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Abstract: Numerous prognostic indexes have been developed in hematological diseases based on
patient characteristics and genetic or molecular assessment. However, less attention was paid to
more accessible parameters, such as neutrophils, lymphocytes, monocytes, and platelet counts.
Although many studies have defined the role of neutrophil-to-lymphocyte or platelet-to-lymphocyte
in lymphoid malignancies, few applications exist for myeloid neoplasm or hematopoietic stem cell
transplantation procedures. In this review, we synthesized literature data on the prognostic value of
count blood cells in myeloid malignancies and hematopoietic stem cell transplantation in the context
of classical prognostic factors and clinical outcomes.

Keywords: neutrophil-lymphocyte ratio (NLR); platelets; lymphocyte-monocyte ratio; monocyte;
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1. Introduction

A myeloid neoplasm (MN) refers to a heterogeneous group of hematological diseases
affecting hematopoietic stem cells, including acute and chronic forms [1]. Different defects
can contribute to the genesis of MN diseases, such as mutations in JAK2, CALR, MPL,
FLT3 genes, or chromosome translocations. Therefore, different signaling pathways can be
activated at the cellular level to promote an uncontrolled expansion of myeloid cells in the
bone marrow [1,2]. The diagnosis of myeloid malignancy requires specific tests such as a
trephine bone marrow biopsy and a morphology study of a myelogram [3]. Cytogenetic,
molecular biology and cytofluorimetric analysis is also required [2]. The first exam required
in hematology is a cellular blood count. (CBC). The test is an inexpensive and easy way to
diagnose and monitor myeloid malignancies as well as other diseases.

The prognostic role of the distribution of the different cell populations in CBC has
been assessed in different diseases, and in particular, the meaning of parameters such as
neutrophil to lymphocyte ratio (NLR) and lymphocyte to monocyte ratio (LMR) has been
explored [4–6]. High NLR has been shown to predict signals of severity in COVID-19
pneumonia [7] and mortality in coronary events [8]. Notably, NLR is an established
parameter used for prognostic stratification in patients with solid tumors [9]. In the field
of hematology, studies have evaluated the impact of these parameters focusing mainly on
lymphomas [10]. However, the apparent alteration of CBC in myeloid diseases did not
result in a debate about the proportion of different types of leukocytes. This review aims to
assemble several studies that examined the role of NLR, LMR, platelets to lymphocytes
ratio (PLR), absolute lymphocyte count (ALC), and absolute monocyte count (AMC) in
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myeloid malignancies. In addition, we discussed the role of those parameters in defining
prognosis or response to therapy in most common myeloid diseases, such as chronic
myeloid leukemia, Philadelphia-negative myeloproliferative neoplasm, myelodysplastic
syndromes, and acute myeloid leukemia. Finally, we analyzed the effect of NLR, MLR, PLR
AMC, and ACL on different aspects of hematopoietic stem cell transplantation (HSCT).
Because of the great variability of the available data in HSCT, no distinction was made in
terms of donor type, stem cell donor source or conditioning regimes.

2. Bone Marrow Microenvironment

The bone marrow microenvironment is located in the BM cavity, where hematopoietic
cells can interact with multiple cellular components like osteoblasts, fibroblasts, mes-
enchymal cells, macrophages, and different matrix elements such as adhesion molecules,
chemokines, cytokines, and soluble or membrane-bound factors. This relative barrier
delimiting this microenvironment is also known as the BM niche [11].

The tumor microenvironment is a dynamical and complex milieu closely connected
with all steps of carcinogenesis, composed of matrix and stromal cells, neuroendocrine,
adipose, immune, and inflammatory cells, and lymphatic and vascular systems. Hemato-
logical malignancies present a slightly diverse microenvironment in comparison to solid
tumors. The measurable parameters in the peripheral blood cells, such as neutrophils,
lymphocytes, and platelets, may reflect the systemic inflammatory response associated
with these tumor-induced microenvironment changes [4,6,9,12].

Indeed, the tumor microenvironment is complex and constantly evolving, and both
adaptive and innate immune cells play a critical part in tumorigenesis [13]. Tumor pro-
gression is largely dependent on inflammation, which acts as a major driver with related
oxidative stress, angiogenesis, matrix remodeling, and specific genetic mutations [14,15].
Similarly, in the hematologic field, alterations in the BM microenvironment have been
demonstrated to represent a central step in the development of several myeloid malignan-
cies and influence the peripheral CBC composition [16–18]. The composition of intra- and
peri-tumoral immune cells affects both antitumor immunity and immunodeficiency. The
percentage and location of different T cells influence the patient outcome: high intratumoral
CD8+ cells are related to better outcomes [19,20], while a low amount of infiltrating CD8+
and CD4+ lymphocytes can promote relapse or metastasis [10]. Cells of the monocyte
lineage are fundamental for the innate immune response and play a central role in the
tumor microenvironment. In particular, tumor-associated macrophages (TAMs) can favor
cancer cell proliferation, migration, and genetic instability and induce angiogenesis and
lymphangiogenesis, which promote metastasis [21–23]. They can polarize into M1 or M2
phenotype, depending on different stimuli, which have specific pro- or anti-inflammatory
profiles and exert different pro- or anti-tumoral actions [24]. A “reprogrammed” inflam-
matory BM microenvironment is a usual report in myeloid malignancies. Both malignant
hematopoietic cells and proinflammatory cytokines are able to stimulate different cate-
gories of stromal cells in the bone marrow, induce their secretory activity, and affect their
decreased hematopoiesis-supporting ability [10]. Macrophages and monocytes, as players
of the innate immune response, are raised in chronic inflammatory conditions in myeloid
malignancies. Other crucial cells are neutrophils, which exert anti-tumor activity but
are also able to inhibit the cytotoxic action of lymphocytes. Moreover, granulocytes may
foster cancer progression by stimulating changes in stromal cells and inducing the expres-
sion of specific cytokines, such as hematopoietic growth factor (HGF) and granulocyte
colony-stimulating factor (G-CSF) [25,26].

Abnormally proliferating cancer cells in MPN can induce normal hematopoietic and
stromal cells in the BM niche to release proinflammatory mediators, which can create
chronic inflammation inside the niche [16].

Indeed, it has been described that the MPN BM stem cell niche is a place of chronic
inflammation characterized by raised myeloproliferation, altered neutrophil apoptosis, and,
probably, unbalanced neutrophil marginal and reserve pool. The specific alterations of
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these compartments are induced by the inflammatory stimuli and, in turn, can have a major
impact on the resolution of inflammation in the MPN, both in the BM and in the peripheral
blood, thus influencing the pathogenesis and progression of the disease [27]. Noteworthy, it
has been reported that the JAK2 mutation, at the center of the MPN pathogenesis, activates
the STAT3 signaling pathway, which is involved in a variety of inflammatory cytokines
expressions causing inflammation and dysfunction of the immune system [28]. Hence the
production of antibodies in anti-endothelial cells is associated with an increased risk of
thrombosis [29]. In turn, inflammation may promote atheromatous damage and, therefore,
the occurrence of thrombotic events, which are the major complication of MPN [30].

Then, high NLR can reveal a reduced number of lymphocytes and an increase of
neutrophils in the tumor microenvironment. The absolute neutrophil count might act as an
indicator of systemic inflammation, which favors tumor progression. Thus, also in myeloid
diseases, NLR and MLR can express the connections between the tumor microenvironment
and the host’s immune response and be strictly related to patients’ prognosis.

3. Myeloid Malignancies
3.1. Chronic Myeloid Leukemia

Chronic myeloid leukemia (CML) is a clonal myeloproliferative expansion of trans-
formed, primitive hematopoietic progenitor cells. Interestingly, BCR-ABL1, generated by
a reciprocal translocation between chromosomes 9 and 22, has been linked to leukemia’s
pathogenesis for the first time. In CML, myeloid progenitor cells expand at different stages
of maturation, are released prematurely into the peripheral bloodstream, and settle ex-
tramedullary [31]. Since the 2000s, specific treatments such as tyrosine kinase inhibitors
(TKI) have dramatically improved the disease’s outcome [32].

There is usually a strong correlation between white blood cell (WBC) count and disease
prognosis in patients with CML. CML prognostic scores were first established in the CML
based on, among other factors, the basophil and platelets count [33,34]. In contrast, low
platelets are associated with higher mortality risk in the ELTS score [35,36]. The prognostic
implications of ALC in CML were also investigated [37–39]. According to Sasaki et al.,
there were no significant differences in the cumulative incidence of complete cytogenetic
response (CCyR) or molecular response (MR) at different time points. However, finding
ALC ≥ 4000/µL at 3 or 6 months after TKI therapy was rare but associated with a decreased
overall survival (OS) [37]. In patients treated with dasatinib, a significant increase in large
granular lymphocytes (LGL) has been observed in peripheral blood. High levels of LGL
were associated with a better response to therapy and excellent outcomes [38]. More
recently, a report showed that ALC, AMC, and the LMR were not predictive of molecular
response status in CML patients [39].

3.2. Myeloproliferative Neoplasm

Philadelphia-negative myeloproliferative neoplasms (MPNs) include three classical
forms of clonal hematological malignancy: polycythemia vera (PV), essential thrombo-
cythemia (ET), and primary myelofibrosis (PMF) [40]. Driver mutations causing MPN
include JAK2, CALR, or MPL genes [41]. Clinical features are similar. Myelofibrosis can
present either splenomegaly, cytopenias, or overlapping manifestations that lead to a more
aggressive disease. Erythrocytosis occurs most often in PV, while thrombocytosis occurs in
ET [42].

It is also possible for patients with ET and PV to progress toward myelofibrosis. A
thrombotic event and disease progressions are the most severe complications and the
leading causes of death in patients with MPNs [43–45].

Prognostic scores are based on age and previous thrombotic events [46,47]. The inter-
national prognostic score for ET (IPSET) included leukocyte ≥ 11 × 109/L as a parameter
associated with a higher risk of thrombotic events [47]. Studies have investigated the role
of NLR in preventing ET thrombosis [48–50]. According to Hacibekiroglu et al., erythrocyte
sedimentation rate, C-reactive protein, RDW, MPV, and NLR in the genesis of thrombosis,
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are commonly used chronic inflammation indicators [48]. There were significant differ-
ences in the main laboratory results between healthy controls and patients. No significant
differences were found in the patient cohort between those with and without thrombotic
events [48].

An analysis of 70 PV and ET patients found no association among thrombosis, PLR,
and NLR [49]. However, in a larger group of 150 ET patients, NLR was the best predictor
of thrombosis events. It also reported a high NLR ratio in Jak2-positive patients [50].
Additionally, high NLR was found in patients at high-risk stratification of thrombosis [50].
In PV, leukocytosis played a critical role over time. Indeed, several authors have reported
a close relationship between leukocytosis at diagnosis and poor prognosis or high risk
of thrombosis [51–53]. According to Boiocchi et al., patients with persistent leukocytosis
have worse outcomes than those without [54]. In a similar study, Ronner et al. found that
persistently elevated leukocytes were associated with increased disease evolution but not
thrombotic events [55].

The above suggests that biomarkers like NRL and PLR calculated at disease diagnosis
might be a better and easier way of predicting disease outcomes. A recent editorial
demonstrated that NRL higher than 3.48 had a shorter time to thrombosis (TTT), and
NLR > 2.62 was associated with the lowest OS. Similarly, patients with a high (>148.8)
PLR had an inferior OS, and a higher level of PLR > 210.68 was associated with a lower
TTT [56]. In addition, the increased value of NLR was an independent predictor of venous
thrombosis in a recent revision of the ECLAP trial [57]. Venous thrombosis events were
recently associated with a high absolute neutrophil count (ANC) and AMC at diagnosis of
MPN [58]. In particular, V617F% ≥ 75% or AMC ≥ 1.5 × 109/L was found to be strongly
associated with a higher risk for venous thrombosis in Post-PV MF [59].

MF shows the most aggressive biological behavior among the Ph-MPNs and is as-
sociated with the highest mortality rate [60]. Historically, hemogram parameters such as
WBC, hemoglobin, or platelets have historically been used to calculate MF scores [61–63].
Nevertheless, few studies have examined the correlation between NLR or PLR and MF out-
comes [64,65]. There was a significant association between higher NLR and Jak2 mutation,
such as ET [64]. A greater NLR and PLR were found in MF patients than in the general
population. Among MF patients with higher PLR, a less aggressive disease was revealed
with the absence of blast phase disease, constitutional symptoms, smaller spleen size, and
lower CRP [64]. Another study showed that low ALC in patients with MF could predict
inferior survival [65].

3.3. Myelodysplastic Syndrome

The myelodysplastic syndrome (MDS) is a hematological clonal neoplasm in which in-
effective hematopoiesis occurs in one or more blood cell lineages due to dysmorphogenesis.
As a result, there were one or more cytopenias [66]. As the disease progressed, prognostic
scores were developed on bone marrow blast percentage, karyotype, degree of cytopenia,
red blood cell transfusion need, age, and performance status [67,68].

The higher-risk MDS patients are more likely to undergo HSCT because of the risk
of leukemic transformation and the very short OS, even without transformation [66].
Adaptive immunity has been linked with an increased interest in MDS prognosis. A
different distribution of CBC parameters was observed according to the type of MDS.
Notably, high levels of ACL were associated with a specific subgroup of MDS patients with
ring sideroblasts, known to have a good prognosis [69]. MDS of multilineage dysplasia, on
the other hand, was associated with a lower level of PLR [70]. However, lymphocyte counts
were low in therapy-related MDS. In patients with higher-risk MDS (IPSS-R intermediate,
high, and very high), there were lower ALC levels compared to lower-risk MDS [69].

Among low-risk MDS patients, an ALC below 1.2 × 109/L was an additional negative
prognostic factor. In accordance with the above-mentioned studies, ALC levels < 1.2 × 109/L
were associated with poor OS [71–73]. Saeed et al. also found that low levels of monocytes
were correlated with poor OS in MDS [72]. Following treatment, low baseline neutrophil,
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monocyte, and lymphocyte levels were associated with an increased risk of infection or
bacteremia [74]. Finally, few data are available between CBC and response to treatment. In
this context, a low platelet count after therapy may indicate poor response [75].

3.4. Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is a hematological malignancy characterized by the
proliferation of abnormal clonal hematopoietic precursors. AML usually occurs de novo in
healthy individuals, but it can be triggered by a different hematological disease or from
previous chemotherapy or radiotherapy exposure [76]. The clinical condition can manifest
as cytopenias or hyperleukocytosis, and it can progress very rapidly. The appropriate
therapy depends on the patient’s age, fitness, and prognostic risk score [77,78].

Furthermore, the prognostic importance of CBC has been demonstrated in several
studies [79–81]. There is a possibility that platelet levels are prognostic in AML. Patients
with medium platelet count (50–120 × 109/L) had longer OS and disease-free survival
(DFS) than those with a low or high platelet count (<50 × 109/L or >120 × 109/L, respec-
tively) [79]. It appears, however, that treatment response is more variable. Non-response
rates were higher in patients with low platelet counts at 21 days after induction treat-
ment [75]. Similarly, a high platelet count at day 14 predicted better outcomes in elderly
patients [80]. In contrast, Zhang Y. et al. recently found that for intermediate-risk AML
patients treated with chemotherapy, a platelet count < 40 × 109/L was associated with
better OS and DFS [81].

Studies focusing on lymphocytes and monocyte cells showed that low AMC and ALC
correlate with an increased risk of infectious complications but not death [74]. Monocyte
count can predict response and OS in AML patients at different stages of the disease [82].

For instance, Ismail et al. found that an AMC ≥0.8 × 109/L at day 28 after therapy
was associated with short OS and DFS [83]. Moreover, a high level of NLR at diagnosis and
relapse has been associated with a poor prognosis [84,85]. However, data on the role of ALC
are contradictory. According to some authors, higher ALCs assessed before and after the first
chemotherapy have poor predictive value [86–89]. A large study of 1702 AML patients showed
that an ALC threshold lower than 1 × 109/L was associated with poor OS and DFS [88]. Other
authors have reported better OS and DFS in patients with ALC > 0.35 × 109/L 28 days after
starting treatment [83]. Similarly, Keenan et al. found that higher ALC correlates with better
OS after each chemotherapy course, even though the difference is more pronounced after
induction [90]. As confirmed by additional research, even the HSCT does not seem to improve
the prognosis of patients with ALC < 500 × 109/L that had lower OS after chemotherapy [91].

Tables 1 and 2 summarize the main papers referred to in the article about
myeloid malignancies.

Table 1. Prognostic role of peripheral count blood cells parameters in chronic myeloproliferative neoplasms.

Authors Years Diseases No. of Pts Outcomes Comments

Sasaki [37] 2014 CML 483 OS ALC ≥ 4 × 109/L at 3 or 6 months of TKI
start was associated with lower OS

Pepedil-Tanrikulu [39] 2020 CML 95 Response ALC, AMC, and LMR did not predict the
molecular response

Hacibekiroglu [48] 2015 ET 99 Thrombosis No differences in CRP, NLR, RDW, MPV,
and sedimentation levels

Kocak [49] 2017 ET 70 Thrombosis No differences in NLR and PLR in
patients with or without thrombosis

Zhou [50] 2018 ET 150 Thrombosis
Higher NLR in Jak2 positive and in
patients at high-risk stratification

of thrombosis
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Table 1. Cont.

Authors Years Diseases No. of Pts Outcomes Comments

Boiocchi [54] 2015 PV 10 Evolution Persistent hyperleukocytosis is associated
with poor prognosis in MF-post-PV pts

Ronner [55] 2020 PV 520 Evolution,
thrombosis

Persistently elevated leukocyte was
associated with an increased hazard of

disease evolution but not of
thrombotic events

Krečak [56] 2021 PV 109 OS, thrombosis Higher NRL and PLR are associated with
a high risk of disease, shorter TTT

Carobbio [57] 2021 PV 1508 Thrombosis High NLR is an independent predictor of
venous thrombosis

Farruk [58] 2022 PV, TE 487 Thrombosis ANC and AMC associated with
venous thrombosis

Teng [59] 2022 Post-PV MF 163 Thrombosis
Patients with V617F% ≥ 75% or

AMC ≥ 1.5 × 109/L had a higher risk for
venous thrombosis

Lucijanic [64] 2018 MF 102 OS Higher NLR and Jak2 mutation; High
NLR and low PLR poor prognosis

Lucijanic [65] 2018 MF 83 OS Low ALC associated with poor prognosis

Abbreviations: OS, overall survival; TTT, time to thrombosis; CML, chronic myeloid leukemia; ET, essential
thrombocythemia; PV, polycythemia vera; MF, myelofibrosis; ALC, absolute lymphocyte count; ANC, absolute
neutrophil count; TKI, tyrosine kinase inhibitors; AMC, absolute monocyte count; NLR, neutrophil-to-lymphocyte
ratio; LMR, lymphocyte-to-monocyte ratio; CRP, C-reactive protein; RDW, Red blood cell distribution width;
MPV, mean platelet volume; PLR, platelets-to-lymphocytes ratio.

Table 2. Prognostic role of peripheral count blood cell parameters in acute myeloid leukemia and
myelodysplastic syndromes.

Authors Years Diseases No. of Pts Outcomes Comments

Silzle [58] 2019 MDS 1023 OS Low ALC and lower OS, most apparent
in lower-risk patients

Yikilmaz [70] 2020 MDS 63 Classification Low PLR and multilinear dysplasia

Jacobs [71] 2010 MDS 503 OS ALC > 1.2 × 109/L better OS

Saeed [72] 2017 MDS 889 OS
Low ALC, low AMC, inferior OS. ALC,

AMC, and LMR are not influenced
by LFS

Saeed [73] 2016 MDS 889 OS, LFS Low ALC lower OS but not lower LFS,
most apparent in lower-risk patients

Buckley [74] 2014 MDS/AML 205 Complication
Low AMC and ALC at induction
treatment high risk of infection

or bacteremia

Chen [75] 2015 AML/MDS 343 Response Low PLT counts at 21 after induction was
associated with no response

Zhang [79] 2017 AML 209 OS, DFS PLT between 50 and 120 × 109/L better
OS and DFS

Huang [80] 2018 AML 117 Prognosis PLT count recovery on day 14 after
D-CAG IC is associated with the response

Zhang [81] 2020 AML 291 OS and DFS Low platelets levels at diagnosis predict
better OS and DFS

Feng [82] 2016 AML 193 OS High AMC appeared as a poor
prognostic factor for OS
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Table 2. Cont.

Authors Years Diseases No. of Pts Outcomes Comments

Ismail [83] 2019 AML 83 OS, DFS
AMC ≥ 0.8 × 109/L + 28 shorter OS and

LFS, ALC > 0.35 × 109/L higher OS
and LFS

Zhang [84] 2021 AML 181 OS, DFS NLR < 2 at diagnosis better OS and DFS

Mushtaq [85] 2018 AML 63 OS High NLR independently predicts poor
OS in RR-AML patients.

Lobanova [86] 2017 AML 35 DFS ALC more than 0.8 × 109/L poor DFS

Jang [87] 2019 AML 65 LFS, OS Higher ALC poor LFS and OS

Le Jeune [88] 2013 AML 1702 OS, DFS
Initial ALC < 1 × 109/L poor DFS and
OS, ALC > 4.5 × 109/L lower response

rate IC

Bar [89] 2015 AML 259 OS Higher ALC lower remission and poor
RFS and OS

Keenan [90] 2012 AML 59 OS At +28 days post IC ALC > 1.35 × 109/L
better OS

Bumma [91] 2014 AML 180 OS ALC < 0.5 × 109/L poor outcome in IC

Abbreviations: MDS, myelodysplastic syndrome; AML, acute myeloid leukemia; OS, overall survival;
LFS, leukemia-free survival; DFS, disease-free survival; IC, induction chemotherapy; D-CAG, decitabine, cy-
tarabine, aclarubicin, and granulocyte colony-stimulating factor; ALC, absolute lymphocyte count; AMC, ab-
solute monocyte count; PLR, platelet-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; PLT, platelets;
RFS, relapse-free survival.

4. Hematopoietic Stem Cell Transplantation

Hematopoietic stem cell transplantation (HSCT) has been considered one of the most
effective and sometimes the only curative options in the treatment of myeloid hematologic
malignancies for decades [92]. HSCT is commonly recommended for CML patients who
have failed two or more TKI lineage, but for Ph-negative myeloproliferative neoplasms, it
is less indicated [43,93,94]. In contrast, high-risk MDS and AML are the majority of patients
to receive this treatment [95–97].

The clinical decision to perform an HSCT in these patients is based on balancing the
risk of transplant-related mortality, the availability of a suitable donor, and the mortality
associated with disease progression and evolution [97,98]. HSCT consists of several phases.
The conditioning regime is required to destroy residual hematopoietic activity disease.
Following the infusion of the donor, the HSCs engraftment is expected [99,100]. HSCT can
be complicated by infections, conditioning-related toxicity, graft failure, and acute or chronic
graft versus host disease (GVHD) [98]. Moreover, it can help control minimal residual
disease (MRD) as a result of the well-known graft versus leukemia effect (GVL) [101]. Some
authors have recommended monitoring the prognosis of HSCT based on CBC. Despite
AMC > 0.3–0.5 × 109/L after HSCT being associated with better survival, a more consistent
result was seen when lymphocyte subsets were examined [102,103]. Studies have shown
that a minimum level of ALC of 300 × 109/L or higher improves OS and is associated with
fewer infectious complications after transplantation [104–111]. GVHD is a major cause
of morbidity and mortality following allogeneic hematopoietic cell transplantation [112].
ALC and eosinophil count (EC) at the time of chronic GVHD were incorporated into the
chronic graft-versus-host disease risk score (CIBMTR). ALC and EC below normal were
proven to contribute to adverse OS outcomes [113].

The use of biological drugs to prevent GVHD can affect the outcome of this procedure.
Those with high levels of ALC had a worse prognosis when starting the immunomodulating
treatment with alemtuzumab [114]. Moreover, higher levels of ALC predict better OS in
patients who received high doses of anti-thymocyte globulins (ATG) [115]. Similarly, in
a recent report, patients with preconditioning ALC < 500 × 109/L were associated with



Diagnostics 2022, 12, 2493 8 of 16

short OS and higher infectious mortality due to a side effect of excessive doses of ATG and
profound T-cell depletion [116]. ALC > 150 × 109/L before ATG infusion correlated with
higher rates of acute GVHD requiring steroids and non-relapse mortality [117]. On the
contrary, the slow lymphocyte recovery after HSCT (<200 × 109/L) could suggest a change
in GVHD treatment based on a higher risk of disease relapse [118–120]. Nevertheless,
Afzal et al. did not find any correlation between early lymphocyte recovery and the graft
versus leukemia effect in pediatric AML patients [121]. In addition, to immune cells, other
specific types of immune cells were investigated in HSCT. Natural killers (NK) are among
the first type of immune cells to recover after HSCT and are thought to contribute to
the graft versus leukemia effect [122]. Indeed, the level of NK was found to be low in
patients who relapsed from CML after HSCT [123]. In acute leukemia transplants, higher
NK levels were significantly associated with better DFS and TRM than patients with NK
below 120/µL [124]. More recently, Minculescu et al. reported that NK >150/mm3 on day
+30 predicts better OS, lower TRM, and infections [125]. Table 3 shows the most important
articles in this field.

Table 3. Prognostic role of different peripheral count blood cell parameters in bone marrow trans-
plantation.

Authors Years No. of Pts Outcomes Comments

Thoma [102] 2012 135 OS ALC and AMC > 0.3 × 109/L from +30 +60 and
+100 from HSCT had better OS

Tang [103] 2018 59 OS AMC > 0.57 × 109/L +15 from HSCT had
better OS

Chang [104] 2013 78 OS, TRM ALC > 0.3 × 109/L lower relapse rates and lower
infections. Better OS, LFS, and low TRM

Bayraktar [105] 2015 518 OS, NRM ALC > 0.3 × 109/L at +60 better OS and NRM
after HSCT

Chakrbarti [106] 2003 29 OS, NRM ALC > 0.3 × 109/L at +30 was the strongest
predictor of NRM and OS

Fu [107] 2016 134 OS, LFS ALC > 0.294 × 109/L at +30 better OS and LFS,
but was not related to relapse

Gul [108] 2015 381 OS, NRM ALC < 0.4 × 109/L lower OS and increased NRM.
No association with relapse

Han [109] 2013 69 OS, EFS

ALC > 0.5 × 109/L at +21 and +30 better
engraftment. High ALC at 30 days had better OS
and EFS. There were no differences in the GVHD

or relapse rates.

Porrata [110] 2002 45 OS ALC > 0.5 × 109/L at day +15 had better OS

Le Bourgeois [111] 2016 47 OS +30 ALC > 2.76 × 109/L and +42
ALC > 4.25 × 109/L had better OS.

Moon [113] 2017 307 cGVHD
ALC < 1 × 109/L and eosinophil count <

0.5 × 109/L relate to lower OS and helped
improve the risk stratification power of CIBMTR

Sheth [114] 2019 364 OS, DFS ALC > 0.08 × 109/L in 2 days of alemtuzumab
infusion had poor DFS and OS

Kennedy [115] 2018 135 OS High ALC in higher recipient ATG dose had a
lower risk of death

Seo [116] 2021 64 OS PC ALC < 0.5 × 109/L shorter OS and higher
infectious mortality in patients receiving ATG
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Table 3. Cont.

Authors Years No. of Pts Outcomes Comments

Shiratori [117] 2021 53 GVHD ALC > 0.15 × 109/L before ATG predicts GVHD
requiring systemic steroids

Kumar [118] 2001 87 OS, relapse ALC < 0.15 × 109/L at +30 lower OS and
higher relapse rates.

Powles [119] 1998 201 Relapse ALC > 0.2 × 109/L associated with
lower relapse rates

Michelis [120] 2014 191 OS, relapse ALC > 0.5 × 109/L +28 is associated with
lower relapse

Afzal [121] 2009 71 EFS relapse ALC does not correlate to GVL and was not
predictive of relapse in AML children

Jiang [123] 1997 15 GVHD No correlation between CD4c, CD8c, or NK cells
and the development of GVHD

Huttunen [124] 2015 83 GVHD, EFS
CD4/CD8 higher in patients with GVHD,

NK > 0.12 × 109/L at +32 had better
TRM and EFS

Minculescu [125] 2016 298 OS, relapse NK > 0.15 × 109/L on +30 had better OS less
TRM and infections. No link to relapse.

Abbreviations: OS, overall survival; EFS, event-free survival; DFS, disease-free survival; NRM, non-relapse
mortality; TRM, transplant-related mortality; GVHD, graft versus host disease; ALC, absolute lymphocyte count;
AMC, absolute monocyte count; CIBMTR, chronic graft-versus-host disease risk score; GVL, graft versus leukemia;
NK, natural killer; HSCT, hematopoietic stem cell transplantation.

5. Discussion

Complete blood counts are crucial to diagnosing, determining prognosis, and moni-
toring treatments in hematological malignancy [2,40,42,43]. Thus, distinguishing between
changes related to the tumor burden and those related to inflammation is complex but
crucial. Compared with the general population, myeloid malignancy exhibited a high NLR,
PLR, and AMC [48]. In myeloproliferative neoplasm, high leukocyte levels and NLR were
found in patients with thrombotic complications [56]. NLR was an independent predictor
of venous thrombosis in PV patients [57]. Overall, this results in a lower OS [56]. Fur-
ther, inflammation can promote thrombosis, and platelets and neutrophils can contribute
together [126,127].

Moreover, an inflammatory BM microenvironment with specific changes in the cells of
the monocyte-macrophage lineage and the associated release of different proinflammatory
cytokines is able to influence not only the development and progression of MPN by
inducing fibrosis, thrombosis, tumor angiogenesis, and metastasis, but also the proportion
of pro-tumoral/anti-tumoral immune cells both locally and systemically [16,18]. Thus,
peripheral CBC parameters may reflect the peculiar changes of BM microenvironment and
the status of associated chronic inflammation, which is emerging as a major driver of MPN
evolution, and thus represent significant prognostic parameters.

The variation in immune cell expression defines disease manifestation and treatment
response. Lymphocytes are the most influential of these cells. Lymphocyte deficiency
can allow cancer cells to escape immune system control [128]. In solid tumors, a low
amount of lymphocyte infiltration is associated with relapse or metastasis [129,130]. In
CML, the level of circulating LGL is correlated with better outcomes in patients receiving
dasatinib treatment [38]. MDS and AML patients with lower levels of ALC have been
associated with a poorer prognosis of the disease and shorter OS [71–73,91,131]. In the
transplant setting, ALC prognostic role has been thoroughly investigated and correlated
with the immune response reconstitution, a pivotal role after hematopoietic stem cell
transplantation [106,107,110,132].
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Several studies have concluded that lymphocyte immune reconstitution begins with
NK cells in the first month after HSCT, followed by CD8+ and B, and finally by CD4+
cells, improving the patient’s defense against pathogens. The process can take up to two
years [105,132]. Thus, ALC at + 21 and +30 can offer a good assessment of the ability of the
donor NK cells to control the residual disease [102,104]. Their killing action is well defined,
and a low level in CML transplanted patients is associated with relapse of disease [123].

Furthermore, better lymphocyte reconstitution correlates with better infection control,
leading to higher DFS and OS rates. The ALC level affects the response to immunomod-
ulating treatment in conditioning regimens and correlates with a better prognosis and a
lower TRM [102,104,124]. There is also a delicate balance between immunological recovery
and the risk of complications from GVHD in HSCT [132]. In fact, lymphocytes can con-
tribute to GVHD complications, leading to significant morbidity and mortality rates [117].
Dysregulation of the cell pattern may predict the risk for GVHD, especially when a high
CD4/CD8 ratio is found [124].

The investigation of the prognostic role of different CBC parameters, such as NLR,
ALC, LMR, and PLR, in myeloproliferative neoplasm, represents an intriguing area of
research. The definition of their actual clinical significance may help classify the prognosis
of patients affected by these hematological malignancies more precisely. Even in HSCT,
those parameters could be significant in predicting the risk of complications such as
TRM and GVHD. However, there is currently not enough data to define its specific role.
Furthermore, many variables, such as conditioning regimen, donor type, and CSE sources,
may improperly influence their interpretation.

6. Conclusions

The predictive and protective role of NRL, PLR, or absolute count of lymphocytes and
monocytes in myeloid malignancy has been poorly evaluated. Clearly, this is a simple tool
to obtain and may have significant effects. Additional studies are needed.
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