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Abstract: Lower urinary tract dysfunction (LUTD) is nearly ubiquitous in men of advancing age and
exerts substantial physical, mental, social, and financial costs to society. While a large body of research
is focused on the molecular, genetic, and epigenetic underpinnings of the disease, little research has
been dedicated to the influence of environmental chemicals on disease initiation, progression, or
severity. Despite a few recent studies indicating a potential developmental origin of male LUTD
linked to chemical exposures in the womb, it remains a grossly understudied endpoint in toxicology
research. Therefore, we direct this review to toxicologists who are considering male LUTD as a new
aspect of chemical toxicity studies. We focus on the LUTD disease process in men, as well as in the
male mouse as a leading research model. To introduce the disease process, we describe the physiology
of the male lower urinary tract and the cellular composition of lower urinary tract tissues. We discuss
known and suspected mechanisms of male LUTD and examples of environmental chemicals acting
through these mechanisms to contribute to LUTD. We also describe mouse models of LUTD and
endpoints to diagnose, characterize, and quantify LUTD in men and mice.

Keywords: lower urinary tract dysfunction; lower urinary tract symptoms; BPH; prostate

1. Introduction

LUTD is a deviation from normal urinary voiding. While LUTD occurs in males and
females, disease mechanisms differ between sexes. The prostate plays a considerable role in
male LUTD, the focus of this review. For such a pervasive disease, male LUTD has suffered
from a surprising lack of research attention. Part of the problem is the disease’s complexity,
driven by a constellation of underlying factors across multiple organs that are incompletely
understood. Another problem is that the historical research record for LUTD is muddled
by vast and inconsistent nomenclature used to describe the disease, decentralizing the
resource of primary peer-reviewed literature. Several vocabulary terms are used to describe
histological, anatomical, physiological, and clinical pathologies in the lower urinary tract.
The following terms are sometimes conflated or interchanged with LUTD, and often used
inappropriately: benign prostatic hyperplasia (BPH), benign prostatic enlargement (BPE),
bladder outlet obstruction (BOO), partial bladder outlet obstruction (pBOO), lower urinary
tract symptoms (LUTS), and others. These terms are defined in Table 1.

Male LUTD can be confirmed by specialized urodynamic studies at the urology clinic
(diagnostic and experimental approaches used to identify LUTD mechanisms in mice
and humans are described in Table 2). However, male LUTD is most often identified in
the primary care clinic based on patient reported symptoms. LUTS can include but are
not limited to weak stream, incomplete bladder emptying and more frequent voiding,
especially at night. Male LUTD frequently begins in the fifth decade of life or later and
is a progressive disease that can result in a loss of bladder function, bladder and kidney
stones, acute urinary retention, and renal injury/failure [1–7]. LUTD disrupts sleep and
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has been linked to depression, decreased workplace productivity, and a reduced quality of
life [8–12]. If not successfully managed, LUTD can be fatal.

Table 1. Definitions of terms used to describe anatomical and physiological disorders of the male
lower urinary tract.

Acronym Term Definition

BPE Benign Prostatic
Enlargement

Non-malignant enlargement of the prostate,
defined by imaging or digital rectal exam, and

usually caused by BPH.

BPH Benign Prostatic
Hyperplasia

Histologically defined benign growth within the
prostate. In humans, the growth pattern is

nodular and can be primarily epithelial, stromal
or mixed patterns of hyperplasia. BPH is often

responsible for BPE.

BPO Benign Prostatic
Obstruction BOO secondary to BPE.

BOO Bladder Outlet
Obstruction

Blockage of urine passage from an obstruction at
the base of the bladder or bladder neck.

Clinical Prostatitis

A spectrum of conditions characterized by
differing degrees of inflammation, bacterial and
abacterial, of the prostate, genitourinary tract or

pelvis and may not include the prostate.

DO Detrusor Overactivity

A urodynamic observation characterized by
involuntary detrusor contractions during the

filling phase that may be spontaneous
or provoked.

DSD Detrsor Spincter
Dyssynergia

A disorder where the detrusor muscle contracts
while the urethral and/or periurethral sphincter
is involuntarily contracted and closed, resulting

in bladder outlet obstruction.

Histological Prostatitis Prostate inflammation detected in a
biopsy specimen.

LUTD Lower Urinary Tract
Dysfunction

A detrimental deviation from normal voiding
function. Examples include decreased flow rate,

increased voiding frequency, increased or
decreased sensation associated with filling, an

inability to completely void urine, and an
inability to store urine until voluntary release.

LUTS Lower Urinary Tract
Symptoms

Patient described symptoms, scored using the
international prostate symptom score, the

American Urological Association Symptom
index, or other indices that may (or may not)

include bother.

OAB Overactive Bladder
Urgency to urinate with or without urge

incontinence, and usually associated with
increased voiding frequency.

OVD Obstruction Voiding
Disorder

Lower urinary tract dysfunction deriving from
an obstruction in the lower urinary tract.

pBOO Partial Bladder Outlet
Obstruction

Partial blockage of urine passage from an
obstruction at the base of the bladder or

bladder neck.

Prostatitism Male LUTD deriving from a prostatic mechanism

Prostatomegaly Prostate enlargement from malignant or
non-malignant mechanisms.
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Table 2. Strengths and limitations of methods to evaluate lower urinary tract dysfunction in men and
male mice.

Method in Men Method in Male Mice Method Description Strengths and Limitations

Cell and tissue-based
calcium flux assays

Cell and tissue-based
calcium flux assays

Calcium indicator dyes or
genetically encoded calcium
sensors are used to measure

intracellular calcium concentrations
in response to pharmacological

agents and electrical field stimuli.

This method has been applied
in vitro with human and mouse

tissues and cells, and in vivo with
mice, penetration can be limited for

calcium indicator dyes and
genetically encoded sensors are

generally limited to mouse tissues.

Cystometry Cystometry

A catheter is placed in the bladder
and the bladder is filled with water
or saline while measuring pressures
associated with bladder filling and
emptying. The catheter can also be
used to collect post-void residual

urine in the bladder.

Effective at measuring bladder
pressure, but catheter is placed

retropublicly in mice and
transurethrally in humans which can
contribute to intraspecies variability.
Baseline pattern can vary by strain

in mice.

Cystoscopy Not available
A cystoscope is inserted into the

urethra to visualize the lower
urinary tract.

Effective in identifying prostatic
enlargement, urethral and bladder
inflammation, and some urological

cancers, but this method is not
available for mice.

Histology and
immunohistoche-

mistry

Histology and
immunohistochemistry

Tissues sections are evaluated for
BPH, inflammation and collagen

accumulation (definitive diagnosis
of BPH, histological prostatitis,

fibrosis) and can be used to assess
LUTD mechanisms.

Effective for assessing anatomical and
cellular changes in lower urinary

tract tissues and definitive diagnosis
for some urological diseases but is

invasive and therefore control tissues
are difficult to obtain for healthy men

for experimental comparisons;
definitive identification of cell types

requires complex multiplex protocols.

Isometric contractility Isometric Contractility

Bladder, prostate, or urethral tissue
is mounted in saline bath,

pharmacological agents or electrical
field stimuli are applied and force

displacement is measured.

Quantitative and can reveal specific
receptor mediated mechanisms of

muscle function but is invasive and
destructive to tissue (cannot be easily

multiplexed with other methods.

Magnetic resonance
imaging

Magnetic resonance
imaging

Quantifies bladder wall thickness,
detrusor and bladder volume,

bladder neck angle, urethral length
and diameter and prostate volume.

Can identify mechanisms of LUTD
(bladder decompensation, BPE), but

time consuming and expensive.

Symptom score Not applicable

Standardized surveys such as the
American Urological Association
Symptom Index, the International
Prostate Symptom Score, LURN,

the National Institutes of
Health-chronic prostatitis symptom

index (NIH-CPSI) and others are
used to quantify urinary symptoms

and quality of life

Rapid, inexpensive and can be given
repeatedly to monitor disease

progression or responsiveness to
therapy; limited to humans and not

applicable for mice.

Ultrasound Ultrasound

Quantifies bladder volume and wall
thickness, urethral lumen diameter
and in mice, velocity of urine as it

passes through the urethra.

Fast but high-resolution imaging (for
mice) requires expensive equipment.
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Table 2. Cont.

Method in Men Method in Male Mice Method Description Strengths and Limitations

Uroflowmetry Uroflowmetry Performed by measuring voided
urine flow and volume.

Non-invasive, but requires
specialized equipment, and operator

experience and cannot distinguish
between anatomical (bladder,

prostate, or urethra) mechanisms
of LUTD.

Voiding diary Void spot assay

Men use a journal to record urinary
void frequency, timing, and use a

capture container to record volume;
for mice, a filter paper is placed at

the bottom of the cage and later
illuminated to quantify void spot

number, size, and pattern.

Inexpensive, noninvasive, but can
vary by day and individual and
cannot distinguish mechanism
(bladder, urethra, prostate) of

voiding dysfunction.

LUTD is extremely common. A 2008 study estimated that 1.9 billion people, rep-
resenting 45% of the population, are affected by LUTD [9]. The economic burden of
LUTD is staggering. The disease affects more than half of men over 50 years of age in the
Western world, resulting in $4 billion for the pharmacological treatment and $2 billion
for the surgical treatment of LUTD and associated prostatic problems [13–15]. The most
common therapies for male LUTD are directed to block alpha adrenoreceptor function
(alpha blockers) and dihydrotestosterone synthesis (steroid 5 alpha reductase inhibitors),
factors which contribute to prostatic smooth muscle contraction and prostatic enlargement,
respectively. Unfortunately, these therapies are incompletely effective. Their magnitude
of effect is marginal, not all patients respond, and existing therapies are only moderately
protective against disease progression [16–18]. It is becoming clear that male LUTD derives
from many different mechanisms, not all of which are addressed by current therapies.
Factors responsible for severe drug-refractory disease are not understood. Recent studies
reveal potential roles for environmental chemical exposures, during the fetal period when
the lower urinary tract is developing [19–21] and during other stages, in driving LUTD
susceptibility and progression, opening an entirely new line of toxicology research towards
understanding environmental factors that contribute to LUTD processes.

This review is intended as a resource for toxicologists and other discipline specialists
who are considering entry into the urologic disease research space and wishing to examine
LUTD as a toxicology research endpoint. We describe the anatomy, cellular composition,
and physiology of male lower urinary tract organs including the bladder, urethra, and
prostate. We describe known and emerging disease mechanisms. We also highlight the lim-
ited examples of how environmental chemicals influence male LUTD and list opportunities
for future research.

2. Overview of Male Lower Urinary Tract Anatomy and Physiology

Several benign diseases of the lower urinary tract are accompanied by a change in dis-
tribution, type, or state of cells that comprise lower urinary tract tissues [22–24]. Therefore,
we describe the cellular anatomy of the male lower urinary tract to give toxicologists an
appreciation of the normal cellular organization and changes which occur in response to
chemical insults and disease The male lower urinary tract consists of the bladder, prostate,
and urethra (Figure 1). Urine flows from the kidney to the bladder via the ureter and passes
through the prostatic urethra and prostate before continuing through the penile urethra
and exiting the body as voided urine (Figure 1).
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Bladder epithelial cell differentiation begins early in fetal development (weeks 7–8 in hu-
mans), and the trajectory of urothelial cell differentiation during development and regen-
eration is susceptible to epigenetic modification [28] revealing a potential mechanism of 
toxicity for epigenetic modifying chemicals. The mature urothelium must achieve three 

Figure 1. General anatomy of the male urinary tract and effects of chemical insults on the male
lower urinary tract. (A) A general depiction of the male lower urinary tract. (B) Known effects of
environmental chemicals on the lower urinary tract of either the man or male mouse.

2.1. The Bladder

The bladder’s primary functions are to store and expel urine. The bladder wall consists
of three tissue layers: a specialized epithelium known as the urothelium, the lamina propria,
and the bladder smooth muscle (detrusor) [25,26].

The mature urothelium is comprised of basal, intermediate, and superficial cells [27].
Bladder epithelial cell differentiation begins early in fetal development (weeks 7–8 in
humans), and the trajectory of urothelial cell differentiation during development and
regeneration is susceptible to epigenetic modification [28] revealing a potential mechanism
of toxicity for epigenetic modifying chemicals. The mature urothelium must achieve
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three unique functions. The first is to maintain distensibility to accommodate bladder
filling and emptying. Bladder volume increases significantly during the storage cycle, a
process which would normally challenge the integrity of an epithelial lining [29]. Bladder
distensibility is achieved by urothelial cell junction rearrangements and cell sliding during
bladder filling [29].

The second role of the urothelium is to protect sub-urothelial tissue from toxins,
microorganisms, and urine solutes [27,30]. Barrier function is facilitated by secreted uro-
plakins [31]. Uroplakins are transmembrane proteins which assemble into a crystalline
structure and are interrupted by hinge regions to allow bladder distension [32]. Uroplakins
assemble to form uroplaques, rigid bio-membrane structures which cover 90% of blad-
der lumen [32]. Uroplaques are integral to the integrity, flexibility, and solubility of the
urothelium [33]. The control of urothelial cell division is integral to maintaining functional
uroplaques and restoring them after bladder damage. Although the urothelial cell turnover
is normally slow with a labeling index of 1% in mice, the urothelium is reconstituted quickly
after injury through the progenitor activities of basal and intermediate cells [32–36]. The
epithelium of the urothelium can be completely repaired in 4 weeks in guinea pigs and
6 weeks in men [36]. Some mechanisms by which the bladder restores barrier function are
surprising. For example, we found that under certain circumstances when widespread
urothelial cell death depletes the bladder of its own progenitors, it can recruit non-resident,
non-bladder (Wolffian duct) epithelial progenitors, drive their differentiation into uro-
plakin secreting superficial cells and restore barrier function [37]. Barrier function is crucial
because sub-epithelial bladder cells are severely compromised by urine exposure. The ex-
perimental use of cyclophosphamide, an antineoplastic used therapeutically for Hodgkin’s
lymphoma, multiple myeloma, and other cancers, has widened the understanding of barrier
function and consequences of barrier function loss. Cyclophosphamide is bio-transformed
into acrolein, which accumulates in the urine and drives urothelial cell death, resulting in
hemorrhagic cystitis and changes in physiology [38–40]. Environmental chemicals with
urothelial cell toxicity are expected to drive bladder inflammation and dysfunction like
that of cyclophosphamide.

The third role of the urothelium is that of a sensor. In combination with nerve terminals
within the bladder, the urothelium detects and responds to mechanical and chemical stimuli
to alter detrusor contractility and moderate bladder afferent nerve activity [41,42]. Factors
released by urothelial cells include acetylcholine, adenosine triphosphate (ATP), nerve
growth factor, nitric oxide (NO), prostaglandins, and others [41,43].

The lamina propria contains a fibroelastic connective tissue with intervening afferent
and efferent nerve fibers, a vast vascular network and dispersed fibroblasts, a loose smooth
muscle layer (the muscularis mucosa), and myofibroblasts [26,44]. The elastic fibers within
the lamina propria allow the bladder to recover its original shape after voiding [45].

The detrusor is the major smooth muscle component of the bladder [46]. The detrusor
is organized as a circular muscle inner layer sandwiched between longitudinal muscle
outer layers [46]. Muscle bundles are surrounded by collagen [46–48]. Detrusor contraction
is predominantly controlled by cholinergic neurons [49,50], but can also be induced by
purinergic neurons and relatively rare sympathetic neurons [49,50].

The normal voiding cycle is divided into filling and voiding phases [51]. Urine expands
the bladder during the filling phase, while bladder pressure remains lower than urethral
pressure [50,51]. There is still uncertainty about how the bladder relays the perception of
fullness to the brain. One possibility is that mechanoreceptors and mechanosensitive ion
channels within the bladder transmit information about fullness to afferent neurons [52–56].
There is also evidence that urothelial cells, stretched during bladder filling, release ATP to
activate purinergic receptors on bladder afferents and relay bladder fullness to the brain [57–59].
Another possibility is that the perception of fullness is not driven by a slow increase in
bladder pressure (intravesicular pressure), but rather by an increasing rate of spontaneous
transient contractions, also called micromotions, which exist throughout the filling phase.
Micromotions drive the major portion of afferent outflow to the central nervous system
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during bladder filling, acting in part through a mechanism involving calcium-activated
potassium (SK type) channels [60].

In 1925, F.J.F. Barrington identified a brain stem region which controls micturition, in-
cluding sensation of bladder fullness and the contractions leading to urination [61]. Studies
using retrograde and anterograde neuronal labeling pinpointed the location of this micturi-
tion center in the pontine tegmentum [62–67]. This site of micturition control is referred
to as Barrington’s nucleus, the pontine micturition center, and the M-region [62]. Afferent
and efferent urinary voiding pathways are integrated in Barrington’s nucleus. During the
storage phase, glutamatergic neurons in the periaqueductal gray and hypothalamus relay
information about bladder fullness and bladder volume threshold for voiding to Barring-
ton’s nucleus [68,69]. During the voiding phase, corticotropin releasing hormone-positive
and estrogen receptor 1-positive neurons within Barrington’s nucleus activate efferent
pathways to drive detrusor contraction [62,70,71]. Additional neurons in Barrington’s
nucleus send inhibitory signals to the external urethral sphincter, driving its relaxation
and allowing urine to flow unimpeded from the bladder into the urethra [71–73]. Though
there is widespread evidence that environmental contaminants can disrupt connectivity,
complexity, arborization, and signaling of neurons within the peripheral and central ner-
vous system, whether environmental chemicals impact bladder ascending and descending
neural pathways is rarely examined [74–80].

There is limited evidence that environmental chemical exposures can disrupt bladder
neural circuitry as it is established during the fetal and neonatal periods, raising concerns
about a developmental basis of bladder health and disease. A recent study tested the
impact of exposure to a polychlorinated biphenyl (PCB) mixture on bladder structure and
function [19]. The PCB mixture used in this study mimics the most encountered congeners
in women who are at risk for having a child with a neurodevelopmental disorder [81,
82]. PCBs were delivered orally to nulliparous female mice (75% C57BL/6J/25% SVJ129)
starting two weeks before mating, through pregnancy and lactation, and continuing in
offspring before their bladders were analyzed at postnatal days 28–31. The PCB mixture
increased densities of sub-urothelial beta-3 tubulin (general neural fiber marker) fibers
and calcitonin gene-related peptide positive (peptidergic fiber marker) fibers in male mice
but not female mice, and these changes were accompanied by an increase in male bladder
volume [19], suggesting they were sufficient to drive a change in bladder function.

2.2. The Urethra

The human male urethra is divided into two parts, consisting of five segments: the an-
terior urethra (fossa, penile, and bulbar segments) and the posterior urethra (membranous
and prostatic segments) [83]. The rodent male urethra is divided into two parts—penile
and pelvic [84]. The human and rodent urethra are populated by epithelial cells, smooth
and striated muscle cells, blood vessels, and sensory and motor neurons [85]. While the
cellular components of the anterior/penile urethra have not been extensively characterized,
single cell ribonucleic acid (RNA) sequencing approaches have been used to determine the
cellular components of the prostatic urethra [24,86,87]. Urethral epithelium consists of club
cells, hillock cells, basal epithelial cells, and neuroendocrine cells [86]. Urethral club and
hillock cells were recently identified, but their functional characterization is incomplete
and represents a future research opportunity. Lung club cells, which are transcriptionally
like those in the urethra, act as progenitors and mediate anti-inflammatory and antioxidant
processes [88–90]. Lung hillock cells, which are transcriptionally like those in the urethra,
serve as progenitors, and participate in barrier function and immunomodulation [91,92].

2.3. The Urethral Sphincter

The urethral sphincter serves as a valve to regulate urine flow between the bladder and
urethra [93]. During the bladder storage phase, urethral pressure exceeds bladder pressure
to maintain continence [50]. During the voiding phase, the urethral sphincter falls open,
urethral pressure decreases while bladder pressure increases, the urethra distends and
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urine flows through the prostatic urethra and penile urethra to become voided urine [50].
The urethral sphincter is divided into two parts: the external sphincter and the internal
urethral sphincter [93,94]. The external sphincter consists of striated muscle circumscribing
the urethra and is under voluntary control [93,95]. The internal urethral sphincter is
indistinct from the rest of the lower urinary tract smooth muscle (bladder smooth muscle is
continuous with urethral and prostatic smooth muscle), but is physiologically defined by
its autonomic regulation, connected via a reflex arc to the bladder [95,96]. Urethral smooth
muscle is organized as a thin longitudinal superficial layer, a dense circular layer, and a
thin longitudinal deep layer [94].

2.4. The Prostate

The prostate synthesizes a portion of the ejaculate [97]. Prostatic smooth muscle
contracts during ejaculation to propel prostatic fluid into the urethra [98]. The prostatic
urethra also distends to accommodate urine during voiding. Benign prostatic disease
changes the prostate’s histology and cellular composition and can prevent prostatic urethral
distention during voiding, causing BOO, a common etiology for LUTD (defined in Table 1).

The human prostate is a spherical gland encapsulated by a fibromuscular sheath
known as the prostatic capsule [24,96,99]. The base of the prostate is adjacent to the bladder
and the prostatic urethra courses through its center [100]. The prostatic ductal network
is like that of a branched tree: the main ducts drain directly into the urethra and divide
into primary, secondary, and tertiary branches as they extend towards acini concentrated
in the gland’s periphery [101]. The human prostate is organized into zones, differing
in cellular composition and responsiveness to disease, and includes the transition zone
(most susceptible to histological BPH, defined in Table 1) [24,102], the central zone and
the peripheral zone (most susceptible to prostate cancer) [100,102]. The rodent prostate,
often used as a disease model for humans, is anatomically distinct from the human prostate
in that it is not spherical, but instead divided into four bilaterally symmetrical lobes:
the anterior, dorsal, lateral, and ventral prostate [102]. While spontaneous cancer is not
observed in the mouse prostate, a variety of genetically engineered mouse models are
susceptible to prostate cancer and disease incidence differs by lobe [103]. The mouse
prostate gland develops BPH spontaneously with age, but lesions are diffuse, like those that
contribute to clinical disease in the dog, and unlike nodular BPH in the humans [104,105].
The rodent prostate ductal network is organized as a branched tree, like that of the human
prostate, but ducts are surrounded by a looser stroma than in human prostate and the
rodent gland is encapsulated in a thin adventitia instead of the thick capsule that surrounds
the human prostate.

Human prostatic epithelium is made up of luminal, basal cells; neuroendocrine,
club and hillock cells are also present, but are rare in prostate compared to urethral
epithelium [22,86,106]. Human prostate stroma consists of three smooth muscle cell
types (peri-prostatic, vascular smooth muscle and pericyte), two fibroblast cell types
(peri-epithelial and interstitial), leukocytes, endothelial cells, and sensory and autonomic
nerve fibers [86]. Mouse prostate stroma contains three fibroblast cell subtypes distributed
in distinct proximal–distal and lobe-specific patterns and smooth muscle [24,106]. The
transcriptomes of mouse prostatic and urethral fibroblasts are like human interstitial
fibroblasts [24]. However, mouse urethral and ductal fibroblasts evoke Wingless related-
integration site (Wnt) and Transforming growth factor beta (TGFβ) signaling pathways
that are less abundant in human prostate fibroblasts [24]. Human peri-epithelial fibroblasts
instead express Wnt inhibitors that could buffer Wnt ligands produced by other stromal
or epithelial cells [24]. Human prostatic fibroblasts are organized in layers that center
around epithelial structures, while mouse prostatic fibroblasts are not layered and differ
by lobe [24]. Human and mouse prostate fibroblasts are most abundant in the proximal
regions of prostatic ducts and least abundant in acini in the distal regions [24,107].

The recent observation, derived from single cell RNA-sequencing data, that human
and mouse prostate cellular landscapes are similar, is also supported by previous microarray



Toxics 2022, 10, 89 9 of 24

data [108]. Similarly, mouse prostate organogenesis is like that of the human prostate [109].
These data support the use of mice as a relevant model species for studying cellular
and molecular mechanisms of benign prostatic disease. The key to understanding the
differences in prostate architecture and benign prostate hyperplasia manifestation between
these species may lie in the function of the specialized prostate epithelial and stromal cells
of these species [109].

Prostate disease can be detected by changes in the spatial distribution and frequency
of prostate cells [24]. Prostate cell immunophenotyping has proven difficult, as disease
processes frequently lead to changes in cell state and cell type that cannot be easily dis-
tinguished by simple immunohistochemical staining protocols. New and validated RNA-
Sequencing approaches, as well as cell sorting protocols deriving from them, have re-
cently been described [86] and will be essential for elucidating prostate cell functions in
future studies.

3. LUTD Mechanisms
3.1. Benign Prostatic Diseases

A variety of benign prostatic conditions contribute to male LUTD, many of which are
believed to cause LUTD by driving BOO (defined in Table 1). The impacts of BOO extend
beyond the prostate and into the bladder. A prolonged intravesicular pressure increase
and bladder contraction against resistance reprograms the bladder in a process known as
bladder compensation: the detrusor becomes thicker [110], it undergoes functional changes
in ion channel physiology [111] and efferent signaling is reprogrammed [112]. If BOO is
not effectively addressed, the bladder decompensates, much like a heart undergoing hy-
pertrophic cardiomyopathy: the detrusor thins, is replaced by fibrotic tissue, and becomes
incapable of mounting an effective contraction to fully evacuate urine from the bladder.
There is evidence in rabbits that bladder decompensation is at least partially reversed by
relief of bladder outlet obstruction [113]. Recovery from BOO likely depends on the severity
of bladder decompensation at the time of surgery [113–115]. Thus, BOO must be effectively
addressed before it permanently impairs bladder function.

BPH is a leading cause of LUTD in men of advancing age. Human BPH is defined by
prostate histology, specifically the presence of stromal, epithelial, or mixed nodules in the
central and transition zones (Table 1) [22,116–120]. Small hyperplastic nodules can form
as early as the 3rd decade of life and increase in frequency and volume with advancing
age [121]. BPH mechanisms are not fully understood, but it has been hypothesized that BPH
arises from a reawakening of embryonic signaling pathways [121] or disrupted homeostatic
regulation of cell growth and death programs [116–120].

Aging-related changes in circulating testosterone and 17-beta-estradiol concentrations
are another mechanism linked to male LUTD. Serum and prostate tissue concentrations of
testosterone and 17-beta-estradiol change with age in men [122,123] and the changes are
associated temporally and mechanistically with male LUTD [124–126]. Pharmacological
alterations in testosterone and 17-beta-estradiol are a proven cause of LUTD in non-human
male primates, canines, rats, and mice [124,127–133]. In mice, slow-release implants of
testosterone and estradiol drive an increase in voiding frequency, a reduction in voided
volume, an increase in collagen deposition, and a change in velocity of urine flow through
the prostatic urethra [124]. The mechanism by which changes in circulating testosterone
and 17-beta-estradiol drive voiding dysfunction are not clear but may include direct actions
on the bladder [134,135], changes in prostatic desmin and smooth muscle actin content or
function [136–139].

The fact that LUTD arises from natural changes in circulating sex hormone concen-
tration raises questions about impacts of endocrine disrupting chemicals on male voiding
function, and this area of toxicology research is in its infancy. For example, subcutaneous
implants of the estrogenic chemical bisphenol A (BPA, 25 mg), combined with testosterone
(2.5 mg) and given to C57BL/6N adult (6–8 weeks old) male mice, increase bladder mass
and volume, increase voiding frequency, and reduce the volume of voided urine, suggestive
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of BOO [140]. BPA may act more broadly in the lower urinary tract, affecting the bladder
as well as the prostate. Delivery of BPA (0.05–0.5 mg/kg/day) to Pietrain × Duroc mixed-
breed juvenile female pigs increases the number and thickness of vasoactive intestinal
polypeptide (VIP) expressing neurons in the bladder wall [141], raising questions about the
influence of BPA, and the larger class of environmental estrogens to which it belongs, on
detrusor recovery after contraction.

Prostate inflammation, also called prostatitis (defined in Table 1), is extremely com-
mon and has been closely associated with LUTD. Approximately 50% of prostate biopsy,
surgical or autopsy specimens harbor evidence of histological inflammation, most typi-
cally characterized as chronic (lymphocytic) inflammation [142]. The incidence of prostate
histological inflammation is even higher (75%) in men with LUTD [143]. The presence
of prostate inflammation in a biopsy specimen correlates with risk of symptomatic pro-
gression, urinary retention, and need for surgery [142,144–146]. A significant proportion
of men with histologically defined prostate inflammation will develop urinary dysfunc-
tion [147]. Two placebo-controlled drug trials, Reduction by Dutasteride of Prostate Cancer
Events (REDUCE) and Medical Therapy of Prostatic Symptoms (MTOPS), correlate histo-
logical prostate inflammation in human male prostate with increased prostate volume [144].
MTOPS study outcomes reveal that men with histological inflammation are more likely
to progress to advanced LUTD, including acute urinary retention [144]. A separate study
found that men with prostatitis were 2.4 times more likely to develop BPH and the presence
of histological prostate inflammation in baseline biopsies was associated with 70% in-
creased odds of requiring later treatment for LUTD [146]. Despite clear evidence that some
environmental chemicals can drive inflammation and modulate autoimmunity, there is little
information about environmental impacts on prostate inflammation and this represents a
future opportunity that can be examined using immunohistochemical and physiological
methods in Table 2.

There is a distinction between histological and clinical prostatitis: histological pro-
statitis is identified in histological tissue sections, while clinical prostatitis is diagnosed by
physical examination, urinalysis, imaging, cystoscopy, or patient questionnaire (for exam-
ple, The National Institute of Health Chronic Prostatitis Symptom Index (NIH-CPSI)) [148].
Clinical prostatitis accounts for a significant proportion of outpatient visits [149]. Clinical
prostatitis includes acute and chronic bacterial prostatitis, nonbacterial prostatitis, and
asymptomatic prostatitis [148].

Prostate fibrosis is a recently identified mechanism of male LUTD. Fibrosis is an ab-
normal, detrimental version of the wound-healing process and is characterized by collagen
deposition and tissue stiffening [150]. Macoska et al. [151] were the first to report fibrosis
in the human prostate and link collagen accumulation to tissue stiffness and LUTS severity.
Subsequent reports linked prostate fibrosis to histological inflammation, LUTS, and resis-
tance to a combination therapy of alpha blockers and 5 alpha reductase inhibitors [150,152].
Prostatic fibrosis is an evolutionarily conserved LUTD process, supported by the fact that
collagens also accumulate within the prostates of aging intact dogs and mice [104,153].
Though triggers for prostate fibrosis are not fully known, and whether environmental
contaminants drive prostate fibrosis has not been studied, prostatic fibrosis results from
prostate inflammation secondary to E. coli infection or obesity in mice [154,155].

Prostatic smooth muscle dysfunction is the target of the most prescribed drug class for
male LUTD, the alpha blockers, and can be studied experimentally using calcium flux assays
and isometric contractility assays described in Table 2. A study by Baumgarten et al. [156]
was the first to identify noradrenergic axons in the human prostate, a surprising discovery
considering that autonomic outflow to the bladder is mediated instead by cholinergic axons.
Receptor binding studies and isometric contractility assays showed that noradrenergic
receptors in prostatic smooth muscle mediate prostate tissue contractility [157,158]. The
outcomes of these studies ushered the hypothesis that prostatic smooth muscle hyperac-
tivity impairs urine flow through the prostatic urethra to cause BOO in some men. While
this hypothesis was the basis for developing alpha blockers for male LUTD, little research
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has been directed at identifying mechanisms of prostatic smooth muscle dysfunction, most
notably dysfunction mediated by environmental chemicals. This area remains ripe for sci-
entific exploration. Prostatic smooth muscle contraction is controlled by autonomic neurons
and aging is one factor that may contribute to changes in prostatic innervation [124,159].
There is emerging evidence that environmental chemicals can also change prostatic in-
nervation to cause prostatic smooth muscle dysfunction, specifically by acting during the
fetal and neonatal periods when prostate autonomic innervation is established. For exam-
ple, we recently showed in C57BL/6J mice that gestational exposure to the widespread
environmental contaminant TCDD (a single 1 µg/kg oral maternal dose on the 13th day
of gestation) increases noradrenergic fiber density (nerve terminals) in the prostate of
male mouse fetuses without changing the density of cholinergic or peptidergic fibers [160].
TCDD-induced prostatic noradrenergic hyperinnervation persists into adulthood and is
coupled to hyperactivity of prostatic smooth muscle and abnormal urinary function in
mice, including increased urinary frequency [160]. These findings are important because
they support the concept that prostate neuroanatomical development is malleable, at least
in mice, and that intrauterine chemical exposures can permanently reprogram prostate
neuromuscular function to cause male LUTD in adulthood. In contrast, exposure to TCDD
and other aryl hydrocarbon receptor agonists during adulthood appear to protect against
BPH in men [161,162]. Differing consequences of aryl hydrocarbon receptor activation in
the fetal period, versus adulthood, highlight the need to control for age in studies that
examine potential impacts of environmental chemicals on urinary function and LUTD.

3.2. Bladder Mechanisms of Male LUTD

A variety of bladder conditions can lead to urinary dysfunction. This section describes
the most common causes of male LUTD.

Overactive bladder is characterized by involuntary detrusor contraction. Consistent
changes in animal models of overactive bladder include patchy denervation of the bladder,
enlarged sensory neurons, hypertrophic dorsal root ganglia, and an enhanced spinal mic-
turition reflex [163]. Overactive bladder is often characterized by sensory dysfunction [163].
There is a role for muscarinic M2 receptors in the severity of urinary urgency [163]. Some
individuals with overactive bladder have a thicker bladder wall, suggesting overactive
bladder may derive from BOO in some men [163,164].

The etiology of overactive bladder is multifactorial, deriving from three major mech-
anisms: myogenic factors, urotheliogenic factors, and neurogenic factors [41]. Myogenic
factors contributing to overactive bladder include spontaneous detrusor contractions in
response to bladder distension, ischemia, and changes in smooth muscle properties over
time [41]. Neurogenic factors may include abnormal sensory processes, abnormal afferent
excitability, or in some cases, damage, or abnormalities in central processing [41]. Dimethy-
laminopropionitrile, used in the manufacture of polyurethane, is an inhalation hazard
that acts through a neurogenic mechanism to cause overactive bladder [165]. Methyl
mercury also causes overactive bladder through what appears to be a neurogenic mecha-
nism [166,167]. Damage to the urothelium can also cause overactive bladder, as rupture of
urothelial cells releases factors that can drive detrusor contractility and micturition [41].
Biphenyl, used as a resin, a heat transfer medium, and an anti-fungal, is an example of an
environmental chemical that causes urothelial cell damage and death [168].

Underactive bladder, also known as detrusor underactivity, is defined by detrusor
contraction of inadequate strength, and results in prolonged or incomplete bladder empty-
ing [169]. Patients with underactive bladder have a diminished sense of bladder fullness
and are unable to mount forceful bladder contractions [170]. Underactive bladder can occur
after episodic overactive bladder, reminiscent of bladder decompensation after BOO. In
fact, there is a documented relationship between LUTD, underactive bladder, and fibrosis
of the bladder [171]. The interstitial cells of Cajal, a specialized cell population with smooth
muscle pacemaking activity, have been implicated in underactive bladder. The frequency of
interstitial cells of Cajal is reduced in mice with underactive bladder and is associated with



Toxics 2022, 10, 89 12 of 24

reduced frequency and amplitude of detrusor contraction [172]. Rats driven by bladder
outlet obstruction to develop underactive bladder are deficient in stem cell factor, a ligand
for the receptor C-kit which controls proliferation and function of interstitial cells of Cajal,
and an increase in stem cell factor restores detrusor contractility [172].

3.3. Urethral Mechanisms of Male LUTD

Detrusor sphincter dyssynergia is characterized by simultaneous contraction of the
detrusor and urinary sphincter, thereby impairing urine outflow from the bladder [173].
Detrusor sphincter dyssynergia manifests in three distinct phenotypes: (Type 1) increased
sphincter activity during detrusor contraction which then ceases, resulting in delayed
urination, (Type 2) intermittent clonic contractions during voiding, resulting in intermittent
stream, (Type 3) continuous sphincter activity during detrusor contraction, resulting in
impaired voiding [174]. Detrusor sphincter dyssynergia is common in men with spinal
cord injuries or multiple sclerosis and has the capability to drive bladder decompensation,
elevate pressure in the ureter and pelvis, and cause hydronephrosis, renal scarring and
terminal kidney failure [173,174].

Neurological disease commonly manifests in bladder dysfunction [175]. Autonomic
nervous system lesions (stroke, tumor, traumatic spinal cord injury, myelopathies due to
cervico-arthrosis spina bifida), disseminated lesions (Parkinson’s disease, brain trauma,
multiple sclerosis, meningo-encephalitis,) and peripheral neuropathies (diabetes mellitius)
have all been identified as mechanisms of bladder dysfunction [175] and act in part by
disrupting coordination between the detrusor, urinary sphincter, and central nervous
system [173,174]. While there are many examples of environmental chemicals causing
neuropathies, the consequences on lower urinary tract function are rarely examined.

3.4. The Relationship between LUTD and Comorbidities

Recent studies connect LUTD to other diseases. For example, people with cardiovas-
cular disease, diabetes and obstructive sleep apnea are at increased risk of developing
LUTD [176–179]. A common thread linking these diseases is a change in hemodynam-
ics connected to ischemic injury [180–182], a factor that independently drives LUTD in
mice [174]. Environmental chemical exposures have been linked to cardiovascular disease
and diabetes [183–186], and this is another mechanism by which they may drive LUTD.

4. Mouse Research Models of Male LUTD

Here we describe animal models used to study various etiologies of LUTD. While it is
important to realize that results from animal models are not always transferable to humans,
it is also crucial to highlight that animal models are used in preclinical trails to test the
safety and efficacy of drugs and are an invaluable tool to use in toxicological studies.

4.1. Benign Prostatic Hyperplasia

A variety of genetically engineered mouse models have been used to drive expression
of growth factors or mitogenic hormones in the prostate. Androgen responsive promoter
sequences, androgen-induced cre recombinase or viral promoters are used to target genetic
modifications to mouse prostate tissue and overexpress fibroblast growth factor 2 or fibrob-
last growth factor 3 to drive epithelial BPH [187–189], overexpress prolactin [190–193] or
interleukin 1 alpha [194] to drive epithelial and stromal BPH and prostate inflammation,
delete serine/threonine kinase 11 to promote stromal BPH in the periurethral region [195],
or genetically modify other sequences. Expression of an activated form of P110 alpha,
the catalytic subunit of PI3K, in mouse prostate epithelium also drives epithelial BPH in
mice but accompanied with a stark fibrotic response in prostatic stroma [196]. Many of
these genetically engineered mouse models were created before contemporary methods
were optimized for mouse urinary physiology phenotyping. The historical goal was to use
genetically engineered mice to identify molecular mediators of BPH and test efficacy of
drugs and dietary substances for relieving BPH in preclinical model species. While geneti-
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cally engineered mouse models are useful for understanding homeostatic mechanisms of
prostate cell proliferation, it is becoming clear that BPH is not always linked to LUTD in
men [197], and it remains important to characterize urinary physiology in these mice as a
more relevant endpoint for male LUTD.

4.2. Mouse Models of Prostate Inflammation

Histological inflammation of the human prostate is extremely common: in one study,
it was detected in nearly 80% of prostate biopsy specimens from 60+ year old men and was
strongly associated with urinary voiding symptoms [198]. Prostate infection by ascending
microbes is one potential mechanism of prostate inflammation and supported by the fre-
quent encounter of bacteria in human prostate tissue specimens [199–201]. One strategy
for driving prostate inflammation in mice involves urethral catheterization and delivery of
uropathogenic E. coli. A variety of isolates have been used (E. coli UTI89, 4017, 1677 and
CP-1), ranging from those collected as clinical urine isolates from women with bladder
infections, to others collected from men with pelvic pain [202,203]. The pattern of inflam-
mation (acute vs. chronic) depends in part on mouse strain used [204] and method of E. coli
delivery (single vs. multiple inoculations, catheter size, instillation volume and bacterial
load). It is essential to control these variables carefully when considering experimental
design, and mice instilled with sterile saline (sham operated mice) are an essential com-
ponent of experimental design because urethral catheterization can itself induce trauma,
urethritis, and changes in urinary voiding physiology [144]. Prostatic E. coli infection is
linked to prostate fibrosis and changes in voiding patterns in mice, but voiding patterns
differ between E. coli strains and methods of infection and can include high volume, low
frequency voiding [144] or low volume, high frequency voiding [107,205,206].

Many men with histological prostatitis present with a pattern of prostatic infiltrate
consistent with prostate autoimmunity [207–209], an observation co-opted for the design of
mouse models. The prostate ovalbumin expressing transgenic-3 mouse expresses ovalbu-
min under the control of the androgen-responsive probasin promoter [210,211]. Autologous
splenocytes are activated in vitro and transplanted to drive T-cell mediated prostate au-
toimmunity and inflammation [207]. While the pattern of inflammation and mechanisms
of cell proliferation have been carefully studied in this mouse, the urinary physiology
phenotype is not well characterized. The experimental autoimmune prostatitis mouse
model involves repeated intradermal injections of rat prostate homogenate into mice to
drive a T-cell based autoimmune reaction that has been used to examine mechanisms of
male LUTD and chronic pelvic pain [212,213].

A non-bacterial mouse model of prostate inflammation was created based on obser-
vations that IL-1 beta abundance increases after intraprostatic injection of noxious agents
or uropathogenic E. coli infection [214–217] and that Prostatic IL-1 beta abundance is el-
evated in humans with histological BPH and correlates with LUTS and chronic pelvic
pain [218–222]. This mouse model utilizes the Tet-On system which induces expression of
a gene in the presence of doxycycline and is tunable, with stronger transgene expression
with doxycycline dose [223]. A double transgene of Hoxb13-rTA transgene and a TetO-IL1
beta responder is used to drive IL-1 beta in prostatic epithelial cells [223,224]. The urinary
metabolomic proteomic signatures of this mouse have been described, but the urinary
physiology phenotype remains to be determined [224,225].

A recent mouse model of prostate inflammation is based off observations that prostate
secretory proteins are leaked into prostate stroma of some men with LUTD and accom-
panied with patchy loss of the adherens junction protein e-cadherin, suggesting a loss of
prostate barrier function [226]. Genetic depletion of e-cadherin in mouse prostate epithe-
lium increases prostate mass and cell proliferation, thickens prostate stroma, and increases
voiding frequency while reducing voided urine volume, and increases spontaneous bladder
contractions [227].
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4.3. Mouse Models of Partial Bladder Outlet Obstruction (pBOO)

Surgical approaches were first used to model pBOO in male mice. One approach
involves a retropubic incision to apply and cinch a suture or metal ring around the bladder
neck or pelvic urethra to drive bladder compensation and overactive bladder, and later
bladder decompensation, detrusor underactivity, fibrosis, and loss of muscle mass [228–231].
The mouse model has been essential for recognizing new druggable pathways for restoring
function to the decompensated bladder [232].

Treatment with exogenous androgens combined with estrogens is a non-surgical
method to drive BOO in mice. Mice are given slow-release implants of androgen (testos-
terone or dihydrotestosterone) in combination with slow-release implants of estrogen
(17beta-estradiol or diethylstilbesterol). The combination of androgen plus estrogen is nec-
essary for prostate gland maintenance, as estrogens delivered to male mice in the absence
of androgens disrupts hypothalamic/pituitary/gonadal signaling and cause prostate gland
atrophy [128]. Genetically engineered mice that overexpress aromatase are also used to
recapitulate the endocrine environment of advancing age [129,233]. Male mice treated with
androgen and estrogen develop progressive LUTD, with evidence of disease processes
(increased bladder weight as evidence of hypertrophy/compensation for BOO) occurring
as early as two weeks after treatment [124]. Sustained exposure to exogenous androgens
and estrogens elicits a variety of changes to the male lower urinary tract of multiple species,
including prostatic hypertrophy and inflammation, urethral narrowing and abnormal
urethral muscle tone, urinary dysfunction with progressive onset, bladder overactivity
and eventual decompensation [124,127–131,133,234–238]. Estrogen receptor activation is
a key driver of urinary dysfunction, as exogenous estradiol given to male mice drives
urinary retention in the absence of exogenous testosterone [239] and estrogen receptor 1
is required for urinary retention and voiding dysfunction from exogenous testosterone
and 17beta-estradiol in mice [237]. An important consideration when exogenous androgen
and estrogen are used to drive male LUTD, especially when incorporating genetic changes
to identify mechanisms, is that hormone responsiveness, disease onset, progression and
severity are influenced by genetic background and mouse strain [234]. The delivery system
of exogenous androgens and estrogens should be considered if using hormones to drive
LUTD for a toxicology study. Compressed pellets of androgens and estrogens can be
crushed when animals are restrained for chemical exposure (injection) [21]. Silastic capsule
preparations of androgens and estrogens are more durable [240].

4.4. Mouse Models of Overactive Bladder (OAB)

OAB can be induced by ischemic injury [24,93,241]. A balloon catheter is passed
through the iliac artery and inflated, then withdrawn to cause endothelial damage [241].
This injury is combined with a cholesterol enriched diet to cause bladder arterial occlusions
and chronic bladder ischemia [206]. This model results in increased voiding frequency
but decreased voided volume, and more frequent non-voiding bladder contractions in
rats [241].

OAB can also be induced by the introduction of noxious stimuli (acetic acid, hy-
drochloric acid, and others) into the bladder [242,243]. Chemical induced OAB decreases
the inter-voiding interval of anesthetized mice, reduces bladder capacity, and sensitizes
afferent nerves [243–246].

4.5. Mouse Models of Detrusor Sphincter Dyssynergia (DSD)

The most common approach to evoke detrusor sphincter dyssynergia is to induce
spinal cord injury under anesthesia [247]. Urine must be manually expressed at least
three times per day until the micturition reflexes recover (10–14 days), then once per
day [247]. Cystometry profiling of injured mice reveals increased activity of the exter-
nal urethral sphincter coupled with increased urethral pressure and voiding pressure,
increased frequency and magnitude of non-voiding contractions, and increased bladder
capacity [247,248].
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5. Conclusions

Lower urinary physiology is extremely complex, shaped by contributions from the
urethra, prostate, bladder, ascending and descending neural pathways, and the brain.
Despite an extremely high prevalence of male LUTD and devastating impacts on society,
LUTD mechanisms and factors that influence LUTD severity are poorly understood. Envi-
ronmental contributions to LUTD remain almost completely unexamined. We provided
this overview of male lower urinary tract anatomy, physiology, and cell biology, described
known disease mechanisms, and highlighted knowledge gaps that require additional re-
search to direct new attention from toxicologists and environmental health specialists to
this widespread disease. We detailed examples of environmental chemicals that perturb
urinary tract function and described mouse models of LUTD with the intention that public
health specialists, epidemiologists and toxicologists will consider LUTD research in toxicity
assessments. Future risk mitigation strategies will likely be critical to reducing the burden
and severity of LUTD in aging adults.
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