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In this study, seven-channel electromyography signal-based two-dimensional wrist joint movement estimation with and without
handgrip motions was carried out. Electromyography signals were analyzed using the synergy-based linear regression model and
musculoskeletal model; they were subsequently compared with respect to single and combined wrist joint movements and
handgrip. Using each one of wrist motion and grip trial as a training set, the synergy-based linear regression model exhibited a
statistically significant performance with 0.7891 +0.0844 Pearson correlation coefficient (r) value in two-dimensional wrist
motion estimation compared with 0.7608 + 0.1037 r value of the musculoskeletal model. Estimates on the grip force produced
0.8463 + 0.0503 r value with 0.2559 + 0.1397 normalized root-mean-square error of the wrist motion range. This continuous wrist
and handgrip estimation can be considered when electromyography-based multi-dimensional input signals in the prosthesis,

virtual interface, and rehabilitation are needed.

1. Introduction

Owing to advances in surface electromyography (EMG)
signal-based models and algorithms, numerous techniques
have been proposed for prosthesis controls and clinical
controllers. Though in a discreet fashion, several studies had
attempted to convert hand motion into input signals to
control prosthetic machines [1], virtual hands [2], and
exoskeletons [3], with the aim of estimating both the wrist
motion and hand gesture. Nishikawa et al. [1], Sebelius et al.
[2], and Kita et al. [4] classified several gestures, such as hand
gestures and wrist motions, using algorithms like machine
learning, Gaussian mixture models (GMMs), and other
linear classifiers (e.g., k-NN and Bayes).

Continuous estimations are applied in response to
feedback from real users who require various movements
suitable for daily life [5]. Vogel et al. [6] used standard
supervised machine learning algorithms to create a mapping
between arm/forearm muscle activities and 6-dimensional

(6D) position/orientation; this has extended the four rota-
tional degree-of-freedom (DOF) models for the joints of the
shoulder and elbow [7]. An algorithm for simultaneous
estimation of the three DOFs of the wrist was also proposed
[8]; it showed promise of applicability to unilateral amputees
by employing a bilateral mirror-training strategy [9].
However, these continuous estimations did not consider the
combined motions of the wrist and fingers.

Under the flexor muscles are the multiple finger muscles
that lie deep inside the forearm [10]. Many researchers use
their expertise to minimize the interference of surface EMG
(sEMG), without fully solving crosstalk. For this reason, the
SEMG electrode is not free from the inclusion of both ex-
ternal and internal muscle signals. These mixed signals can
influence the estimates obtained via the other.

Muscle synergy is defined as a set of muscles recruited by
a neural command [11]. A muscle synergy generates a
primitive motion, and complex motions are produced by the
combination of several synergies [12, 13]. Real-time
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classification for upper limb motion was conducted using a
machine learning technique [14]. However, synergies were
differentially weighted according to task constraints [15];
therefore, in this study, two different synergy calculations
were attempts: deriving wrist and grip synergies simulta-
neously and deriving each synergy separately. Besides,
synergy model performance with the change of synergy was
analyzed, and the choice of number of wrist synergy was
checked.

The musculoskeletal model (MSM) is a second-order
computational motor control model with nonlinear dy-
namics. It estimates a one-degree-of-freedom joint angle for
flexion and extension considering muscle elasticity and
viscosity [16]. Kawase et al. [17] developed a simplified
computational model that investigated the estimation of
three different joint angles (i.e., elbow, wrist, and finger) with
a little influence between finger joint and wrist position
estimation.

To realize the prosthetic hand for daily use, wrist motion
and grip motion have to be controlled simultaneously;
however, few papers treat this problem [17] because of the
crosstalk of muscle activation measurement.

This study aims to estimate wrist motion with and
without grip motion and compared the estimation perfor-
mance between optimized MSM and synergy models.

2. Materials and Methods

2.1. Subjects. Ten healthy subjects (males, aged 28.0+5.7, 9
right-handed, 1 left-handed, none ambidextrous) partici-
pated in the experiment. They did not have a history of any
form of neurological disorder. They used their dominant
hand (either left or right hand) during the conduct of this
experiment.

2.2. Experimental Protocol. The study protocol was approved
by the ethics committee of the Tokyo Institute of Technology
(2014042) and was carried out in accordance with the
Declaration of Helsinki. Written consent was obtained from
each subject before the experiment.

Table 1 indicates the muscle groups chosen to estimate the
wrist and grip movements. Five muscles are associated with
wrist motion (i.e., ECR, ECU, FCU, FCR, and APL) and two
with grip action (i.e., FDS and FDP). Previous wrist-based
experiments analyzed ECR, ECU, FCU, and FCR [17, 18],
which are the flexor and extensor muscles of the wrist with
different deviations (radial and ulnar). In addition to these
muscles, in particular APL, an extensor of the thumb was
included to trace the radial movement of the wrist. The FDS
and FDP—the flexor muscles of the finger—were included to
estimate the grip force with a synergy-based model.

Figure 1 shows the placement of the EMG sensor on the
forearm. The EMG signals were measured using Trigno™
EMG system.

In the experiment, two tasks were conducted. The first
task was a wrist motion, which measured motion in different
movement conditions. For the second task, isometric grip
force was measured in different grip force levels. Thus, the
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TaBLE 1: Forearm muscle with channel number.

Muscle position

Ch. 1 Extensor carpi radialis (ECR)
Ch. 2 Extensor carpi ulnaris (ECU)
Ch. 3 Flexor carpi ulnaris (FCU)

Ch. 4 Flexor carpi radialis (FCR)

Ch. 5 Abductor pollicis longus (APL)
Ch. 6 Flexor digitorum superficialis (FDS)
Ch. 7 Flexor digitorum profundus (FDP)

Extensor carpi
ulnaris

Flexor carpi radialis

Flexor digitorum

profundus Extensor carpi
. . radialis
Flexor carpi ulnaris
Flexor digitorum Abductor pollicis
superficials longus

@ Wrist movement muscles
@ Grip muscles

FIGURE 1: Seven EMG channel placement on five wrist joint-related
muscles (red) and two grip muscles (blue).

trials were divided into two tasks to check the wrist
movement at a certain grip condition and grip force at a
certain posture.

In the first task, EMG was measured using wireless
Trigno™ EMG system sensors, and wrist joint angles were
measured using the IM sensors of the system. Figure 2 shows
the placement of the IM sensors, which were attached to the
back of the hand and the back of the forearm; they were at-
tached to detect the relative wrist joint angle from the forearm.

Subjects placed their forearms on the table fastened by a
wrist binder. Thereafter, they performed four wrist motions:
flexion, extension, radial deviation, and ulnar deviation.
These motions were conducted while the hand was free (no
gripping action) and in gripping mode (normal strength).
Wrist motions were conducted under three conditions based
on the subject’s comfort: comfortable maximum limit (with
and without grip), half of comfortable maximum limit
(without grip only), and stiffened movement with force
exertion (without grip only). The subjects performed each
motion three times per trial. Three trials were conducted for
each condition. Thereafter, the gripping action (without
wrist motion) was conducted in the center position (Fig-
ure 2) for which the subjects performed strong grips and
weak grips. Three trials were conducted for the gripping
experiment.
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FIGURe 2: First task: experimental posture in the center-position
and movement direction with the placement of the IMU sensors.
Yellow-colored rectangles emphasize the positions of the IMU
sensors placed at the back of the hand and forearm.

In the second task, EMG and grip force were measured,
with the latter done using ReachMAN robot [19]. The
subjects adjusted the angle of the grip to their best fit while
maintaining a center position posture, as demonstrated in
Figure 2, after which the grip force was measured. Three
levels of grip strength were performed: strongest, half, and a
quarter of gripping power. The strongest grip force (in
newton N) varied for every subject with an average of
16.2+3.2N.

2.3. Data Acquisition. The data were sampled separately per
signal category using lab streaming layer (LSL) in MATLAB
2018b program base [20]. The EMG signals were sampled at
2000 Hz, IMU sensors at 74 Hz, and ReachMAN force sensor
at 100 Hz.

The seven EMG signal channels were filtered and nor-
malized before computing the synergy set. The EMG signals
were rectified and filtered using a second-order Butterworth
low-pass filtering with 5Hz cutoff frequency [21]. Figure 3
shows the conversion of an EMG signal. The filtered EMG
signals are called “quasi-tension” because it showed a high
correlation between the joint torques of its muscle [21].

A recurring issue during experiments and analyses was
the fact that the magnitude of EMG signals for each channel
had to be changed every time the sensor was detached then
attached again. To resolve this, all signals were normalized by
the peak activation level of the whole task, including a range of
joint angles and maximum effort of trials [22]. Normalization
was performed after quasi-tension signal filtering. In this
experiment, the combined hand motion tasks, co-activating
both grip and wrist motions, were chosen; hence, the nor-
malized quasi-tension signals, which were obtained by fil-
tering and normalizing the EMG signals, were resampled into
the other sampling rates and measured together.

2.4. Wrist Angle Derivation. The Madgwick IMU algorithm
was implemented to estimate the two-dimensional wrist
joint angle [23]. IMU sensors were placed on the back of the

hand and forearm to track the orientational difference be-
tween the hand and forearm.

Subjects performed self-paced movements without vi-
sual feedback; consequently, most of them performed di-
agonal movements even if only vertical and horizontal
movements had been requested. To compensate for this, the
two angles obtained by the IMU algorithm were normalized
by each angle’s absolute maximum value; the sum and
difference obtained can be seen in Figure 4. In each model,
these calculations were estimated and the summation was
recalculated to estimate the angle; furthermore, considering
the EMG crosstalk error and wide range of wrist angle
movements, a comfortable maximum limit trial was mainly
used as the train data.

2.5. Synergy-Based Linear Regression Model. A synergy-
based linear regression model was used to estimate wrist
and grip values. To reduce computational costs in a model
calculation, a simplified version of the nonnegative matrix
method, ie., the hierarchical alternating least square
(HALS) method, was used [24]. Apart from the compu-
tational cost, HALS also has a wide capability: it can work
with a large number of components [24], in contrast to the
canonical NMF method [25], which is only applicable if the
number of the sources is greater than the number of
components; it can work in conditions where the number
of components is large [24]. This feature of HALS is ap-
propriate when multiple hand gestures need to be applied.
Hence, this computation method is valid even when the
number of combined synergy set exceeds the number of
measured EMG signals. The HALS decomposes the nor-
malized quasi-tension as follows:

[E] = [M][S]", (1)

where E is the normalized quasi-tension signals in an m
by n matrix with m being the number of time series and
n the number of EMG channel inputs; S = [sq,. .. ,sj] is
the synergy set, where j is the number of synergies and
s;=[c;,...c,]" representing a single set of synergy,
where ¢, is the coactivation coefficient of EMG #; and
furthermore, M is the coactivation coeflicients of the

synergy in m by j matrix:
([E1[M]" = [S)[M][M]"),

- , (2)
[ M ] [M]

[Sk] < [Se] +

T T T
(M) [T+ LB 8L - MTSTTIS]),
(57184

When the synergy model is derived, learning algorithm
procedures are used to iterate (2) and (3) several times,
where k (1, 2, ..., j) denotes the label of synergies. The
matrices S and M were computed using one set of single
wrist motion data and single grip motion data.

In the analysis, wrist synergies with varying numbers
from one to six were calculated from a wrist movement trial
to confirm the validity number of synergies; thereafter, a
single grip synergy was taken from a grip trial. More often

(3)
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FIGURE 3: Quasi-tension data filtering process. The low-pass filter was the second-order Butterworth filter with 5Hz cutoff frequency. (a)
Raw EMG signal. (b) Rectified EMG signal. (c) Low-pass filtered EMG signal.
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FIGURE 4: (EPS cross needed) X-axis stands for flexion-extension dimension, while Y-axis stands for radial-ulnar deviation. To compensate
for the inclined diagonal movement of subjects in self-paced movement, two angles were normalized and their sum and difference were

subsequently computed.

than note, the variance account for (VAF) became the
standard means of choosing the muscle synergy number
[26-28]. In the same context, this study applies the number
of synergies that matches over 0.9 VAF to all the subjects to
ensure the synergy model consistency. The gains of the wrist
motion synergy for the angles were derived using linear
regression to compute the normalized sum and difference of
the wrist angle (flexion-extension, radial-ulnar deviation) 0;
from the following equation:

0, =ay; +a;;m

jimj et e

J

(4

where a,; denotes the angle bias, a;; s are the regression
coefficients for each synergy coefficient 7, and ¢ denotes the
random noise error. A combined synergy set with regression
coeflicients were used to estimate both grip motion and wrist

motion task; hence, the synergies and gains from a com-
bination of two trials were applied to all other tasks.

The computation of the wrist and grip synergies was
conducted in two different ways. A facial image study
showed that NMF learns the object in part-based repre-
sentation [29]. In the case of grip motion, the muscles of all
channels work together; therefore, multitrial-based muscle
synergy was calculated in two ways: simultaneously from
jointed wrist and grip trials (SLRM1) and separately per trial
(SLRM2). The synergy sets were derived from comfortable
maximum limit trials and grip trials.

2.6. Musculoskeletal Model (MSM). The musculoskeletal
model was used to compare the angle estimates of the
synergy-based model. The MSM succeeded in estimating the
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FIGURE 5: Model condition-related wrist joint movement estimation performance changes in the synergy-based linear regression model
(SLRM) and musculoskeletal model (MSM) in terms of the Pearson correlation coefficient (r) and normalized root-mean-square error
(nRMSE). (a) r of SLRM2 had statistically significant differences with SLRM1 (p <0.001, Student’s t-test). (b) There was no statistically
significant change in » between MSM1 and MSM2. (c) nRMSE of SLRM1 and SLRM2 had statistically significant differences both in wrist
average and grip motion with higher error in SLRM1. (d) There was no statistically significant change in the nRMSE for wrist motion trials
between MSM1 and MSM2 while having a significant difference in grip. (p <0.001, Student’s ¢-test).

joint angles of the elbow, wrist, and index finger with little
influence from a change in wrist position [17]. The per-
formances of SLRM and MSM were compared with each
other to ascertain how good that of SLRM is; furthermore,
the train set of MSM was taken from a comfortable maxi-
mum limit, which are the same trials used in SLRM. To
optimize the MSM performance, MSM was derived from
two different muscle numbers, namely, MSMS1 and
MSMS2; the former used all measured muscles, while the
latter used five wrist muscles. Kawase et al. constructed a
one-degree-of-freedom model per joint [17]; to fit the model
into this experiment, two wrist joint angles were converted
as depicted in Figure 4.

2.6.1. Statistical Analysis. An exhaustive cross-validation
was used to test the performance of each model per subject,
with indices used to estimate performance. The Pearson
correlation coefficient (r) and normalized root-mean-square
error (nRMSE) are defined as follows:

(i -X) (-7

L (- DL O0r - 7P

(5)

2
nRMSE = l Z;Ll (‘xi B yl)
a n

>

where 7 is the number of samples, y is a reference, x is an
estimate, and a is defined as the normalization coefficient.
nRMSE chooses a to be 90, the limit of the wrist angle range.
All statistical analyses were conducted using t test2 function
of MATLAB 2018b.

3. Results

3.1. Synergy Number Optimization. The reproducibility
check of SLRM1 and SLRM2 in the different number of
synergies was tested in VAF. The number of grip synergies
was fixed to one, both in SLRM1 and SLRM2 to ensure that
SLRM1 computed the synergy one more from the joint trials.
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FIGURE 6: 2D wrist joint angle estimation in 5 different trials. Angle X corresponds to flexion-extension dimension taking extension as
positive. Angle Y corresponds to radial-ulnar deviation having radial deviation as positive. The blue-colored line represents the IMU-
reference angle derived from two IMU sensors by differentiating relative orientation in the Euler angle. The red-colored estimate is a
musculoskeletal model- (MSM-) based estimation having 5 input signals. Yellow-colored estimate stands for synergy-based linear regression
model- (SLRM-) based estimation deriving synergy derived separately per trial. An example of (a) a comfortable maximum limit trial, (b)
half of a comfortable maximum trial, (c) a stiffened movement trial, (d) a grip-trial having twelve times gripping, and (e) combined

movement of a comfortable maximum limit with grip.

SLRM1 with two wrist synergies had over 0.9 VAF on av-
erage (0.9342+0.0245), and the minimum VAF of three
wrist synergies was 0.9529. For SLRM2, three wrist synergies
had over 0.9 VAF on average (0.9442+0.0340), and the
minimum VAF of four wrist synergies was 0.9647. To in-
clude all subjects, four wrist motion synergy numbers were
chosen and used throughout the study.

3.2. Task 1: Wrist Motion Test. Figures 5(a) and 5(c) show the
r and nRMSE values of SLRMs in wrist motion task. The r
values of SLRM1 and SLRM2 were 0.7523 +0.1466 and
0.7891 +0.0844, respectively. For nRMSE, SLRMI had
0.1864 +0.0835 in wrist motion and 0.2471 +0.1387 in grip
motion, while SLRM2 had 0.1564 + 0.0388 in wrist motion
and 0.1458 £0.0251 in grip motion. The differences are
statistically significant in both cases (p <0.001, Student’s ¢-
test). From the results, SLRM2 was chosen as the repre-
sentative SLRM model.

Similarly, Figures 5(b) and 5(d) show the » values and
nRMSE values of the MSMs in wrist motion task. The r
values of MSM1 and MSM2 were 0.7691+0.1056 and
0.7608 +0.1037, respectively, which exhibits no statistical
significance. For nRMSE, MSM1 had 0.1695+0.0505 in
wrist motion and 0.2368+0.1107 in grip motion, while
MSM2 had 0.1718+0.0608 in wrist motion and
0.1864 +0.0770 in grip motion. The nRMSE of the grip
motion implies a statistical significance (p <0.001, Student’s
t-test). From the results, MSM2 was chosen as the repre-
sentative MSM model.

The time series of the wrist angle in two dimensions is
shown in Figure 6. Subjects were asked to rotate their wrists
in four directions. They were able to move freely at their own
pace, moving in an inclined diagonal direction at different
angles. Because of this tendency, both models appear to have
the underlying assumption that a subject moved in a di-
agonal direction even if they performed a gradual move-
ment, as shown in Figure 6(c).
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TaBLE 2: MSM performance indicator per subjects and trial.
Sub Data type Comfortable max  Comfortable half n?g\%;ii ; Grip and motion Wf;ite?;g;on Grip
r nRMSE r nRMSE r nRMSE r nRMSE r nRMSE  nRMSE
Subl Mean 0.8542 0.1544 0.7297 0.1256 0.8818 0.1882 0.8092 0.1742 0.8155 0.1612 0.1287
SD 0.0218 0.0167 0.0725 0.0123 0.0156 0.0348 0.0661 0.0315 0.0805 0.0371 0.0214
Sub2 Mean 0.8527 0.1024 0.7626 0.0719 0.8362 0.1666 0.7300 0.0971 0.7902 0.1101 0.1468
SD 0.0286 0.0140 0.0478 0.0103 0.0361 0.0161 0.1813 0.0334 0.1107 0.0429 0.0279
Sub3 Mean 0.6816  0.1699  0.5557  0.1291 0.7094  0.2084  0.6722  0.1704  0.6523  0.1694 0.1400
SD 0.0475 0.0214 0.1039 0.0195 0.0590 0.0322 0.0616 0.0220 0.0968 0.0407 0.0608
Sub4 Mean 0.8261 0.2113 0.7196 0.1196 0.8178 0.2593 0.8278 0.1820 0.7952 0.1914 0.0975
SD 0.0503 0.0371 0.0587 0.0185 0.0603 0.0415 0.0431 0.0235 0.0746 0.0646 0.0594
Sub5 Mean 0.8156 0.1451 0.6870 0.1091 0.8174 0.2170 0.7497 0.2104 0.7630 0.1727 0.3005
SD 0.0835 0.0342 0.1324 0.0163 0.0526 0.0422 0.0604 0.0401 0.1019 0.0581 0.1109
Subé Mean 0.8364 0.1998 0.6855 0.1940 0.8003 0.2613 0.8055 0.1934 0.7770 0.2132 0.1741
SD 0.0273 0.0281 0.1028 0.0140 0.0651 0.0351 0.0447 0.0271 0.0928 0.0425 0.0479
Sub7 Mean 0.6775 0.2235 0.4702 0.1338 0.6994  0.2258 0.6742 0.1793 0.6261 0.1876 0.5055
SD 0.0697  0.0205  0.1268 0.0113 0.1093  0.0370  0.0790  0.0243 0.1386  0.0480 0.1803
Subs Mean 0.8078 0.1333 0.6616 0.1104 0.8478 0.1524 0.7541 0.1578 0.7642 0.1389 0.4311
SD 0.0613 0.0278 0.0992 0.0150 0.0405 0.0214 0.0474 0.0293 0.1070 0.0330 0.0778
Sub9 Mean 0.8688 0.1823 0.8637 0.1260 0.8807 0.1801 0.8537 0.1549 0.8665 0.1588 0.3206
SD 0.0443 0.0298 0.0420 0.0096 0.0256 0.0227 0.0407 0.0210 0.0425 0.0315 0.1702
Subl0 Mean 0.7728 0.1915 0.7087 0.1361 0.8517 0.2392 0.7024 0.2844  0.7576 0.2147 0.1750
SD 0.0302  0.0501 0.0927  0.0436  0.0363  0.1044  0.1091 0.1058 0.1057  0.1006 0.0817
Mean Mean 0.7994  0.1713 0.6844  0.1256  0.8142  0.2098  0.7579  0.1804  0.7608  0.1718 0.1864
SD 0.0528 0.0343 0.1022 0.0219 0.0589 0.0558 0.0877 0.0511 0.1037 0.0568 0.0770
TaBLE 3: SLRM performance indicator per subjects and trial.
Comfortable max  Comfortable half Stiffened Grip and motion Wrist motion Grip
Sub Data type movement (average)
r nRMSE r nRMSE r nRMSE r nRMSE r nRMSE  nRMSE
Subl MeanSD 0.8847 0.1368 0.7850 0.1155 0.8618 0.1738 0.8625 0.1313 0.8452 0.1396 0.1121
0.0173 0.0137 0.0508 0.0120 0.0269 0.0291 0.0207 0.0158 0.0527 0.0299 0.0162
Sub2 Mean SD 0.8868 0.0925 0.7801 0.0640 0.8778 0.1425 0.7860 0.0831 0.8277 0.0958 0.1207
0.0200 0.0148 0.0251 0.0073 0.0391 0.0166 0.1166 0.0184 0.0867 0.0339 0.0098
Sub3 Mean SD 0.6643  0.1658  0.5037  0.1205  0.7749  0.1704  0.4568  0.1750 0.5941 0.1572 0.0620
0.0215 0.0129 0.0865 0.0104 0.0291 0.0098 0.0691 0.0128 0.1457 0.0274 0.0088
Sub4 Mean SD 0.8430 0.1858 0.7368 0.1355 0.8460 0.2094 0.7756 0.1769 0.7965 0.1761 0.1157
0.0178 0.0176 0.0661 0.0166 0.0208 0.0239 0.0305 0.0103 0.0654 0.0341 0.0189
Subs Mean SD 0.8368 0.1444 0.7698 0.1001 0.8321 0.2390 0.7598 0.2403 0.7963 0.1843 0.0888
0.0291 0.0166 ~ 0.0335  0.0069  0.0380  0.0238  0.0467  0.0425  0.0603  0.0727 0.0191
Subs Mean SD 0.8233  0.1997  0.7483  0.1935 0.8546  0.2118  0.8364  0.1783 0.8149  0.1955 0.2236
0.0266 0.0179 0.0848 0.0074 0.0228 0.0155 0.0216 0.0169 0.0665 0.0215 0.0432
Sub7 Mean SD 0.8009 0.1622 0.7162 0.1328 0.7955 0.1767 0.6393 0.1762 0.7323 0.1620 0.1653
0.0256 0.0068 0.1374 0.0076 0.0448 0.0178 0.0997 0.0251 0.1135 0.0272 0.0285
Subs Mean SD 0.8573 0.1155 0.8210 0.0873 0.8571 0.1523 0.7960 0.1474 0.8306 0.1266 0.2876
0.0243  0.0115  0.0541 0.0133  0.0320  0.0193  0.0454  0.0316  0.0547  0.0358 0.0503
Sub9 Mean SD 0.8417  0.1788  0.8240  0.1380  0.8316  0.1901 0.8196  0.1606  0.8281 0.1658 0.1037
0.0249 0.0225 0.0324 0.0033 0.0309 0.0205 0.0402 0.0158 0.0369 0.0271 0.0233
Sublo Mean SD 0.8170 0.1576 0.7754 0.1162 0.8745 0.1863 0.8302 0.1848 0.8249 0.1616 0.1969
0.0329  0.0227  0.0232  0.0049  0.0250  0.0270  0.0265  0.0363  0.0618  0.0417 0.0299
Mean Mean SD 0.8256 0.1539 0.7460 0.1204 0.8406 0.1852 0.7562 0.1654 0.7891 0.1564 0.1458
0.0270 0.0178 0.0731 0.0106 0.0344 0.0216 0.0631 0.0271 0.0844 0.0382 0.0251
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FIGURE 7: Time series estimation of grip task with ReachMAN robot. Time series for (a) the normalized max grip force reference and
synergy-based linear regression (SLRM) grip force estimate, (b) the normalized half grip force reference and synergy-based linear regression
(SLRM) grip force estimate, (c) the normalized quarter grip force reference and synergy-based linear regression (SLRM) grip force estimate,
(d) wrist joint motion estimate from SLRM in the maximum grip force task, (e) wrist joint motion estimate from SLRM in half grip force
task, and (f) wrist joint motion estimate from SLRM in quarter grip force task. Angle X-Y is the same axis in Figure 8.

The exact performances of SLRM and MSM in r and
nRMSE are shown in Tables 2 and 3. Wrist motion per-
formances r on average are 0.7891 +0.0844 in SLRM and
0.7608 +0.1037 in MSM, implying a statistically significant
difference (p<0.001, Student’s t-test). Similarly, nRMSE
also shows a significant difference between SLRM and MSM
(p <0.01, Student’s t-test). This trend continued during wrist
motion trials without a grip (comfortable maximum limit
trial, comfortable half limit trial, and stiffened movement
trial).

However, when grip motion was added, there was no
statistically significant difference in r; however, differences
were still apparent in nRMSE. The r of the comfortable
maximum with grip trials were 0.7562 +0.0631 in SLRM
and 0.7579+0.0877 in MSM, and nRMSEs were
0.1654+0.0.271 in SLRM and 0.1804 +0.0511 in MSM
(p<0.001, Student’s t-test). Finally, in the grip trial, where r

measurement was inappropriate because the wrist motion
in the trial is just an indication of a perturbation, here,
SLRM had 0.1458 + 0.0251 and MSM had 0.1864 + 0.0770 in
nRMSE, implying a statistically significant difference
(p<0.001, Student’s t-test).

In detail, the r values of the comfortable maximum
limit trials were 0.8256+0.0270 in SLRM and
0.7994 +0.0528 in MSM (p <0.001, Student’s t-test); the
nRMSEs  were 0.1539+0.0178 in SLRM and
0.1713+0.0343 in MSM (p <0.001, Student’s f-test). In
comfortable half limit trials, the corresponding values were
0.7460 + 0.0731 in SLRM and 0.6844 + 0.1022 in MSM when
measuring r values (p<0.001, Student’s t-test), and the
nRMSEs were 0.1204 + 0.0106 in SLRM and 0.1256 + 0.0219
in MSM (p<0.01, Student’s t-test). The stiffened move-
ment trials also had the same trend in r values,
being 0.8406+0.0344 in SLRM and 0.8142+0.0589
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FIGURe 8: Trial-based wrist joint movement estimation performance changes in the synergy-based linear regression model (SLRM) and
musculoskeletal model (MSM) in terms of the Pearson correlation coefficient (r) and normalized root-mean-square error (nRMSE). (a)
SLRM and MSM had no statistically significant difference in wrist motion with grip, while wrist motion average had a statistically significant
difference between the models (p < 0.001, Student’s ¢-test). (b) nRMSE between SLRM and MSM had a statistically significant difference in

every trial.

in MSM (p<0.001, Student’s t-test); and, for nRMSEs,
0.1852+0.0216 in SLRM and 0.2098 +0.0558 in MSM
(p<0.001, Student’s t-test).

3.3. Task 2: Grip Motion Test. Figure 7 shows the SLRM-
based time series grip force estimate and resulting angle
estimate perturbation. Subjects were constrained to a grip
device during the task to ensure that there was no actual
wrist motion during the entirety of task. Hence, wrist
motion estimation during grip motion was checked for
strong distortion in angle estimate. The results showed that
during the gripping task, instability of the wrist angle es-
timation occurred in the presence of a strong force acti-
vation, as may be seen in Figure 7(d). For the half and
quarter grip force task, angle estimation was less than 30°,
as shown in Figures 7(e) and 7(f). The r value for grip force
estimate and nRMSE of the X-Y angle estimate, compared
with zero angle (no movement), were computed as indi-
cated in Table 4. Sub8 data were omitted in this task because
the EMG signal was saturated during the ADC converting
process using NIDAQ (+5 voltage). The SLRM-based grip-
force estimate from nine subjects was 0.8463 +0.0503 in r
with  0.2559+0.1397 nRMSE in wrist movement
estimation.

4. Discussion

This study tested both MSM and SLRM in two different
conditions to optimize each model. Figure 9 shows the VAF
from SLRM1 and SLRM2 with the different number of wrist
motion synergies. The VAF of SLRMI converged in three

TaBLE 4: SLRM grip force estimate per subjects with corresponding
wrist movement estimate perturbation.

Grip force estimate  Angle X-Y (average)

Sub Data type

R nRMSE
Subl Mean 0.8408 0.3068
SD 0.0206 0.0748
Suba Mean 0.7164 0.4527
SD 0.0579 0.1922
Subs Mean 0.7909 0.0925
SD 0.1235 0.0760
Mean 0.8929 0.1980
Sub4 SD 0.0184 0.0370
Subs Mean 0.8682 0.3162
v SD 0.0416 0.1192
Subs Mean 0.9526 0.2749
v SD 0.0098 0.1652
Suby Mean 0.9488 0.2001
SD 0.0132 0.1733
Mean

Sub8 D — —
Subo Mean 0.8588 0.2436
SD 0.0318 0.0257
Mean 0.7471 0.2180
Subl0 SD 0.0198 0.2319
Mea Mean 0.8463 0.2559
ean SD 0.0503 0.1397

wrist motion synergies and overfitted thereafter. This trend
was the same as obtained in other studies whether in patients
or healthy subjects [26-28]. For SLRM2, the VAF converged
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FIGURE 10: SLRM2-based two-dimensional wrist joint angle estimation performance with regard to the wrist synergy number.

in four wrist motion synergies and overfitted up to five. There
was also a decrease in VAF in SLRM2. d” Avella et al. sug-
gested that when the number of extracted synergies is greater
than the generator synergies combination, each additional
synergy captures an equal amount of noise-generated vari-
ation [30]. In that sense, fifth and sixth muscle synergies are
noise-derived synergies. This study measured five wrist
motion muscles and two finger motion muscles; thus, the
sixth muscle synergy in SLRM2 formulated synergy set with
finger motion muscles, which made reproducibility impos-
sible. Such noise-derived synergies contaminated the esti-
mation performance. The wrist joint angle estimation
performance of SLRM2 with varying numbers of wrist syn-
ergies are shown in Figure 10. The highest performance was
obtained in four wrist motion synergies; the additional
number of synergies deteriorates the estimation performance.

In the SLRM, wrist movement estimation performance
showed statistical significance depending on the synergy

extraction method both in »* and nRMSE. This study aims
to use NMF for prosthetic and interface purposes;
therefore, synergies were modulated per subject and trial.
Separate synergy sets preserve multi-EMG coactivation in
the grip synergy, which enables synergy to cluster
movement type. In a joint-trial-based synergy set, the
NMF divided multi-EMG signals into several part-based
groups, resulting in tying the grip synergy to be a com-
bination of EMG signals not used in other synergies.
Therefore, the joint-trial-based synergy set could not
discriminate movement type. This tendency can be seen in
Figure 11. Synergy 5 had the most distinctive shape,
representing grip synergy. In a time-domain reaction,
SLRM1 responded to grip activation regardless of grip
force. In SLRM2, it also increased other synergy coefhi-
cients albeit, relatively, by a small amount when a strong
grip was assumed. This result could support extracting a
unique synergy for each motion [31].
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The FDS and FDP are flexor muscles of the fingers
from an anatomical point of view. Those two muscles are
separated by synergy analysis, which can be observed
from Synergy 5, as shown in Figure 10. For the wrist
motion with and without grip task, the other five muscles
are appropriate to estimate joint angles. For the MSM,
the minimum number of muscles exhibited good
performance.

The estimation performance between SLRM and MSM
had a statistically significant difference in the entire wrist-
only movement task both in  and nRMSE values; however,
there were no other r values in wrist motion with grip. The
results show the robustness of the wrist movements with
respect to finger movement of the MSM, which is the same as
those obtained by Kawase et al.’s experiment [17]. The es-
timation performance of SLRM also showed comparable
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performance with previous results in the literature on tra-
jectory [6] and joint force [9] estimation. The advantage of
SLRM is that it estimates not only continuous wrist
movements but also complex movements in addition to grip
motion. In this experiment, we confirmed that the esti-
mation performance of SLRM for complex motion was
equivalent to MSM performance.

Within the wrist-only motion trials, both SLRM and
MSM had the lowest performance in comfortable half
performance. This is most likely due to the nonlinearity
between EMG signals and arm motion or contamination of
movement artifact and baseline noise to the EMG (repre-
sentatively, Sub3). Therefore, the nonlinear regression
techniques used in the previous studies [6, 9] could be
comparable with the synergy-based model having an al-
ternative to using linear regression.

The linear envelope filtering used in the EMG signal
analysis was proven to have highly correlated signals with
joint torque induced by the target muscle [21]. Grip synergy,
which is a coactivation of these filtered EMG signals, also
showed a high grip force estimation performance of
0.8463 +0.0503 without resort to further conversion or
regression techniques. However, in the strong grip trial, it
was confirmed that the wrist angle estimation was distorted
by gripping EMG signals. This strong grip distortion indi-
cates the necessity to investigate the limits of the SLRM in
grip force estimation. Within the current experiment results,
it is difficult to determine whether each subject distorted the
wrist angle estimation with a similar absolute force level or
with a specific ratio of the maximum force.

5. Conclusions

In this study, we explored a model for estimating wrist joint
angle with and without grip action. In the first task, in which
we examined wrist angle estimation of SLRM and MSM, the
SLRM exhibited a relatively higher performance in wrist
motion. In the grip task, SLRM showed robustness in angle
estimation when the grip force is half or a quarter of its
maximum force level. In addition, SLRM can provide the
extent of grip force exerted in the center position with little
perturbation. These characteristics of SLRM are useful for
combined wrist and grip action; however, obtaining limiting
grip force required to crash the wrist angle estimation, and
vice versa, was beyond the scope of this study. Further
studies are required to obtain the simultaneous estimation of
both parameters necessary for daily usage.
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