis.

Atrial fibrillation (AF) is the most common form of ar-
rhythmia in the clinic, estimated in 1997 to affect 2.2 and 4.5
million people in the USA and EU, respectively [2]. It is most
prevalent among the elderly, affecting approximately 8% of
people over 80 years of age and is associated with changes to
the structure of the atria and a major indicator of stroke [2].
A number of pharmacological and surgical approaches have
been used to control atrial arrhythmias. As the efficacy of
these interventions is not very high, subject-specific compu-
tational models are useful to better understand underlying
mechanisms initiating and maintaining the arrhythmia and
assess the appropriate interventions.

Computer simulations of cardiac electrophysiology are
based on single-cell ionic models, which can be incorporated
into tissue or whole-heart simulations. Over the last decade
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or so, with the advance of and reduced costs of computational
resources, there has been a proliferation of 3D morphologi-
cally realistic electro-anatomical models of the human atria
(e.g., [3–7]).

The single-cell ionicmodels are either phenomenological,
able to explicitly generate action potential (AP) waveforms,
or, based on equations describing the detailed gating kinetics
of various ion channels, exchangers and transporters in the
cell’s membrane and intracellular compartments. In recent
years, a number of groups have used various automated algo-
rithms to optimise the parameter values and fit ionic mod-
els to experimentally recorded APs. A curvilinear gradient
method [8] was used to fit the Beeler and Reuter model [9]
to a model-generated ventricular AP [10]. Syed et al. [11]
used a genetic algorithm to fit the Nygren et al. [12] human
atrial cell model to experimental and model-generated AP
waveforms obtained from an alternate atrial cell ionic model
[13]. A particle swarm algorithmwas used to fit the 4-variable
Cherry et al. [14]model tomodel-generated human atrial APs
[15]. Syed et al. [11] suggested that the use of a more realistic
pulse to stimulate the ionic model produced improved AP
waveform fits. This idea was further improved by optimising
the AP from a single point in a 1D ringmodel of electric prop-
agation, to take into account electrotonic interactions during
excitation and propagation [16].However, the goodness of the
fit was only verified by comparing the values of the fitted and
original parameters, rather than the AP morphologies.

A naive implementation of parameters from single-cell
ionic models into higher-order geometries might not repro-
duce expected propagation or activation patterns. For exam-
ple, Garny et al. [17] reported that the default parameters of
the Zhang et al. [18] central and peripheral sinoatrial node
(SAN) cell models needed to be modified so that the SAN
could generate spontaneous firing in a 1D cable model. In
addition, they had to increase the intercellular conductivity
for SAN and atrial regions to ensure that the central SAN,
as opposed to the periphery, was the leading pacemaker
site [17]. Alternatively, it is possible in higher dimensional
models to adjust tissue conductivity and ion channel density
gradients to produce rhythmic spontaneous SAN activation
and physiological atrial excitation [19].

Overcoming such issues necessitates a parameter optimi-
sation approach which is able to account for the electrotonic
interactions between regions of different electrophysiological
properties while maintaining an optimal fit of model APs to
whole-tissue experimental data. In this study a process was
developed whereby parameters of a generic single-cell ionic
model were estimated by fitting APs generated by heteroge-
neous 2D disc tissue models to APs recorded experimentally
from whole-tissue preparations. This approach allows the
cell models to preserve their individual properties and yet
operate under the electrotonic influence of nearby cells with
different properties.The resulting optimised parameters were
then implemented in a 3D human atrial geometry to produce
spontaneous SAN activation and excitation of the atria. The
electrically heterogeneous single-cell ionic properties are
integrated into a larger biological tissue and collectively give
rise to higher-order behaviour, including propagation in the
atria.

2. Methods

2.1. In Vitro Electrophysiology. All experimental procedures
were conducted in accordance with the Australian National
Health and Medical Research Council Guidelines and were
approved by the University of New South Wales Animal
Ethics and Care Committee.

New Zealand white rabbits of both sexes (age 6–24
months) were anaesthetised with isoflurane (5% in O

2
), and

heparin (1000 IU) was administered intravenously into the
marginal ear vein. Subsequently, a thoracotomy was per-
formed, cold cardioplegia solution (4∘C) of the following
composition (mM) 110 NaCl, 16 KCl, 16 MgCl

2
⋅6H
2
O, 1.2

CaCl
2
⋅2H
2
O was poured into the chest cavity, and the heart

was excised by rapidly sectioning the great vessels. The heart
was immersed in the above Cardioplegia solution to clean
away any remaining blood. It was then mounted in a dis-
section chamber and superfused with Tyrode’s solution of
the following composition (mM) 130 NaCl, 4 KCl, 1.2 CaCl

2
,

0.5 MgCl
2
, 1.8 NaH

2
PO
4
, 18 NaHCO

3
, 10 glucose. This solu-

tion was gassed with carbogen (95% O
2
and 5% CO

2
) to

maintain the pH at ∼7.4 and regularly exchanged with fresh
Tyrode’s solution during the dissection procedure. Depend-
ing on the experiment, SAN/right atrial (SAN/RA) or left
atrial/pulmonary vein (LA/PV) tissue preparations were
dissected.

Each preparation was then mounted using fine entomo-
logical pins, endocardial surface up to the Sylgard floor of
a modified RC-26 recording chamber (Warner Instruments,
USA) and continuously superfused at 4mL⋅min−1 with Ty-
rode’s solution using twoMP-II Mini peristaltic pumps (Har-
vard Apparatus, USA). The temperature of the bathing solu-
tion was maintained at 32 ± 1

∘C using a feedback regulat-
ed temperature controller (TC-324B, Warner Instruments,
USA) which heated the recording chamber, as well as a cus-
tom heater which preheated the solution before it entered
the chamber. The tissue was allowed to recover from surgical
trauma for approximately one hour before microelectrode
recording commenced.

Intracellular glass microelectrodes (resistance 50–100
MΩ), pulled using a P97 Sutter puller (Sutter Instruments,
USA) and filled with 3M KCl, were used to impale tissue-
intact myocytes within the tissue preparation and record
intracellular potentials relative to a Ag/AgCl pellet immersed
in the bathing solution. The glass microelectrode was con-
nected to the headstage of an Axoclamp 2B amplifier (Axon
Instruments/Molecular Devices, USA) which was used to
amplify (gain ×10) and filter (low-pass cutoff of 10 kHz) the
membrane potential. The output of the Axoclamp amplifier
was digitised using a USB-6009 or USB-6251 data acquisition
device at sampling rate of 20 kHz (National Instruments,
USA), run using a custom LabVIEW (National Instruments,
USA) software interface. The stimulus current was recorded
on a second channel simultaneously with the membrane
potential.

Spontaneous electrical activity was recorded from the
SAN/RA tissue preparations, but the LA/PV preparations
required an external pacing stimulus. Monophasic suprath-
reshold pulses (2ms duration and 100–800𝜇A in ampli-
tude)from an STG1002 isolated constant-current stimulator
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(MultiChannel Systems, Germany) were used to stimulate
the latter tissue preparation using a pair of bipolar stainless
steel electrodes (125 𝜇m in diameter) coated with Teflon with
tips exposed. 20–40𝜇M of blebbistatin (Toronto Research
Chemicals, Canada), an excitation-contraction decoupler,
was added to the recirculating superfusate solution for the
LA/PV recordings.

2.2. Generic Ionic Model Development. The first step in
the proposed modelling process (Figure 1) is to model the
behaviour of the fundamental element of the biological sys-
tem under study: namely, the atrial cardiomyocytes. It is
important for the ionic models describing cellular electrical
activity to be generic, so that they can be adapted and ap-
plied to heterogeneous myocytes of the tissue in question. A
generic cell ionic model was formulated based on standard
template equations for each ionic current, including gating
and rate variables (Figure 2).

The governing equation for the change in membrane
potential is given by

𝑑𝐸

𝑚

𝑑𝑡

=

−1

𝐶

𝑚

(𝐼

𝐿
+

𝑁

∑

𝑗=1

𝐼

𝑗
) , (1)

where 𝐸
𝑚
(mV) is the membrane potential, 𝐼

𝑗
(nA⋅cm−2) and

𝐶

𝑚
(𝜇F⋅cm−2) are the total ionic current and capacitance

per unit cell membrane area, respectively. 𝐶
𝑚
was fixed to

1 𝜇F⋅cm−2 for all models. The ability to reproduce complex
dynamic behaviours in membrane potential in response to
various experimental manipulations is provided for allowing
a user-specified number of time-dependent ionic currents
(N) in (1). Selection of the appropriate value ofN is dependent
on the level of detail the model is required to capture. In this
study, our aim was to reproduce APs recorded from spon-
taneously active intactmyocytes or quiescentmyocytes exter-
nally paced using a single stimulation frequency and there-
fore only two active currents (𝑁 = 2) were used (a general
inward and a general outward) in addition to a leakage cur-
rent.

The time-independent leakage current (𝐼
𝐿
) in (1) was

described by

𝐼

𝐿
= 𝑔

𝐿
(𝐸

𝑚
− 𝐸rev,𝐿) , (2)

where 𝑔

𝐿
(𝜇S⋅cm−2) is the maximum conductance, 𝐸rev,𝐿

(mV) the reversal potential. Similarly, each generic time-
dependent current (𝐼

𝑗
) in (1) was given by
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(3)

where 𝑔

𝑗
(𝜇S⋅cm−2) is the maximum conductance, 𝐸rev,𝑗

(mV) the reversal potential, and 𝑝
𝑗
and 𝑞
𝑗
are gating variables
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Figure 1: Outline of protocol followed for developing the 3D atrial
model with heterogeneous regions and optimised generic model
parameters.

for the jth active ionic current in (1). The steady-state values
of 𝑝 and 𝑞 are given by

𝑝

∞𝑗
=

𝛼

𝑝𝑗

(𝛼
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+ 𝛽

𝑝𝑗
)

,

𝑞
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=

𝛼

𝑞𝑗

(𝛼

𝑞𝑗
+ 𝛽

𝑞𝑗
)

.

(4)

Example plots of these steady-state profiles are shown in
Figures 2(c) and 2(d). 𝛼 and 𝛽 in (4) are forward and reserve
rates (with units of s−1) for each gating variable, each a func-
tion of 𝐸

𝑚
only, and determined by

𝛼 =

𝑘

𝛼
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𝑠
𝛼
(𝐸
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)
,

(5)

𝛽 =

𝑘

𝛽

1 + 𝑒

𝑠
𝛽
(𝐸
𝑚
−𝐸
50
)
,

(6)

where 𝑘
𝛼
, 𝑘
𝛽
(s−1), 𝐸

50
(mV), 𝑠

𝛼
, and 𝑠

𝛽
(mV−1) are rate-

dependent variables for each gate (𝑝
𝑗
, 𝑞
𝑗
) of 𝐼
𝑗
.

2.3. Ionic Model Parameter Optimisation. The parameters of
the generic ionic model given by (1)–(6) were automati-
cally adjusted to reproduce cardiac AP waveforms recorded
experimentally from SAN, RA, LA, and PV tissue-intact
myocytes. Parameters were optimised in two stages. Initially
it was assumed that the myocytes behaved in isolation of
neighbouring elements in accordance with (1). Thus AP
waveforms generated by the single-cell ionic model were first
fitted to experimentally recorded APs to arrive at a set of
optimised initial parameter values. In the subsequent stage,
model parameters were further optimised in the presence
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Figure 2: Generic ionic model structure. (a) Equivalent Markov state diagram of ionic currents. O represents the open or conducting state
for the ionic channel, and C

00
, C
01
, and C

10
are the closed states. 𝑝 and 𝑞 are two gating variables governing the kinetics. IOpen gate, ∙Closed

gate. (b) Typical profile of rate variable (𝛼 or 𝛽) as a function of membrane potential. Each rate is defined by three parameters: 𝑘, a maximum
plateau value,𝐸

50
, themembrane potential at half themaximum value, and s, which is related to the slope at the𝐸

50
, such that �́�(𝐸

50
) = −𝑘𝑠

𝛼
/4

and ́

𝛽(𝐸

50
) = −𝑘𝑠

𝛽
/4. (c) Typical steady-state profile for 𝑝 and 𝑞 as a function of transmembrane potential for a transiently activating inward

current. (d) Typical steady-state profile of p and q for a sustained outward current, as a function of transmembrane potential.

of electrotonic loading from neighbouring myocytes with
heterogeneous electrophysiological properties.

In both stages, a customcurvilinear gradient optimisation
method was used to fit the model to experimentally recorded
AP waveforms by minimising a weighted objective function
[8, 10]. For each optimisation run, the weight function was
initially user specified but then dynamically updated accord-
ing to the residuals between experimental and model data
points. In addition, a set of upper/lower constraints were im-
posed on each model parameter (Table 1). The constraints on
𝐸rev,𝑗 determined whether the jth time-dependent current
was inward or outward. For example when optimising the
model to fit cSAN APs, the reversal potential of currents 1
and 2 was constrained to be in the [−100.0 − 70.0] mV and

[5.0 100.0] mV ranges to define an outward and an inward
current, respectively. Moreover the values for 𝑠

𝛼
and 𝑠
𝛽
of the

𝑝 and 𝑞 gates of each outward current shared the same range,
whereas those for the p and q gates of each inward current
had opposite signs. Hence the steady-state 𝑝 and 𝑞 curves for
each inward current exhibited opposing trends (with respect
to membrane voltage), whilst those of each outward current
exhibited the same trend (Figure 2).

2.4. Optimisation of 2D Tissue Disc Models. In order to better
account for the electrotonic interaction between myocytes, a
1D numerical approximation of an axisymmetric heteroge-
neous 2D disc model of electrical propagation was developed
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Table 1: Constraints imposed on each parameter for each ionic model cell type during model optimisation.

Current Parameter cSAN pSAN RA, LA, PV
Lower limit Upper limit Lower limit Upper limit Lower limit Upper limit

𝐼

1

𝑔

1
(𝜇S⋅cm−2) 0 20000 10 10000 10 20000

𝐸rev,1 (mV) −100 −70 −100 100 −100 −60

𝑘

𝛼𝑝1
(s−1) 0 5000 0 5000 0 5000

𝑠

𝛼𝑝1
(mV−1) −5 0 −5 0 −0.2 0

𝑘

𝛽𝑝1
(s−1) 0 5000 0 5000 0 5000

𝑠

𝛽𝑝1
(mV−1) 0 5 0 5 0 0.2

𝐸

50,𝑝1
(mV) −70 3 −80 20 −80 25

𝑘

𝛼𝑞1
(s−1) 0 5000 0 5000 0 5000

𝑠

𝛼𝑞1
(mV−1) −5 0 −5 0 −0.2 0

𝑘

𝛽𝑞1
(s−1) 0 5000 0 5000 0 5000

𝑠

𝛽𝑞1
(mV−1) 0 5 0 5 0 0.2

𝐸

50,𝑞1
(mV) −70 3 −100 100 −80 25

𝐼

2

𝑔

2
(𝜇S⋅cm−2) 0 20000 10 10000 10 20000

𝐸rev,2 (mV) 5 100 −100 100 40 100

𝑘

𝛼𝑝2
(s−1) 0 5000 0 5000 0 5000

𝑠

𝛼𝑝2
(mV−1) −5 0 −5 0 −0.2 0

𝑘

𝛽𝑝2
(s−1) 0 5000 0 5000 0 5000

𝑠

𝛽𝑝2
(mV−1) 0 5 0 5 0 0

𝐸

50,𝑝2
(mV) −70 3 −80 20 −80 25

𝑘

𝛼𝑞2
(s−1) 0 5000 0 5000 0 5000

𝑠

𝛼𝑞2
(mV−1) 0 5 0 5 0 0.2

𝑘

𝛽𝑞2
(s−1) 0 5000 0 5000 0 5000

𝑠

𝛽𝑞2
(mV−1) −5 0 −5 0 0.2 0

𝐸

50,𝑞2
(mV) −70 3 −100 100 −80 25

𝐼

𝐿

𝑔

𝐿
(𝜇S⋅cm−2) 0 20000 10 10000 10 20000

𝐸rev,𝐿 (mV) 5 100 −100 100 −60 0

𝐼1: outward time-dependent current, 𝐼2: inward time-dependent current, 𝐼𝐿: leakage current.

based on the generic ionicmodel described above and amod-
ified form of the cable equation [20]

𝜕

𝜕𝑟

(

𝑟𝜎𝑏

2

𝜕𝐸

𝑚

𝜕𝑟

) = 𝑟𝐼

𝑚
, (7)

where 𝜎 (𝜇S⋅cm−1) is the tissue conductivity, 𝑟 (cm) is the
distance from the centre of the disc, b = 2 × 10−3 (cm) is
the disc thickness, assuming it is one cell layer thick, and
𝐼

𝑚
(nA⋅cm−2) is the total membrane current, comprised of

capacitive and ionic components according to

𝐼

𝑚
= 𝐶

𝑚

𝑑𝐸

𝑚

𝑑𝑡

+ 𝐼

𝐿
+

𝑁

∑

𝑗=1

𝐼

𝑗
, (8)

where all the variables are as defined in (1). To represent
myocyte heterogeneity in the atrium, the cable was divided
into the appropriate number of sections, each with its distinct
tissue conductivity value and ionic model parameters. Two
axisymmetric discs were considered: one representing a right
atrial preparation comprised of a central SAN (cSAN) region,
a peripheral SAN (pSAN) region, and surrounding right atri-
um (RA), and the other representing a left atrial preparation

comprised of left atrium (LA) and a pulmonary vein (PV)
region. These two disc models will be referred to as cSAN-
pSAN-RA and LA-PV, respectively (Figure 3).The tissue con-
ductivity was selected to produce known conduction veloc-
ity (CV) in each segment: 20–30 cm⋅s−1 in the central and pe-
ripheral regions of the SAN and 80–100 cm⋅s−1 in the right
and left atria. APs generated at selected points from each
section of the cable were fitted to APs recorded experimen-
tally from the corresponding intact myocyte by optimising
the ionicmodel parameters assigned to that particular section
of the disc.

The equationwas solved using themethod of lines (spatial
derivatives calculated from finite differences) implemented
in MATLAB (MathWorks, USA) using the ODE15s solver
(absolute tolerance = 10−6, relative tolerance = 10−3, using an
adaptive time stepping routine with a maximum time step
of 2ms). The 4 cm cable was discretised into 21 equi-spaced
nodes (internodal distance = 2mm).

The tissue conductivity of the first atrial node in the
cSAN-pSAN-RA cable was reduced to equal the conductivity
of both SAN regions. In the case of the LA-PV axisymmetric
disc, a suprathreshold stimulus pulse of 2ms duration was
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Figure 3: Setup of 2D disc models. (a) 2D disc approximation of the human SAN and surrounding atrial tissue. (b) 1D cable representation
of 2D axisymmetric disc. AP waveforms at shown selected nodes representing cSAN, pSAN, and atrial tissue were optimised. (c) 1D cable
representation of an LA-PV disc.

applied to excite the first node at the centre of the disc, gen-
erating an impulse that propagated from the LA to PV seg-
ments.

2.5. 3D Atrial Model. Thefinal stage in themodelling process
(Figure 1) is to incorporate models of individual elements
of the biological system, each optimised to function in the
presence of other elements, into a realistic environment and
simulate the behaviour of the entire system.

The generic ionicmodel parameters for cSAN, pSAN, RA,
LA, and PV myocytes obtained from the above 2D axisym-
metric model’s optimisation were integrated into a 3D atrial
model. The 3D atrial geometry was reconstructed from cryo-
section images of the male Visible Human obtained from the
US National Library of Health [21]. The images had a resolu-
tion of 0.33mm × 0.33mm and were axially spaced at 1.0mm
intervals. The raw slices were registered along the 𝑧-axis
and converted to a 24-bit greyscale format using MATLAB.
The images were then imported to ScanIP (Simpleware Ltd.,
Exeter, UK) for segmentation into different masks using a
combination of floodfill algorithms, Gaussian recursion, and
morphological and binarisation filters, in addition to man-
ual segmentation and cleanup.

The greyscale images were segmented into twelve distinct
regions thought to be important in electrical conduction, in
genesis or maintenance of reentrant wavefronts, or as sites of
ectopic foci (Figure 4). In addition to RA and LA domains,
the crista terminalis (CT), right and left atrial appendages
(RAA, LAA), and superior and inferior venae cava (SVC,
IVC) were also segmented. Intra-atrial domains included the
septum, Bachmann’s bundle (BB), and coronary sinus (CS).

Preliminary segmentation revealed what appeared to be
additional right and left PVs. These were manually removed
at their intersection with the LA chamber. Histological
studies have shown that cardiomyocytes can extend up to
20mm into the PV walls as myocardial sleeves [22]. The
four PVs were cropped proximally to their first branching
point, or at a maximum length of 20mm. The SAN domain
was manually determined using anatomical landmarks and
then further subdivided into cSAN and pSAN regions taking
care to ensure that all cSAN voxels had contact with pSAN
but not atrial voxels. The dimensions of the resultant SAN
domain (13mm in length and 7mm in width) and its
distance to the endocardial surface of the atria were within
the range of values reported histologically [23]. Finally, all
domains were individually filtered using a morphological
filter and/or smoothed against each other as appropriate and
then downsampled to a resolution of 2mm × 2mm × 2mm.

Simpleware’s +FE free algorithm was used to generate
either a coarse tetrahedral mesh with finite atrial wall thick-
ness or a refined epicardial surface triangular mesh with all
domains meshed simultaneously to ensure proper contact
areas (Figure 5). Mean element sizes were 3.388mm and
0.991mm for the finite wall and surface meshes, respectively.
These sizes were calculated based on the longest edge of each
element. A mesh refinement analysis was undertaken to vali-
date the effect of mesh element size on electric propagation in
representative geometries. There was an approximately 10%
decrease in CV in a 2D rectangular model, and no change
in CV in the 3D cube model as the mesh element size was
reduced from 3.5mm and 2.0mm to 246𝜇m in the respective
geometries.
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Figure 4:Different views of 3D atrial geometry, with segmented regions highlighted in different colours. BB: Bachmann’s bundle, CS: coronary
sinus, PV: pulmonary vein, LA: left atrium, RA: right atrium, LAA: left atrial appendage, RAA: right atrial appendage, CT: crista terminalis,
cSAN: central sino-atrial node, pSAN: peripheral sino-atrial node, SVC: superior vena cava, and IVC: inferior vena cava.

(a) (b)

Figure 5: 3D atrial finite element meshes. Anterior and posterior views of the (a) coarse and (b) refined atrial meshes. (a) illustrates the 3D
realistic version of the atria with finite wall thickness, whilst (b) illustrates the 2D shell surface version. Insets: zoomed views of the inferior
vena cava (IVC) highlighting the 3D finite wall and shell wall structures, respectively.

Atrial propagation was modelled using the monodomain
formulation

∇ ⋅ (𝜎∇𝐸

𝑚
) = 𝐴 (𝐼

𝑚
+ 𝐼

𝑏
) , (9)

whereA (cm−1) is the surface to volume ratio of the myocyte,
𝜎 (𝜇S⋅cm−1) is the tissue conductivity, and 𝐼

𝑚
(nA⋅cm−2) is the

total membrane current given by (1). A constant background
hyperpolarizing current (𝐼

𝑏
) of 79 nA⋅cm−2 or 160 nA⋅cm−2

was applied to the cSAN and pSAN regions of the finite wall
or epicardial shell atrial models, respectively, to slow the rate
of spontaneous pacemaking activity of the optimised rabbit
cSAN and pSAN generic ionic models to a human baseline
heart rate of 77 and 75 pulses per minute for the respective
models.

Each electrophysiological region was assigned one set of
ionic parameters previously obtained using the 2D axisym-
metric disc optimisation (see Tables 2 and 3 for a list of initial

variable and parameter values). Optimised RA parameters
were assigned to the RA, RAA, septum, SVC, IVC, and CT
regions. Optimised LA parameters were assigned to the LA,
LAA, and BB regions. Different values of tissue conductivity
were assigned to distinct regions based on known conduction
velocities: atrial bulk tissue (RA, RAA, LA, LAA, and septum,
CV ≈ 80 cm⋅s−1), fast conduction regions (CT and BB, CV
≈ 150 cm⋅s−1) and slow conduction regions (SVC, IVC, PVs,
and CS, CV ≈ 40 cm⋅s−1).The appropriate tissue conductivity
value required to produce the desired CV for each region
was determined using a 1D cable model with a mean element
size similar to that of each respective region and is given in
Table 4.

The 3D atrial geometry models were solved using the
PARDISO finite element solver in COMSOL (v3.5a, COM-
SOL AB, Sweden). Quadratic Lagrange elements for the 𝐸

𝑚

variable and linear discontinuous elements for the gating
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Table 2: Initial values for the generic ionic model variables used in the 3D atrial models.

cSAN pSAN RA LA PV
𝐸

𝑚
(mV) −70.26 −80.04 −78.74 −80.75 −78.79

𝑝

1
0.2 0.11 0.85 0.880 0.95

𝑞

1
1 1 0.5 0.3 0.072

𝑝

2
0 0 0 0 0

𝑞

2
0.36 0.35 0.89 0.29 0.78

Table 3: Optimised generic ionic model parameter values used in the 3D atrial models. Parameter values were obtained by optimising a
cSAN-pSAN-RA and LA-PV 2D axisymmetric disc models.

Current Parameter cSAN pSAN RA LA PV

𝐼

1

𝑔

1
(𝜇S⋅cm−2) 20.75 40.61 332.25 295.3 3098.3

𝐸rev,1 (mV) −83.96 −97.57 −86.46 −93.4 −91.9

𝑘

𝛼𝑝1
(s−1) 4775.9 3202.9 2008.02 4805.4 1415.6

𝑠

𝛼𝑝1
(mV−1) −3.56 −0.72 −0.158 −0.094 −0.087

𝑘

𝛽𝑝1
(s−1) 16.02 50.02 75.02 0 4

𝑠

𝛽𝑝1
(mV−1) 3.11 0 0 0.058 0.002

𝐸

50,𝑝1
(mV) −60.71 −53.04 −63.97 −76.5 −70.4

𝑘

𝛼𝑞1
(s−1) 14.22 142.89 198.22 327 18.4

𝑠

𝛼𝑞1
(mV−1) −5 −1.99 0 −0.054 −0.001

𝑘

𝛽𝑞1
(s−1) 0.21 58.92 293.23 2041.5 1198.3

𝑠

𝛽𝑞1
(mV−1) 0.16 0.76 0.17 0.06 0.2

𝐸

50,𝑞1
(mV) −21.86 −97.73 −0.83 −79.9 −11.5

𝐼

2

𝑔

2
(𝜇S⋅cm−2) 6758.38 2856.22 6904.07 4479.9 16283.6

𝐸rev,2 (mV) 16.19 8.12 40.01 43.5 40

𝑘

𝛼𝑝2
(s−1) 4.37 123.81 562.54 2000 241.3

𝑠

𝛼𝑝2
(mV−1) −3.7 −4.19 −0.185 −0.198 −0.2

𝑘

𝛽𝑝2
(s−1) 3347.16 2643.18 4999.1 1005.4 4770.6

𝑠

𝛽𝑝2
(mV−1) 0.14 0.06 0.001542 0.058 0.001

𝐸

50,𝑝2
(mV) −62.77 −67.13 −44.12 −42.2 −43.5

𝑘

𝛼𝑞2
(s−1) 3.68 4.86 30.97 10 10

𝑠

𝛼𝑞2
(mV−1) 3.32 1.62 0.123 0.199 0.122

𝑘

𝛽𝑞2
(s−1) 35.32 28.56 44.85 43 27.7

𝑠

𝛽𝑞2
(mV−1) −4.99 −1.85 −0.18 −0.004 −0.159

𝐸

50,𝑞2
(mV) −48.39 −69.48 −60.15 −63.3 −64.8

𝐼

𝐿

𝑔

𝐿
(𝜇S⋅cm−2) 2.93 16.047 13.5 10 11.5

𝐸rev,𝐿 (mV) 5.07 −71.67 −57.5 −51.9 −60

𝐼1: outward current, 𝐼2: inward time-dependent current, 𝐼𝐿: leakage current.

variables were selected as options in the software. Approxi-
mately 3.5 hours were required to solve a 1-second simulation
using a Dell Precision T7500 Workstation with x8 3.33GHz
CPUs and 126GBofRAMrunningWindowsXPx64 bit using
a relative tolerance of 1.0 × 10−4, absolute tolerance of 1.0 ×
10−3, and a maximum time step of 0.2ms.

3. Results

3.1. Optimisation of cSAN-pSAN-Atrial Disc. Spontaneous
APs were recorded from cSAN, pSAN, and RA intact myo-
cytes from the same tissue preparation. Although the APs
were recorded from three tissue-intact myocytes in the same

preparation, there were slight differences in the cycle length
(CL) of cSAN, pSAN, and RA APs —possibly due to changes
in the tissue’s electrophysiological properties over time. To
achieve identical CLs,modified pSAN andRAAP traces were
reconstructed by pacing the optimised pSAN and RA single-
cell models at a CL that matched the spontaneous CL of the
recorded cSAN intact myocytes.

A generic ionic model with two time-dependent (inward
and outward) currents and one background current was
implemented for all cell types in the 2D axisymmetric disc.
Figure 6 illustrates the optimised model and experimental
AP waveforms for cSAN, pSAN, and RA cells for SAN
tissue conductivity (𝜎SAN) of 800𝜇S⋅cm

−1 and atrial tissue
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Table 4: Tissue conductivity and surface to volume values used in
the 3D atrial models.

Region Epicardial
shell model

Finite thickness
atrial wall model

𝜎 (𝜇S⋅cm−1)

cSAN 5 × 10

2
5 × 10

2

pSAN 5 × 10

2
5 × 10

2

RA 1.41 × 10

4
1.28 × 10

4

RAA 1.41 × 10

4
1.28 × 10

4

Septum 1.41 × 10

4
1.28 × 10

4

LA 1.04 × 10

4
5.01 × 10

4

LAA 1.04 × 10

4
5.01 × 10

4

BB 2.77 × 10

4
2.13 × 10

4

CT 4.05 × 10

4
4.11 × 10

4

SVC-IVC 2.45 × 10

3
1.28 × 10

3

CS 2.45 × 10

3
1.28 × 10

3

PV 1.58 × 10

4
1.36 × 10

4

𝐴 (mm−1) SAN 500 500

Other regions 200 200

conductivity (𝜎RA) of 10
4
𝜇S⋅cm−1. Table 3 lists the optimised

model parameters for all cell types. The root mean square
error (RMSE) between experiment and model APs was 2.22
mV, 2.45mV, and 4.12mV for cSAN, pSAN, and RA cells,
respectively. There was a transition in the reconstructed
currents from cSAN to RA models, with the peak magnitude
of each time-dependent current increasing from cSAN to
pSAN to RA (Figure 6). The SAN activated spontaneously
and was able to entrain the RA region. AP propagation veloc-
itywas 22 and 96 cm⋅s−1 in the SANandRA segments, respec-
tively.Themaximum rates of change of themembrane poten-
tial during phase 0 depolarisation and phase 1 repolarisation
of the tissue-optimised RA AP were 46.03 and 1.689V⋅s−1,
respectively, compared to 26.55 and 0.7114V⋅s−1 for the sin-
gle-cell optimised RA AP.

3.2. Optimisation of LA-PV Disc. The parameters of the LA-
PV disc were optimised to fit a series of three consecutive APs
recorded intracellularly from the LA and PV in response to
electrically pacing the tissue at a pacing interval of 400ms.

Figure 7 illustrates optimised and experimental APwave-
forms for both LA and PV tissue-intact myocytes, and
Table 3 lists the optimised model parameters for LA and PV
cells in the combined PV-LAdisc.TheRMSEbetween experi-
mental andmodel-generated APwaveforms was 3.92mV and
2.38mV for the LA and PV, respectively. The tissue conduc-
tivity of the entire disc was set to 104 𝜇S⋅cm−1 producing an
AP propagation velocity of 93 cm⋅s−1.

3.3. 3D Atrial Simulations. In simulations utilising the 3D
atrial geometry with finite wall thickness, spontaneous peri-
odic APs originated from the SAN and propagated to activate
the atria (Figure 8). APs in both the cSAN and pSAN regions
were initiated at the same time and it took slightly longer
for APs to propagate through the pSAN compared to the
cSAN. Atrial breakthrough occurred first at the RA followed

by the CT, with the activation pattern being stable for each
cycle. Intra-atrial conduction began at the BB followed by the
septum, with the CS playing only a minor role. The super-
ior PVs were activated before the inferior ones. The mean
pacemaking CL was 779ms.

cSAN, pSAN, RA, LA, and PV APs were sampled from
a random point in each respective region (Figure 8(b)), with
AP waveforms exhibiting heterogeneous morphologies. In
particular, the SAN AP displayed a prominent slowly depo-
larising pacemaker potential, which was absent in atrial tis-
sue types. However a small slow pacemaking potential was
present in the PV AP waveforms.The SAN exhibited a broad
AP peak compared to the rapid phase 0 depolarisation and
phase 1 repolarisation displayed by RA, LA, and PV APs.The
cSANpossessed amore depolarised diastolic phase compared
to the other regions.

Simulations were also performed using a 3D atrial epicar-
dial shell model (Figure 9). Spontaneous rhythmic APs also
originated from the SAN and propagated to activate the atria.
Initial activation occurred in the cSAN followed by the pSAN,
and a longer time was required for the electric activation
wavefront to propagate through the cSAN than the pSAN.
Atrial breakthrough occurred first at the RA followed by the
RAA and then the CT.The right PVs were activated first, fol-
lowed by the left PVs. Pacemaking CL was 800ms and the
activation pattern across the aria was stable for all cardiac
cycles.

As in the case of the finite wall thickness simulation, AP
waveforms sampled from various regions exhibited different
morphologies (Figure 9(b)): in particular, the cSAN AP dis-
played a prominent slow pacemaker potential. The SAN ex-
hibited a broad AP peak compared to the rapid phase 0
depolarisation and phase 1 repolarisation displayed in RA, LA
and PV regions. The diastolic potential of cSAN was more
depolarised than that of other AP types.

4. Discussion

A method has been developed which allows cardiac ionic
models to be optimised to fit experimental AP waveforms
recorded from in vitro tissue preparations (Figure 1). A
generic cardiac ionic model was formulated, consisting of a
user defined number of active time-dependent currents and
a single leakage current. Each active current was described
by two gating variables (𝑝 and 𝑞), each governed by voltage-
dependent rates (𝛼 and 𝛽). By optimising parameters of the
model, a variety of ionic currents could be reconstructed to
produce morphologically distinct AP waveforms recorded
from tissue-intact rabbit myocytes (cSAN, pSAN, RA, LA,
and PV). To account for the presence of electrotonic coupling
from neighbouring cells, 2D axisymmetric disc models with
heterogeneous regions were optimised. These parameters
were then imported into two models of 3D atrial geometry,
reconstructed from cryosections of the male Visible Human,
and able to simulate spontaneous SAN electrical activa-
tion and atrial propagation. Simulations were performed
on both 3D shell and finite atrial wall thickness models.
A monodomain formulation was used to describe electric
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Figure 6: Optimised cSAN and pSAN models using a cSAN-pSAN 2D tissue axisymmetric disc model with 𝜎SAN = 800 𝜇S⋅cm−1. (a) The
optimised cSAN and pSAN AP waveforms (𝐸

𝑚
) are overlaid on top of AP traces recorded experimentally (𝑉

𝑚
) from cSAN, pSAN, and RA

myocytes, respectively, from a rabbit sino-atrial tissue preparation. (b) Inward, outward, and leakage ionic currents reconstructed from the
optimised cSAN, pSAN, and RA models, respectively. Note the different scales used for currents in cSAN, pSAN, and RA.

propagation, with heterogeneous but isotropic tissue con-
ductivity properties assigned to different regions to produce
known CV values. This approach represents a move from
single-cell model to tissue-based model optimisation, in an
attempt to bridge the gap between cellular, tissue, and whole-
organ multiscale cardiac electric models. Such a model of
electrotonically interacting heterogeneous regions can pro-
vide valuable insights into the initiation and maintenance
of atrial arrhythmias, as well as their possible treatment by
pharmacological or ablation therapies.

Although in this study the modelling process was applied
to atrial electrophysiology, the basic methodology outlined
can be utilised to optimise any biological system model, in
particular excitable cells and tissue. For example, a mor-
phologically realistic model of a single neuron, with distinct
model parameters for the dendrites, soma and axon, or even
a network of such neurons, can be built by first optimis-
ing simplified multicompartmental models of heterogeneous
neuronal segments. Similarly the modelling process can be
used to optimise models of the interaction of neurons and
either skeletal or smooth muscle at neuroeffector junctions.

Methodologies for development of image-based mod-
els of cardiac electrophysiology have been proposed and
applied to construct models of rabbit [24] and porcine [25]
ventricles under healthy and pathophysiological conditions.
Vadakkumpadan et al. have utilised diffuse tensorMR images
coupled with the biophysically detailed Mahajan-Shiferaw
[26] rabbit ventricular ionic model [24]. Such models offer
high temporal and spatial resolution at the drawback of
being computationally expensive [27]. On the other hand,
Pop et al. have opted to use a phenomenological model in a
geometry also reconstructed from MRI data [25]. The Aliev
and Panfilov model [28] was optimised to reproduce the
AP duration and CV recorded ex vivo in the ventricles by
means of optical imaging [25].This approach offers improved
computational efficiency and a match between model and
simulation activation patterns but a phenomenologicalmodel
is unlikely to describe complex changes that occur in the
AP morphology during fibrillation and cannot shed insights
on the underlying ionic currents. In this study, a generic
ionic model was chosen with standard template equations
for ionic currents and gating kinetics. The modular nature
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Figure 7: Optimised LA and PV ionic models using a combined LA-PV 2D axisymmetric disc model. (a) The optimised LA and PV AP
waveforms (𝐸

𝑚
) are overlaid on top of AP traces recorded experimentally (𝑉

𝑚
) from LA and PV tissue-intact myocytes from respective rabbit

tissue preparations. (b) Inward, outward, and leakage ionic currents reconstructed from the optimised LA and PV nodes in the combined
disc model.

of the model allows the user to specify the number of time-
dependent ionic currents. Another advantageous feature of
the proposed modelling process is the automated refinement
of the model parameters using a custom curvilinear gra-
dient optimisation algorithm to enable the generation of a
variety of AP waveforms regardless of the complexity of the
experimental conditions under which they were recorded.
For purposes of computational efficiency, we have attempted
to use the simplest model structure possible to reproduce
experimental AP data. The model presented in this paper
utilising two active currents and a leakage current is neces-
sarily a simplification of the many ion channels likely present
in the membrane. 𝑖

1
and 𝑖

2
here would likely represent the

combination ofmultiple inward and outward currents carried
by several ion species. Prior to optimisation, we make no
assumptions as to the ionic identity of each current, but allow
the fitting process to determine the current density and kinet-
ics based solely on the AP data. Additional currents can be
added into the model to provide more degrees of freedom
needed to fit more complex experimental data. Moreover, a
number of generic currents can be combined to reproduce the
behaviour of complex currents such as 𝐼

𝑘1
or calcium trans-

membrane currents and intracellular dynamics. The curvi-
linear gradient optimisation method is robust enough to

reproduce any given experimental data given the appropriate
number of generic currents is used and sufficient compu-
tational resources are available. This approach represents a
compromise between biophysically detailed and simplified
phenomenological models.

4.1. 2D Tissue Disc Model Optimisation. Cardiac tissue be-
haves as an electrical syncytium, in which the cells are elec-
trically connected via gap junctions. An intracellular poten-
tial difference between neighbouring cells will produce an
electrotonic coupling current affecting the dynamics of gating
and rate variables in each cell, altering the overall AP mor-
phology. Such an electrotonic current is not typically taken
into considerationwhen formulating single-cell ionicmodels.
However, single-cell model behaviour under electrotonic
loading from other cell types is expected to change and may
not produce physiological responses. For example, earlier
studies using single-cell parameters for cSANandpSAN ionic
models had to bemanually [17] or automatically [29] adjusted
in order to produce sino-atrial activation in tissue stimula-
tions. Alternatively, it is possible to adjust tissue conductivity
and ion channel density gradients to avoid suppression of
the SAN by atrial electrotonic loading or exit block from the
SAN to the atrium as was implemented in a 3D right atrial



12 Computational and Mathematical Methods in Medicine

𝑡 = 0.545 s

𝑡 = 0.595 s

𝑡 = 0.645 s

𝑡 = 0.695 s

𝑡 = 0.745 s

𝑡 = 0.795 s

𝑡 = 0.845 s

𝑡 = 0.895 s

Membrane potential (mV) 
−80 −60 −40 −20 0 20 Max. 30Min. −90

(a)

10mV
0.1 s

SAN
RA

LA
PV

(b)

Figure 8: Rhythmic atrial simulation using optimised cSAN, pSAN, RA, LA, and PV ionic models and finite-thickness atrial wall geometry.
(a) Snapshots of membrane potential across the surface of the atria at various times during one cardiac cycle. (b) Representative AP plots
from various regions. The locations of points where the highlighted APs were sampled are shown in the inset. Data was sampled at 1 kHz.
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Figure 9: Rhythmic atrial simulation using optimised cSAN, pSAN, RA, LA, and PV ionic models and an atrial shell wall geometry. (a)
Snapshots of membrane potential across the surface of the atria at various times during one cardiac cycle. (b) Representative AP plots from
various regions. The locations of points where the highlighted APs were sampled are shown in the inset. Data was sampled at 1 kHz.
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model examining autonomic regulation of the cardiac pace-
maker [19] using Zhang’s equations [18] to model the SAN.
Even if a single-cell model can be optimised to fit those
experimental AP waveforms perfectly, it is important to note
that the single-cell parameters are also producing unrealistic
underlying ionic current behaviours that are compensating
for the electrotonic coupling current that is present under
experimental conditions but lacking in the model.

Therefore, when optimising models to fit APs recorded
from tissue preparations, it is important to use tissue-based
models, however simplified, to reproduce the electrotonic in-
teractions. Dastgheib et al. [16] were the first to report the use
of a 1D ring model in parameter optimisation and proposed
that such a setup was better able to simulate electrotonic
coupling, physiological excitation and propagation.However,
only parameters describing the maximum conductance of
ion channels were optimised and none related to channel
kinetics. We used a generic ionic cardiac model to construct
a 1D cable equivalent of an axisymmetric 2D tissue disc con-
sisting of one or more segments representing different car-
diac regions. Although only two time-dependent and one
background currents were used, the 2D discs were able to
produce the transition in AP morphology and underlying
ionic currents from SAN to RA, and LA to PV. In addition
the rates of membrane potential change during phase 0 depo-
larisation and phase 1 repolarisation were greater than those
obtained during single-cell optimisation and better matched
experimental observations. The results from this study are
consistent with the proposal of Syed et al. that the use of
physiologically realistic stimulus currents to evoke APs dur-
ing optimisation will result in improved fits to tissue AP
waveforms [11], especially during the initial AP phases where
the electrotonic current contribution to the AP is most sig-
nificant. This study is an improvement on the approach of
using the second time derivative of 𝑉

𝑚
as an estimate of the

electrotonic “stimulus” current [11] as the use of a cable equa-
tion produces a more accurate description of the electrotonic
current needed to bring a given cell’s membrane potential
to threshold to fire an AP, particularly in the presence of
electrically heterogeneous tissue regions.

4.2. 3DAtrial Models. The atrial geometry included the SAN,
RA, RAA, CT, LA, LAA, interatrial tissue (septum, BB, and
CS), both SVC and IVC, and four PVs and openings for the
tricuspid and mitral valves, but no pectinate muscle fibres,
as present in the Harrild and Henriquez [3], Seemann et al.
[4], and Aslanidi et al. [6] atrial models. The 3D finite atrial
wall thickness model improves on the Harrild andHenriquez
[3] and Aslanidi et al. [6] atrial models in that it includes the
PVs. It also improves on the Seemann [4] and Aslanidi et al.
[6] atrial geometries by incorporation of the CS. Preliminary
simulations [30] and previous studies [4, 31] suggest that the
CS plays a role during reentry. An epicardial shell surface
model was also derived from the atrial geometry. The shell
surface incorporated the cSAN, pSAN, PVs, SVC, IVC, and
the CT. These structures were absent in the Virag et al. [5]
shell, which was used extensively to simulate AF and ablation
therapy in previous modelling studies (e.g., [5, 32] although

the atrial shell of this study did not have a distinct septal sheet
with a fossa ovalis, as utilised in Virag et al. [5]).

In both versions of our atrial model, the SAN overcame
the electrotonic load imposed by the surrounding atrial tissue
and was spontaneously active, rather than being externally
paced (e.g., [3, 5]). The SAN was able to generate rhythmic
APs and activation wavefronts that propagated into and
excited the atria. Unlike Seemann et al. [4] who used numer-
ical interpolation to divide the SAN into central and periph-
eral regions, we explicitly divided the SAN geometrically,
ascribing to each part separate ionic parameters.

Mesh element sizes for the finite wall thickness and
epicardial shell models (3.388 and 0.991mm, resp.) were
larger than the mean element sizes typically reported for
atrial meshes (e.g., 550𝜇m [3] and 600 𝜇m [5]) or, in the
case of the finite wall thickness model, the space constant
(0.5–2 cm) of cardiac tissue [33]. The imaging resolution of
the male Visible Human cryosection dataset did not allow
for the discrimination of the microstructure of the SAN and
its anatomical connection to the surrounding atrium. Hence
in the finite-thickness version of themodel, spatial resolution
is not resolved enough to capture propagation from the lead-
ing pacemaker site in the SAN to the SAN periphery.The epi-
cardialmodel utilises a boundary shellmeshwith a finer reso-
lution and hence is able to simulate cSAN activation followed
by pSAN and then atrial excitation. A future improvement of
the model would be selective refinement of the SAN domains
using images obtained from immunohistochemical studies or
high-resolutionMRI scans of the atria. Amesh size validation
study using representative geometries was conducted and
only a 10% change in atrial CV was found when the mean
element size was reduced to 246𝜇m. In addition, the size of
the mesh elements was compensated for by calculating the
appropriate tissue conductivity value to produce the required
CV for each particular region, an approach also adopted by
Laurent et al. [34]. In addition, quadratic, rather than linear,
Lagrange elements were used numerically to solve for the
𝐸

𝑚
variable in the finite element models, which will further

improve the accuracy of the solution. Moreover, the simula-
tions presented in this manuscript are of regular rhythmic
sinus activation patterns and not of arrhythmia so the large
element size will not have a significant effect on the solutions
presented in this paper.

One limitation of the atrial models of this study was that
the ionic single-cell models from which they were con-
structed were based on fits to rabbit APs, whereas the 3D
atrial geometry was based on human data. Nonetheless, the
generic ionic model approach could readily be applied to
human atrial AP data if this was available and incorporated
into patient-specific reconstructions of atrial geometry. This
would greatly improve the accuracy of the model. Another
limitation is that our geometry does not include myocardial
fibre or pectinate muscle orientation which is known to play
an important role in atrial conduction ([35], also refer to
a recent atrial sheep model for a discussion on the role of
atrial myoarchitecture in electric propagation [36]). Unfor-
tunately, this data was not available from the low-resolution
cryosection images used but would also greatly improve
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model accuracy if included. Furthermore, tissue conductivity
in both disc and 3D models was set empirically to obtain
realistic AP conduction velocities in each region, taking into
account the spatial discretisation and mesh element size.
A range of values for myocardial tissue conductivity have
been reported in existing modelling studies [3–6] and are
typically assigned to yield realistic conduction velocities of
about 50–150 cm/s [37]. Conduction velocity is determined
by the combination of membrane sodium channel density
and kinetics, as well as the gap junction density between
myocytes.The latter is described using the tissue conductivity
value. The former depends on the membrane conductance
and gating kinetics of the inward Na+ current, which differs
between ionic models.The ionic model of this study includes
a generic inward current having particular kinetics andmem-
brane conductance, which could explain the disparity be-
tween our tissue conductivity values and others reported
in the literature. The model was fitted to AP morphologies
recorded in response to a single pacing frequency as a dem-
onstration of the feasibility of the proposed tissue-based
modelling methodology. Fitting the generic model to more
complex experimental waveforms that better capture the
changes in AP morphology during fibrillation is required for
more accurate 3D modelling of atrial arrhythmias. Towards
this aim, the authors have recently developed [38] a single cell
generic cardiac ionic model optimised to fit AP morphology
alternans at a uniform pacing cycle length of 200ms as well
as the response to random pacing intervals. Using the tissue-
based optimisation approach described in this paper, such
ionicmodels can be incorporated into 3D atrial geometries to
allow more realistic simulations of the dynamics of AF. Like
most existing ionic models, our generic model has certain
limitations [38], which are mainly due to assumptions made
in order to simplify the model to produce computationally
efficient simulations in 3D geometries as well as to optimise
the disc models.We have not incorporated intracellular com-
partments for calcium cycling, ionic pumps and exchangers
aswe assume that all of our reconstructedmembrane currents
consist of two first-order voltage-dependent (𝑝 and 𝑞) gating
processes, which is unlikely to capture the kinetics of these
mechanisms.However this issue does not affect the successful
application of the generic model in 3D simulations.

5. Conclusion

A modelling process was developed to fit cardiac ionic
models to APs recorded experimentally from in vitro SAN
and atrial tissue preparations using a heterogeneous tissue-
based optimisation protocol. Optimised model parameters
were incorporated into 3D atrial models to simulate elec-
tric activation patterns in the atria. Accurate modelling of
electrophysiological properties based on fits to AP data is
important in simulating complex atrial arrhythmias and their
modulation by external pacing, pharmacological treatment
or tissue ablation strategies. The tissue-based optimisation
approach developed is a generic tool that can find broad
applications in modelling subject or experiment-specific
excitable tissue.

Conflict of Interests

The authors declare no conflict of interests.

Acknowledgments

This study was supported by funding from the Australian
Research Council (Grant no. DP0667106). Dr Amr Al Abed
was the recipient of an Australian Postgraduate Award from
the Australian government during his PhD candidature.

References

[1] P. J. Hunter andT. K. Borg, “Integration fromproteins to organs:
the physiome project,” Nature Reviews Molecular Cell Biology,
vol. 4, no. 3, pp. 237–243, 2003.

[2] V. Fuster, L. E. Rydén, D. S. Cannom et al., “AACC/AHA/ESC
2006 guidelines for the management of patients with atrial
fibrillation,” Europace, vol. 8, no. 9, pp. 651–745, 2006.

[3] D. Harrild and C. Henriquez, “A computer model of normal
conduction in the human atria,” Circulation Research, vol. 87,
no. 7, pp. E25–36, 2000.
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