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Abstract

Physiological status and pathological changes in an individual can be captured by metabolic state 

that reflects the influence of both genetic variants and environmental factors such as diet, lifestyle 

and gut microbiome. The totality of environmental exposure throughout lifetime – i.e., exposome 

– is difficult to measure with current technologies. However, targeted measurement of exogenous 

chemicals and untargeted profiling of endogenous metabolites have been widely used to discover 

biomarkers of pathophysiologic changes and to understand functional impacts of genetic variants. 

To investigate the coverage of chemical space and interindividual variation related to demographic 

and pathological conditions, we profiled 169 plasma samples using an untargeted metabolomics 

platform. On average, 1,009 metabolites were quantified in each individual (range 906 – 1,038) 

out of 1,244 total chemical compounds detected in our cohort. Of note, age was positively 

correlated with the total number of detected metabolites in both males and females. Using the 

robust Qn estimator, we found metabolite outliers in each sample (mean 22, range from 7 to 86). A 

total of 50 metabolites were outliers in a patient with phenylketonuria including the ones known 

for phenylalanine pathway suggesting multiple metabolic pathways perturbed in this patient. The 

largest number of outliers (N=86) was found in a 5-year-old boy with alpha-1-antitrypsin 

deficiency who were waiting for liver transplantation due to cirrhosis. Xenobiotics including 

drugs, diets and environmental chemicals were significantly correlated with diverse endogenous 

metabolites and the use of antibiotics significantly changed gut microbial products detected in host 

circulation. Several challenges such as annotation of features, reference range and variance for 

each feature per age group and gender, and population scale reference datasets need to be 

addressed; however, untargeted metabolomics could be immediately deployed as a biomarker 

discovery platform and to evaluate the impact of genomic variants and exposures on metabolic 

pathways for some diseases.
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1. Introduction

Genetic discoveries from genome-wide association studies (GWAS) and whole-exome and -

genome sequencing (WES/WGS) discovered risk alleles for common diseases and 

pathogenic genetic variants in 10-52% of patients with rare genetic diseases1. WES gained 

its clinical utility2; however, understanding functional consequences of genetic variant in the 

context of disease phenotype is essential and yet remains as an outstanding challenge since 

generally healthy children also harbor tens of putative disease-associated genetic variants. A 

functional read out – e.g., gene expression profiling of affected tissue – could inform 

impacts of genetic variants3. Nonetheless, accessibility to affected tissue is often limited and 

especially challenging for developmental disorders.

Metabolites are direct read-outs of functional status of biological entities – i.e., cells, tissues, 

and organs – and also serve as a proxy for understanding their sources such as internal 

metabolic processes, gut microbiome, xenobiotics, dietary, and exogenous exposures 4. 

Moreover, metabolites are active regulators of gene expression and protein activity5. A 

limited set of blood chemistry analytes is routinely used in clinical care, which provide 

crucial information regarding pathophysiology. Metabolomics aims to characterize all the 

small molecules in biological system using metabolomics platforms such as nuclear 

magnetic resonance (NMR) spectroscopy and chromatography coupled to mass 

spectrometry (MS)6. NMR reproducibly identifies chemical structure of unknown chemical 

features but is limited by its lower sensitivity and throughput compared to MS-based 

metabolomics. Therefore, untargeted metabolomics using a high-resolution MS is typically 

used for hypothesis-driven research studies and novel biomarker discovery4.

Metabolomic profiling with blood and affected tissue could be more closely associated with 

phenotype compared to other omics profiles7. More importantly, perturbed metabolic 

pathways could suggest mechanistic insights into the pathophysiology of diseases8. Previous 

studies showed the analytical validity of MS-based metabolomics platforms and successfully 

demonstrated a utility in interpreting the impact of genetic variants for generally healthy 

individuals9 or in discovering novel biomarkers for inborn errors of metabolism (IEMs)10. 

These studies approached an index case to find metabolite outliers compared to a 

background distribution constructed from generally healthy individuals for each metabolite. 

Here we investigated the extent of endogenous metabolites and exogenous chemical 

compounds that could be captured by untargeted metabolomics profiling of plasma samples 

from patients with diverse medical conditions to evaluate a potential of untargeted 

metabolomics profiling as a precision medicine platform.
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2. Materials and Methods

2.1. Subjects

Individuals were enrolled in the Precision Link Health Discovery cohort at Boston 

Children’s Hospital (BCH) from January 2016 to November 2017. Enrolled patients and 

their family members were consented in-person with permission to access electronic health 

records (EHRs), if available, for research and to share de-identified data and specimens 

within and outside of the institution11. We collected 169 plasma samples from 79 males and 

90 females with mean ages 19.6 and 20.9 years old, respectively (ranges from 4.4 months to 

59.7 years).

Data from patient databases at BCH were obtained using i2b2, which allows for queries of 

EHRs using International Classification of Diseases, Ninth Revision, Clinical Modification 

or Tenth Revision codes, Systematized Nomenclature of Medicine - Clinical Terms, and the 

dates when the codes were assigned to patients and demographic information. The queries of 

the institutional i2b2 database and analyses were performed and restricted to October to 

December 2018. For 123 patients of 169 enrolled individuals with plasma samples, we 

collected the prescription history of 1,194 drugs corresponding to 594,201 events in the i2b2 

database. The study was approved by the Institutional Review Board of BCH.

2.2. Untargeted metabolomics profiling of plasma samples

Whole blood was collected in ethylenediaminetetraacetic acid (EDTA) treated lavender top 

tubes, from the Precision Link Biobank participants. EDTA tube was centrifuged at 2000 X 

G for 10 minutes at room temperature to obtain plasma. Plasma samples were then aliquoted 

200uL/0.5ml microcentrifuge tubes and stored at −80C. These samples were shipped in a 

dry iced box to Metabolon (Research Triangle Park, NC) for untargeted metabolomics 

profiling. Sample handling, metabolomic profiling, quality control and data pre-processing 

is described in detail in the previous study9. In brief, proteins were precipitated with 

methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000, Glen Mills, 

Clifton, NJ) followed by centrifugation. The resulting extract was divided into four fractions:

• Two for analysis by two separate reverse phase (RP)/ultra-performance liquid 

chromatography (UPLC)-MS/MS methods with positive ion mode electrospray 

ionization (ESI).

• One for analysis by RP/UPLC-MS/MS with negative ion mode ESI.

• One for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI.

To remove the organic solvent, samples were placed briefly on a TurboVap® (Zymark, 

Hopkinton MA). A Waters ACQUITY UPLC (Milford, MA) and a Thermo Scientific Q-

Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray 

ionization (HESI-II) source and Orbitrap mass analyzer (Waltham, MA) operating at 35,000 

mass resolution were utilized to analyze aliquots covering 70 – 1,000 mass-to-charge ratio 

(m/z). Raw data was extracted, peak-identified and quantified using area-under-the-curve 

using Metabolon’s hardware and software. Deliverables from Metabolon included raw area 

counts, rescaled-to-median and imputed values, and sample volume normalized data with the 
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retention time/index (RI), m/z, chemical annotation according to Metabolon’s proprietary 

database with public database identifiers including PubChem12, the Human Metabolome 

Database (HMDB)13 and Kyoto Encyclopedia of Genes and Genomes (KEGG)14 if 

available.

2.3. Statistical analysis

We used a volume normalized and re-scaled – i.e., median equals to 1 for each metabolite – 

data generated by Metabolon software pipeline9. Missing values were imputed with 

minimum observed value for each metabolite. A complete data table including 1,244 

metabolites for 169 individuals was used for further analysis. Overall, concentrations of both 

endogenous metabolites and exogenous chemicals showed log-normal distribution; however, 

some exogenous chemicals were detected only in a small number of samples and the 

distribution was skewed for some metabolites. The median absolute deviation (MAD) is a 

robust scale estimator that is widely used with the sample median; however, it is a 

symmetric estimator of dispersion and has a low efficiency for data with Gaussian 

distribution. To address these limitations of MAD in our analysis, z-scores were calculated 

from log-transformed values using Qn estimator that is considered to be more robust for data 

with asymmetric distribution15. For each metabolite, we calculated Qn estimator using the 

Qn function implemented in the robustbase R library package.

To explore correlation structure of metabolome, a robust estimator of correlation was 

required since some of them (e.g., prescribed drugs) were measured in a small proportion of 

samples which could cause a bias with Pearson or Spearman correlation coefficients. Thus, 

we calculated rQn as described in Eq.(1) where u and v were calculated according to Eq.(2) 

with the sample medians, x and y16.

rQn =
Qn

2(u) − Qn
2(v)

Qn
2(u) + Qn

2(v)
if Qn(x) ≠ 0 and Qn(y) ≠ 0

NA ifQn(x) = 0 or Qn(y) = 0
(1)

u = x − x
2Qn(x) + y − y

2Qn(y)and v = x − x
2Qn(x) − y − y

2Qn(y) (2)

Statistical significance of pairwise correlation was estimated using a t-distribution with n-2 

degrees of freedom, where t is the Fisher-transformed robust correlation coefficients. 

Multiple testing correction was performed by calculating false discovery rate (FDR) from 

distribution of p-values17. All analyses were performed in the R statistical software 

environment18.

3. Results

3.1. Overview of untargeted metabolomics profiling

3.1.1. Chemical coverage—A total of 1,244 endogenous metabolites and exogenous 

chemical compounds – hereafter referred to as features in aggregate – were measured in 169 
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plasma samples. On average, 1,009 features per sample (ranges from 906 to 1,038) were 

measured above detection limits. The majority of features (i.e., 1,073 out of 1,244) were 

successfully quantified in more than 50% of individual samples; however, 105 out of 224 

xenobiotics such as drugs and food metabolites were only detected in less than 20% of 

samples. There was no difference in the number of features detected between males and 

females (Welch’s t-test, p-value 0.29); however, age was significantly correlated with the 

total number of detected features in both males and females (generalized linear model, p-

value 6.78 × 10−12). The total number of xenobiotics measured per sample was also 

correlated with age (p-value 5.54 × 10−9) but not significantly different between males and 

females (p-value 0.922).

According to their chemical properties, each feature was assigned to one of nine super-

classes (i.e., amino acids, carbohydrates, cofactor and vitamins, energy, lipids, nucleotides, 

partially characterized molecules, peptides, and xenobiotics) and unannotated molecules, 

and one of 112 subpathways (Figure 1A). Lipids (N = 423) and amino acids (N = 195) were 

the major classes of endogenous features quantified by the untargeted platform used in the 

current study. For xenobiotics, we could identify 244 chemical compounds from: food 

(N=54), tobacco (N=6), benzoate (N=22), xanthine (N=15), exogenous environmental 

chemicals (N=26), bacterial/fungal (N=1), and drug metabolites including analgesics 

(N=22), anti-inflammatory (N=5), antibacterial (N=14), antiviral (N=2), cardiovascular 

(N=10), gastrointestinal (N=4), metabolic (N=2), neurological (N=18), psychotropic 

(N=15), respiratory (N=5) and topical agents (N=3).

3.1.2. Global correlation structure of human plasma metabolome—To examine 

correlation structure of features, we created a network of 1,244 features (i.e., nodes) 

connected by edges of significant correlation for each pair. We used a robust estimator of 

correlation – i.e., rQn, and selected top-most significant correlations with correlation 

coefficient greater than 0.4. Using the 1,244 features and 17,659 significant correlations 

(false discovery rate (FDR) < 0.0001 and |rQn| > 0.4) as edges, we constructed a 

metabolomic network. A force directed layout – ForceAtlas2 – was used to spatialize the 

network19. Overall, features were clustered by super-pathways (Figure 1B). Unconnected 

nodes were mostly xenobiotics and their metabolites; however, some xenobiotics were 

significantly correlated with diverse super-classes of endogenous metabolites such as amino 

acids and lipids suggesting the impact of exogenous chemical compounds on different 

metabolic pathways. Interestingly, lipid species formed four distinct clusters: 

sphingomyelins, diacylglycerols, steroid metabolism and fatty acids. Amino acids were 

broadly connected with multiple super-classes including xenobiotics. Unannotated features – 

i.e., features with unique pair of m/z and retention time without matching information in 

multiple databases – formed clusters with different super-classes suggesting these 

unannotated features could be mapped to known super-classed based on correlational 

structure. Additional details on global network structure with chemical compound names 

and correlation structure of subnetworks are available at the supplementary website (https://

tom.tch.harvard.edu/supples/metabolome).
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3.2. Factors contributing interindividual variance in feature concentrations

3.2.1. Demographic variables—Except for sex hormones, we did not find features 

showing significantly different concentrations between males and females. An androgenic 

steroid, 5alpha-androstan-3alpha,17beta-diol monosulfate was significantly higher in males 

after controlling for the effect of age. Age was significantly correlated with 502 features 

(40.4% of 1,244 features, FDR < 0.05). The complete list of metabolites correlated with age 

and statistical scores are available at the supplementary website (https://tom.tch.harvard.edu/

supples/metabolome). We checked whether age-correlated chemical compounds were more 

frequently observed for each of nine super-classes and unannotated chemicals. Xenobiotics 

were enriched with age-correlated chemical compounds (Fisher’s exact test p-value 

0.000027, odds ratio 2.49 with 95% confidence interval (CI) 1.595 – 3.954) and nucleotides 

were depleted for age-correlated metabolites (Fisher’s exact test p-value 0.00096, odds ratio 

0.27 with 95% CI 0.099 – 0.644). Interestingly, age-correlation could be nonlinear and only 

significant correlated in an age group (e.g., children vs. adults). For instance, creatinine was 

positive correlated with age in children then reached plateau in adults20 (Figure 1C). 

Therefore, background distribution of metabolites should be constructed for each age group.

3.2.2. Use of antibiotics—Circulating metabolites of mammalian host are substantially 

affected by gut microbiota21. In the current study, 34 gut microbial products that are 

exclusively or mainly contributed by bacteria metabolism were detected (see Appendix). 

These microbial products were tightly correlated with aromatic amino acids and bile acids 

metabolism, and significantly correlated with 773 features (FDR < 0.01). From EHR, we 

identified medication history for 123 out of 169 individuals. We selected 68 individuals with 

active drug prescription or in a window of 14 days after finishing drug prescription and 

found 23 features matching the drugs prescribed in at least one patient. We captured 40.9% 

drug prescription (Ndetected & Nprescribed = 67, Nprescribed = 164) and identified 128 drug 

consumptions with no prescription. Two antibiotic drugs were detected in the matched 

prescribed drugs and used by nine patients. Thirty-four features matched with gut microbial 

products including p-cresol and 4-hydroxyphenylacetate that are tyrosine metabolic products 

of anaerobic Clostridium difficile and certain Lactobacillus strains. The concentration of 

three gut microbial products were significantly correlated with the prescription history of the 

two antibiotics: 3-indoxyl sulfate, indole propionate and p-cresol sulfate (logistic regression, 

FDR < 0.01, Figure 2A).

Low indoxyl sulfate level suggested the relevance of microbiota-derived indole and features 

thereof in mucosal integrity and protection from inflammation22. p-cresol and 4-

hydroxyphenylacetate are tyrosine metabolic products of anaerobic Clostridia, and over-

growth of this genera could be associated with gastrointestinal symptoms. Moreover, plasma 

levels of trimethylamine n-oxide, derived from dietary choline and carnitine through the 

action of gut microbiota, are associated with several cardiometabolic traits23.

3.2.3. Impact of environmental chemical toxicants on blood metabolome—
Per- and polyfluoroalkyl substances (PFAS) are a group of industrial chemicals including 

perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), which are used in 

various industrial products including food containers and present in drinking water. PFOA is 

Kong and Hernandez-Ferrer Page 6

Pac Symp Biocomput. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://tom.tch.harvard.edu/supples/metabolome
https://tom.tch.harvard.edu/supples/metabolome


a toxicant affecting multiple biological pathways and considered as non-genotoxic 

carcinogens. In our cohort, PFOA and PFOS were detected and quantified in 102 and 169 

samples, respectively. Endogenous features were significantly correlated with PFOA and 

PFOS (N = 65 and 227, FDR < 0.05) with 52 features in common (Figure 2B).

3.3. Implication for medical conditions

Forty features were detected in less than three samples and 941 features (75.6% of all 

measured ones) were not normally distributed (Shapiro-Wilke test, p-value < 0.05). Thus, we 

used the Qn estimator to calculate robust z-scores to detect outliers (i.e., |z-score| > 3) after 

excluding 52 features detected in less than three individuals. As a proof-of-concept, we 

checked outlier features in patients with IEMs and diabetes mellitus (DM).

3.3.1. Inborn errors of metabolism—Significantly higher levels of phenylalanine, 

phenyllactate, and phenylpyruvate were observed in a 40-year-old male with classical 

phenylketonuria (z-scores 9.39, 9.12 and 8.53, respectively). Interestingly, there were also 

significantly low concentration of alpha-ketoglutaramate (z-score - 7.67) potentially due to 

long-term use of Phe-restrictive diet throughout life. Additionally, 46 features were outliers 

in this patient suggesting the perturbation of phenylalanine pathway as well as the other 

metabolic pathways (Figure 3A).

Alpha-1-antitrypsin deficiency (A1AD) is an autosomal recessive disorder due to a mutation 

in SERPINA1 and often presents respiratory symptoms and liver failure. An 8-year-old girl 

was diagnosed with A1AD, and her metabolomic profile showed perturbation of liver 

enzyme pathways including sterol, ceramide and bile acid metabolism. Vitamin A and its 

metabolites showed significantly low concentration compared to the others suggesting that 

vitamin A supplement would be required. We confirmed prescription history of 

multivitamins and the other cofactors in EHR for this patient.

3.3.2. Diabetes mellitus—Glucose and mannose concentrations were not consistently 

changed in the patients with DM; however, 1,5-anhydroglucitol (1,5-AG) was detected as an 

outlier in all patients with type I and II DM. For instance, metabolomic profile of a patient 

with type II DM showed significantly low concentration of 1,5-AG with higher glucose 

concentration (Figure 3B). When blood glucose levels exceed the renal glucose threshold, 

glucose is excreted to urine and re-absorption of 1,5-AG is inhibited resulting low 1,5-AG 

concentrations with hyperglycemic events24. Two parental samples also showed low 
concentrations of 1,5-AG suggesting DM although medical records for these individuals 
were not available.

4. Discussion

Using an untargeted metabolomics platform, we successfully profiled a broad range of 

internal and external exposures in plasma samples from a cohort comprising generally 

healthy and individuals with diverse pediatric disorders with a fraction of cost for measuring 

several clinical laboratory tests. Endogenous features such as lipids, amino acids and nucleic 

acids were consistently measured in both children and adults while the total number of 

detected features was correlated with age likely due to exposures to diverse exogenous 
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chemical compounds with aging. Internal metabolites correlated with exogenous chemical 

compounds (e.g., PFAS and PFOS) suggested potential metabolic pathways affected by such 

compounds. Moreover, the use of antibiotics was reflected in the concentration changes of 

gut microbial products.

The total number of chemical entities has not been reported in the human and no 

metabolomics platform can quantitatively measure the entirety of chemicals of endogenous 

and exogenous origins. Unbiased profiling of all chemical compounds present in the human 

tissues may not be possible in near future nor required to understand the impact of 

metabolomic changes due to underlying physiological changes and exposures, which require 

further investigation and theoretical/experimental model validations25.

There are few challenges that needed to be addressed for clinical research use of 

metabolomics in the context of precision medicine. Firstly, the reliability of measurement 

should be established for accurate and reproducible results. The US Environmental 

Protection Agency initiated the Non-Targeted Analysis Collaborative Trial to evaluate 

untargeted metabolomics platforms26. A previous study showed a wide range of coefficient 

of variation from 0.96% to 119.1% for the features measured by the same metabolomics 

platform10. To gain broader applications, a systematic comparison of platforms would be 

crucial. Secondly, feature annotation is incomplete. High-resolution MS has a potential to 

characterize 10,000 – 30,000 features in a single run. However, only a fraction of these 

features could be annotated with known chemical properties in the current study (N = 988). 

Current computational annotation using m/z and retention time needs to be improved. The 

Human Metabolome Project provides a repository of features from various sources13; 

however, classification of features in terms of ontology and functional characteristics are 

challenging. After all, metabolome databases do not provide the same level of organized 

information compared to genomic sequence databases. Thirdly, population-scale reference 

datasets would be essential for determining reference ranges and interindividual variation in 

diverse population. Coordinated data sharing platforms such as the MetaboLights database27 

and Metabolomics Workbench28 are highly required to facilitate the distribution of existing 

data, standards, protocols, and analytical tools. Lastly, tissue-wide metabolomics profiling 

could greatly advance our understanding of tissue-specific metabolomic characteristics and 

their implication in pathophysiology of human disease.

The proportion of liability explained by genetic variants is relatively small for both common 

and rare diseases. Moreover, allelic and locus heterogeneities are frequently observed29. If 

one of the goals of translational genomic medicine is to find right drug for right patient, 

genetic data alone cannot provide sufficient insights as to diagnostic and therapeutic 

planning for patients30. Functional genomic data such as transcriptomic, proteomic and 

metabolomic analysis of treatment-naïve and during the course of treatment would be 

required in addition to WES/WGS. An immediate application of metabolomics (i.e., 

metabotype) is to complement genotype for prioritizing, optimizing and monitoring 

treatment strategy for patients with IEMs; however, application of untargeted metabolomics 

could be broader. One potential use case could be to model metabolite concentration as 

endophenotype that is affected by polygenic risk and exogenous environmental exposure for 

common disease. Mendelian randomization studies using metabolite profile seek for causal 
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association of metabolic biomarkers in metabolic and cardiovascular diseases. Once the 

analytical validity of untargeted metabolomics platforms is established from population 

scale studies, further dissection of genetic and environmental contributions to common 

diseases would be possible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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6.: Appendix

Table. The list of the 34 gut microbial products, exclusively or mainly contributed by 

bacteria metabolism, detected by the untargeted metabolomics platform used in the current 

study. Known metabolic pathways and the Human Metabolome Database (HMDB) 

identifiers (ID) are shown for each metabolite. Metabolites with a number (#), are 

compounds that are a structural isomer of another compound in the Metabolon spectral 

library.

Metabolite name Bacterial pathway HMDB ID

2-hydroxyhippurate xenobiotic metabolism HMDB00840

3-(3-hydroxyphenyl)propionate aromatic amino acid metabolism HMDB00375

3-(4-hydroxyphenyl)lactate aromatic amino acid metabolism HMDB00755

3-hydroxyhippurate xenobiotic metabolism HMDB06116

3-indoxyl sulfate aromatic amino acid metabolism HMDB00682

3-phenylpropionate aromatic amino acid metabolism HMDB00764

4-hydroxyhippurate xenobiotic metabolism HMDB13678

4-hydroxyphenylacetate aromatic amino acid metabolism HMDB00020

4-hydroxyphenylpyruvate aromatic amino acid metabolism HMDB00707

cholate bile acid metabolism HMDB00619

daidzein sulfate (1) xenobiotic metabolism

daidzein sulfate (2) xenobiotic metabolism

deoxycholate bile acid metabolism HMDB00626

genistein sulfate xenobiotic metabolism

glycocholenate sulfate bile acid metabolism

glycodeoxycholate 3-sulfate bile acid metabolism

glycolithocholate sulfate bile acid metabolism HMDB02639

glycoursodeoxycholate bile acid metabolism HMDB00708

hippurate bile acid metabolism HMDB00714

hyocholate bile acid metabolism HMDB00760

indoleacetate aromatic amino acid metabolism HMDB00197
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Metabolite name Bacterial pathway HMDB ID

indoleacetylglutamine aromatic amino acid metabolism HMDB13240

indolelactate aromatic amino acid metabolism HMDB00671

indolepropionate aromatic amino acid metabolism HMDB02302

lithocholate sulfate (1) bile acid metabolism

methyl-4-hydroxybenzoate sulfate xenobiotic metabolism

propyl 4-hydroxybenzoate sulfate xenobiotic metabolism

p-cresol sulfate aromatic amino acid metabolism HMDB11635

phenol sulfate aromatic amino acid metabolism HMDB60015

phenylacetate aromatic amino acid metabolism HMDB00209

phenylacetylglutamine aromatic amino acid metabolism HMDB06344

phenyllactate aromatic amino acid metabolism HMDB00779

taurocholenate sulfate bile acid metabolism

taurolithocholate 3-sulfate bile acid metabolism HMDB02580

tauroursodeoxycholate bile acid metabolism HMDB00874

ursodeoxycholate bile acid metabolism HMDB00946
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Fig. 1. 
Chemical coverage and global correlation structure of 1,244 features measured by an 

untargeted metabolomics platform. (A) A significant proportion of measured features 

(N=256) are unannotated features for which chemical properties are not known although the 

features are consistently measured in multiple samples and showed correlations with known 

metabolites. Ten super-classes including lipids, amino acids, carbohydrates, vitamins, 

nucleotides, and xenobiotics are shown in the pie chart with subpathways in outer circle. (B) 

Correlation structure of metabolome. Lipids are clustered to multiple groups. Overall, amino 

acids, nucleotides, and carbohydrates are tightly correlated. Xenobiotics are associated with 

diverse endogenous metabolic pathways. (C) A total of 502 out of 1,244 features are 

significantly correlated with age (false discovery rate < 0.05) and correlation with age shows 
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a nonlinear relationship for some metabolites. For instance, creatinine concentration level is 

significantly correlated with age in children but not in adults.
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Fig. 2. 
Impacts of xenobiotics and environmental chemicals on metabolome. (A) Three microbial 

products show significant differences in antibiotics users compared to non-users according 

to electronic health records. (B) A network of the metabolites significantly correlated with 

perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA). PFOS is strongly 

correlated with multiple metabolites (N=227) while PFOA is significantly correlated with 

PFOS and a few metabolites (N=65), suggesting different biological impacts of two 

chemical compounds of per- and polyfluoroalkyl substances (false discovery rate < 0.05). 

Only highly significant correlations (i.e., |rQn| > 0.65) are shown as edges.
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Fig. 3. 
Metabolome-wide analysis of outlier features in a patient with phenylketonuria (A) and an 

individual with type II diabetes mellitus (B). Black solid line represents zero z-score for 

each metabolite (colored bars in radial). Inner and outer red dotted lines show −3 and 3 z-

scores from the Qn estimator for each feature.
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