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Abstract

Background: Economically important growth and meat quality traits in pigs are controlled by cascading molecular
events occurring during development and continuing throughout the conversion of muscle to meat. However, little
is known about the genes and molecular mechanisms involved in this process. Evaluating transcriptomic profiles of
skeletal muscle during the initial steps leading to the conversion of muscle to meat can identify key regulators of
polygenic phenotypes. In addition, mapping transcript abundance through genome-wide association analysis using
high-density marker genotypes allows identification of genomic regions that control gene expression, referred to as
expression quantitative trait loci (eQTL). In this study, we perform eQTL analyses to identify potential candidate
genes and molecular markers regulating growth and meat quality traits in pigs.

Results: Messenger RNA transcripts obtained with RNA-seq of longissimus dorsi muscle from 168 F2 animals from a
Duroc x Pietrain pig resource population were used to estimate gene expression variation subject to genetic control by
mapping eQTL. A total of 339 eQTL were mapped (FDR≤ 0.01) with 191 exhibiting local-acting regulation. Joint analysis
of eQTL with phenotypic QTL (pQTL) segregating in our population revealed 16 genes significantly associated with 21
pQTL for meat quality, carcass composition and growth traits. Ten of these pQTL were for meat quality phenotypes that
co-localized with one eQTL on SSC2 (8.8-Mb region) and 11 eQTL on SSC15 (121-Mb region). Biological processes
identified for co-localized eQTL genes include calcium signaling (FERM, MRLN, PKP2 and CHRNA9), energy metabolism
(SUCLG2 and PFKFB3) and redox hemostasis (NQO1 and CEP128), and results support an important role for activation of
the PI3K-Akt-mTOR signaling pathway during the initial conversion of muscle to meat.

Conclusion: Co-localization of eQTL with pQTL identified molecular markers significantly associated with both
economically important phenotypes and gene transcript abundance. This study reveals candidate genes contributing
to variation in pig production traits, and provides new knowledge regarding the genetic architecture of meat quality
phenotypes.
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Background
Genomic improvement techniques have significantly
advanced livestock breeding in recent years. Genomic
regions harboring single nucleotide polymorphisms
(SNP) accounting for a significant portion of phenotypic
variation for economically important traits have been
identified and implemented in marker assisted selection
[1–3]. In pigs, these efforts have identified candidate
genes affecting meat quality (e.g., CRC1, PRKAG3,
CAST), weight gain (e.g., MC4R) and litter size (e.g.,
ESR) [4]. However, we still do not fully understand the
molecular mechanisms underlying the variability observed
in pork traits.
Meat quality traits are highly correlated. During the

conversion of muscle to meat, Ca2+ ions are released from
the sarcoplasmic reticulum and the anaerobic production
of ATP leads to the accumulation of lactic acid that reduces
muscle pH [5]. The rate of pH decline and release of Ca2+

directly influences water holding capacity, meat color and
the rate of proteolytic activity that leads to meat tenderiza-
tion [5]. While these molecular processes have been
extensively studied with numerous QTL identified for ten-
derness, drip loss, pH, meat color and enzyme activity [6],
we know little of the genetic architecture regulating these
traits. This is likely due to the high variability of meat qual-
ity traits that are known to be heavily influenced by both
genetic and environmental factors such as antemortem
handling [7–9]. Regulators of gene expression have been
used to study the molecular bases of polygenetic pheno-
typic differences in swine populations [10–13]. In addition,
expression quantitative trait loci (eQTL) maps provide a
foundation to study divergent molecular processes in live-
stock species [2, 14]. This approach has been successful in
identifying candidate genes, causative variants and molecu-
lar networks regulating phenotypic traits in swine, includ-
ing back fat [15], drip loss [16], glycolytic potential [13],
plasma cortisol levels [10] and lipid metabolism [17].
For meat quality traits, cascading molecular events

starting before exsanguination and continuing through-
out the conversion of muscle to meat play a critical role
in determining the eating quality of pork. By studying
the transcriptomic profile of the initial steps leading to
the conversion of muscle to meat, we can elucidate key
regulators of polygenetic trait phenotypes. Specifically,
we can identify gene transcripts subject to genetic con-
trol that potentially regulate complex traits by mapping
eQTL and testing their co-localization with phenotypic
QTL (pQTL).
In this study, we use an F2 Duroc x Pietrain resource

population developed at Michigan State University [18, 19]
(the MSUPRP) to map eQTL for longissimus dorsi muscle
in order to identify local and distant regulators of transcript
abundance, and to estimate narrow-sense heritability (h2)
of gene expression. Putative hotspots are also of interest

where a single marker is associated with the expression of
multiple genes, serving as a potential master regulator that
can account for a significant portion of phenotypic
variation. A co-localization analysis of eQTL with pQTL
reveals novel insights into the genetic architecture of meat
quality, carcass composition and growth traits.

Results
Identification of eQTL
A genome wide association study (GWAS) was con-
ducted using 23,162 SNP markers and 15,249 transcript
abundance profiles for 168 F2 pigs. The GWAS identi-
fied 339 eQTL (3094 significant gene marker associa-
tions; whole genome FDR ≤ 0.01 per gene) for 321 gene
transcripts and 2523 molecular markers (Additional file 1
Table S1). The number of SNP associated with an eQTL
was on average 9.09 ± 15.07, and the size of each eQTL
interval was on average 11.59 ± 22.30-Mb (Table 1). A
total of five eQTL intervals contained an additional peak
determined through conditional analysis by fixing the
peak eQTL SNP. These eQTL intervals were observed
on SSC1, 10 and 12 (entries in Table S1 with the same
transcript identifiers).
All autosomes had associated eQTL, with SSC9 contain-

ing the most associations (42 eQTL). We considered a single
marker associated with more than ten genes to be a plaus-
ible putative hotspot, and two chromosomes contained a
putative hotspot; SSC9 (ASGA0044684; SSC9:125.0-Mb)
and SSC15 (H3GA0052416; SSC15:121.8-Mb). ASGA0044
684 was associated with 25 transcripts, and H3GA0052416
with 11 transcripts (FDR ≤ 0.01). Both plausible hotspots
mapped to non-coding regions, an intron variant of the ral
guanine nucleotide dissociation stimulator like 1 (RGL1)
gene on SSC9, and an intergenic variant on SSC15.

Local versus distant regulators of gene expression
For each of the eQTL intervals, a plausible position
range delimited by the first and last significant marker
(FDR ≤ 0.01) was identified and compared to the mapped
position of the associated gene transcript to distinguish
between local and distant regulators of gene expression
(Fig. 1 and Additional file 2 Figure S1). A classification
of local-acting regulator of gene expression was deter-
mined if the position of the associated gene transcript
overlapped the eQTL interval (Additional file 2 Figure S1).
We identified 166 local regulators of gene expression
(Fig. 1, black associations).
The average distance from the gene position and peak

eQTL SNP for local regulators was 1.90 ± 3.86-Mb.
However, due to the large plausible position range for
some local eQTL (up to 175-Mb), the maximum dis-
tance for a local regulator was 25-Mb (Table 1). If the
gene mapped to the same chromosome but fell outside
the range of its associated eQTL with markers below the
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significance threshold between the gene and eQTL posi-
tions, the eQTL was considered to be a distant regulator
on the same chromosome as the associated gene
(Additional file 2 Figure S1). A total of 61 distant regula-
tors on the same chromosome as the associated gene
were identified (Fig. 1, green associations) with their
eQTL interval at an average distance of 9.75 ± 22.92-Mb
from the associated gene position (Table 1). However, in
situations where the area between the eQTL range and
the associated gene transcript were found to be devoid
of markers, the eQTL was considered to be a plausible
local regulator (Additional file 2 Figure S1). Under this
classification, 23 plausible local regulators of gene ex-
pression were identified (Fig. 1, yellow associations) with
their eQTL interval at an average distance of 0.20 ±
0.40-Mb from the associated gene position (Table 1). An
eQTL that mapped to a different chromosome than its
associated gene transcript was classified as a distant

regulator (Additional file 2 Figure S1). We observed 87
distant regulators of gene expression (Fig. 1, blue associ-
ations). A non- parametric test showed local eQTL had
significantly higher numbers of associated SNPs than
distant eQTL (p-value ≤2.20e-16).

Heritability of gene expression
Heritability (h2) was estimated for all gene transcripts
with 344 exhibiting significantly heritable expression
(FDR ≤ 0.01, p-value ≤2.27e-04). The mean h2 for tran-
scripts with significantly heritable expression was 0.51 ±
0.13, whereas the mean h2 for other transcripts was 0.09
± 0.12 (Table 2). The relationship between the estimated
h2 of gene expression and its significance is shown in
Figure S2 in Additional file 2. Significant enrichment of
genes associated with an eQTL was observed for the sig-
nificantly heritable gene transcripts (p-value ≤2.2e-16;
shown in red, Figure S2). The h2 of genes with an associ-
ated eQTL that were not significantly heritable was on
average 0.21 ± 0.16 (shown in yellow, Figure S2 and sum-
marized in Table 2), whereas the group of significantly
heritable genes associated with an eQTL had a mean h2

of 0.57 ± 0.15 (Table 2). Mean heritability among the

Table 1 eQTL summary among regulator types

Gene Regulator Na Minb Maxc Meand SDe

Average length of eQTL interval f

All regulators 339 0 175.19 11.59 22.30

Local 168 0 175.19 21.62 27.59

Plausible Local 23 0 11.44 1.36 2.77

Distant Same Chromosome 61 0 25.55 2.22 5.46

Distant 87 0 69.76 1.47 7.92

Average distance from eQTL to gene transcript position f

Total Same Chromosome 252 4.11e-4 104.75 3.65 12.15

Local 168 4.11e-4 25.07 1.90 3.86

Plausible Local 23 4.28e-3 1.49 0.20 0.40

Distant Same Chromosome 61 3.73e-3 104.75 9.75 22.92

Distant 87 – – – –

Number of SNP associations per eQTL

All regulators 339 1 105 9.09 15.07

Local 168 1 105 16.45 18.65

Plausible Local 23 1 14 2.87 3.08

Distant Same Chromosome 61 1 17 2.05 2.37

Distant 87 1 5 1.46 0.97

Heritability estimates

All regulators 339 5.47e-10 0.97 0.32 0.23

Local 168 5.47e-10 0.97 0.42 0.22

Plausible Local 23 0.04 0.63 0.32 0.16

Distant Same Chromosome 61 1.19e-09 0.78 0.29 0.23

Distant 87 1.34e-09 0.76 0.17 0.17
aNumber of eQTL
bMinimum value
cMaximum value
dAverage value
eStandard deviation of value
fValues of eQTL interval or distance shown in mega bases. Zero interval values
correspond to eQTL associated with a single SNP

Fig. 1 eQTL map. The y-axis represents the absolute genomic
position of the gene and the x-axis represents the genomic location
of its associated SNP marker. Associations aligning on the diagonal
are eQTL found on the same chromosome as the gene. A plausible
position range was identified for each eQTL interval based on the
peak’s flanking markers, and local regulation was determined when
the gene position overlapped this range, shown in black. Plausible
local regulators of gene expression (described in Figure S1 in
Additional file 2) are shown in yellow. The eQTL intervals shown in
green are distant regulators that map to the same chromosome as
their associated gene. Distant regulators mapping to a different
chromosome than the associated gene are shown in blue. The eQTL
shown in red are plausible putative hotspots on SSC9 and SSC15
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different regulator types was higher in the group of
eQTL associated with local-acting regulation, 0.42 ±
0.22, and lowest in eQTL with distant-acting regulation,
0.17 ± 0.17 (Table 1). A non-parametric test showed a
significant difference between heritabilities for local- and
distant-acting regulators (p-value ≤1.08e-14).

Phenotypic QTL
Genomic regions significantly associated with growth
[20], meat quality and carcass composition [21] traits
have been previously identified in our MSUPRP. How-
ever, these analyses used an earlier assembly of the pig
genome (Sscrofa10.2); therefore, we reanalyzed the 67
phenotypic traits for the F2 population (960 animals)
following previous methods21,22 to generate an updated
QTL map using the most current genome assembly
(Sscrofa 11.1). Our QTL analysis of 29 growth traits
identified 14 pQTL (Table S2 in Additional file 1, FDR ≤
0.05, p-value ≤2.50e-04) for which seven were confirmed
from Duarte et al. [20] and five exhibited a different
peak SNP, in part because one of the SNP on SSC6
(ALGA0122657) did not have a genomic position in the
new genome build. We were unable to confirm two
pQTL on SSC2 for 10th rib backfat at 16-weeks and last
rib backfat at 19-weeks, and one pQTL on SSC3 for
birth weight that were reported in Gualdrón Duarte et
al. [20]. However, we identified two new pQTL for loin
muscle area at 16-weeks on SSC6 and last rib backfat at
10-weeks on SSC12. Our QTL analysis for carcass com-
position and meat quality traits identified 29 pQTL
(Additional file 1 Table S2, FDR ≤ 0.05). Fourteen pQTL
were confirmed from Casiro et al. [21] and eight exhib-
ited a different peak SNP, in part because three SNP
(SSC6: ALGA0122657, SSC11: M1GA0015491 and
SSC15: MARC0047188) did not have genomic positions
in the new genome build. Seven new pQTL were identi-
fied for cook yield (SSC5 and SSC8), last lumbar backfat
(SSC4, SSC9 and SSC10), dressing percent (SSC11) and
loin weight (SSC11). In total, 43 pQTL were mapped
using the Sscrofa11.1 genome assembly, including six

QTL for 10th rib backfat from 13 to 22 weeks of age,
seven QTL for last rib backfat from 13 to 22 weeks of
age, one QTL for loin muscle area at 16 weeks of age, 13
QTL for carcass composition traits and 16 QTL for meat
quality traits.
Meat quality traits in our population exhibited pheno-

typic correlations as expected. WBS was negatively corre-
lated with sensory panel scores (i.e., juiciness, tenderness
and overall-tenderness) and cook yield, and positively cor-
related with protein percent (p-value ≤8e-05, Additional
file 2 Figure S3). Cook yield was negatively correlated with
drip loss, and positively correlated with 24-h pH and pro-
tein percent (p-value ≤8e-05, Figure S3). Phenotypes re-
lated to tenderness were associated with QTL on SSC2,
and all eight of the aforementioned correlated meat qual-
ity phenotypes were associated with QTL mapped to
SSC15 (Fig. 2). A similar trend was observed for growth
and carcass composition traits related to fat deposition
and muscle weight where serial ultrasound measures for
10th and last rib backfat were positively correlated with
carcass 10th-rib and last lumbar backfat, and negatively
correlated with loin weight (p-value ≤8e-05, Figure S3),
and these traits were associated with QTL on SSC6 (Fig. 2
and Fig. 3).

Co-localization of phenotypic QTL with expression QTL
The association of eQTL co-localized with pQTL was
performed through a conditional analysis of transcript
abundance, which fixed the peak pQTL SNP, to elucidate
eQTL significantly associated with phenotypic traits.
Manhattan plots of eQTL co-localized with pQTL are
shown in Fig. 2 for meat quality and carcass composition
traits, and Fig. 3 for growth traits. The conditional ana-
lysis tested 53 eQTL (orange associations) co-localized
with 34 pQTL (blue associations) for ten growth and 11
meat quality and carcass composition traits (Fig. 2 and
Fig. 3; Table 3 and Additional file 1 Table S3). A total
of 16 eQTL were significantly associated with 21
pQTL, where conditioning upon the peak pQTL
marker resulted in the complete removal of eQTL
significance (p-value ≤5.95e-04 for SNP effect and
FDR ≤ 0.01 for eQTL significance; black associations
in Fig. 2 and Fig. 3; Table 3 and Table S3 in Additional file
1). Three pQTL regions common among correlated pheno-
types co-localized with eQTL, resulting in eQTL sig-
nificantly associated with variation for multiple
phenotypes. Pearson correlation between phenotypic
values and the colocalized gene expression resulted in
11 genes with expression significantly correlated with
phenotype; 73% of these genes were correlated with
protein percent (Additional file 1 Table S3). The LD
between peak QTL SNP for pQTL significantly
colocalized with eQTL was on average 0.317 ± 0.08
(Additional file 1 Table S3).

Table 2 Heritability summary for all genes and genes with an
associated eQTL

Significant
h2

N Heritability (h2)

Min Max Mean SD

All Genes

Yesa 344 0.184 0.968 0.508 0.133

No 14,879 2.210e-19 0.785 0.091 0.123

eQTL Genes

Yesa 103 0.184 0.968 0.574 0.147

No 218 5.475e-10 0.745 0.206 0.165
aFDR ≤ 0.01
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Phenotypic QTL for growth and carcass composition
traits associated with eQTL on SSC6 revealed two genomic
regions. A 28.82-Mb region (SSC6:43.819–72.625-Mb) was
associated with the hepsin gene (HSN) and with loin
muscle area at 16 weeks. A 53.33Mb region (SSC6:99.932–
153.261-Mb) was associated with a novel transcript
(SSC6:104.08) and with serial ultrasound measures of last
rib backfat (at 10, 13, 16 and 22weeks of age), 10th rib

backfat at 13 weeks of age, and carcass last lumbar backfat.
The peak pQTL marker for loin muscle area at 16 weeks of
age, ASGA0105067, accounted for 4% of the phenotypic
variance and 13.5% of the gene expression variance with in-
creased loin muscle area associated with decreased expres-
sion of the HPN gene (Fig. 4). The pQTL marker for
backfat deposition, ALGA0104402, accounted for 5–7.1%
of the phenotypic variance, and 10.1% of the gene

Fig. 2 Manhattan plots of meat quality and carcass composition pQTL co-localized with eQTL. The x-axis is the absolute genome position in
mega-bases. The y-axis is the negative base 10 logarithm of q-values, with the red line representing the significance threshold. Manhattan plots
in shades of blue are for the pQTL (FDR≤ 0.05), and those in shades of orange are for the eQTL (FDR ≤ 0.01). SNPs associated with an eQTL
co-localizing with a pQTL, and whose association is no longer significant after performing the conditional analysis are shown in black
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expression variance, with increased expression of the novel
transcript SSC6:104.08 associated with reduced backfat de-
position (Fig. 4).
Two additional pQTL for carcass composition pheno-

types (carcass 10th rib backfat and loin weight) also
mapped to the 53.33-Mb region on SSC6 and were signifi-
cantly associated with the SSC6:104.08 novel transcript
and with SSX2IP. The peak pQTL marker for carcass 10th

rib backfat (M1GA0008917) accounted for 12.2% of the
phenotypic variance, with increased expression of both
the SSC6:104.08 novel transcript and SSX2IP associated
with reduced 10th rib backfat. For loin weight, the peak
pQTL marker (ASGA0029651) was associated with re-
duced loin weight and reduced expression of both the
SSC6:104.08 novel transcript and SSX2IP, accounting for
6.4% of the phenotypic variance and up to 12.7% of the

Fig. 3 Manhattan plots of growth pQTL co-localized with eQTL. The x-axis is the absolute genome position in mega-bases. The y-axis is the
negative base 10 logarithm of q-values, with the red line representing the significance threshold. Manhattan plots in shades of blue are for the
pQTL (FDR≤ 0.05), and those in shades of orange are for the eQTL (FDR≤ 0.01). SNPs associated with an eQTL co-localizing with a pQTL, and
whose association is no longer significant after performing the conditional analysis are shown in black
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transcript expression variance (Fig. 4). A second pQTL for
loin weight was mapped on SSC11 and was significantly
associated with a novel transcript (SSC11:2.19), which co-
incides with the uncharacterized locus LOC110255792.
The peak pQTL marker for loin weight on SSC11
(ALGA0060368) accounted for 2.7% of the phenotypic

variance and 10.7% of the gene expression variance. Re-
duced loin weight was associated with reduced expression
of the SSC11:2.19 transcript (Fig. 4).
Considering the pQTL for meat quality and carcass

composition traits with their associated eQTL reveals two
genomic regions of particular note. A 7.90-Mb region on

Table 3 Phenotypic QTL co-localized with expression QTL

Phenotype SSC Peak SNP Position Ea VSb h2 qvaluec Intervald Ne

Carcass 10th-Rib Backfat 1 ALGA0010839 270.61 + 0.03 0.45 4.05e-03 270.39–274.20 1

WBS 2 M1GA0002229 4.34 – 0.04 0.26 4.07e-04 4.34–7.32 1f

SP Tenderness 2 H3GA0005676 6.77 + 0.05 0.29 2.02e-04 4.34–7.32 1f

SP Overall Tenderness 2 H3GA0005676 6.77 + 0.05 0.28 4.80e-05 6.38–7.32 1f

Last Lumbar Backfat 4 ASGA0092651 88.28 – 0.04 0.41 4.53e-02 0 4

Last-Rib Backfat 16-wk 5 ALGA0031990 55.01 + 0.03 0.47 4.62e-02 53.28–55.01 1

Cook Yield 5 MARC0036560 66.10 + 0.03 0.31 3.30e-02 62.76–66.10 1

Loin Muscle Area 16-wk 6 ASGA0105067 69.37 + 0.04 0.29 3.16e-02 69.37–69.91 4f

Last-Rib Backfat 13-wk 6 ALGA0104402 147.74 – 0.07 0.43 2.33e-05 108.75–151.35 6f

Carcass 10th-Rib Backfat 6 M1GA0008917 144.60 – 0.12 0.45 8.11e-08 108.75–153.26 6f

Last-Rib Backfat 10-wk 6 ALGA0104402 147.74 – 0.07 0.35 5.25e-05 114.92–153.13 6f

Loin Weight 6 ASGA0029651 144.64 – 0.06 0.30 2.24e-03 135.37–150.06 4f

Last-Rib Backfat 22-wk 6 ALGA0104402 147.74 – 0.07 0.49 8.80e-05 135.85–150.04 4f

10th-Rib Backfat 13-wk 6 ALGA0104402 147.74 – 0.05 0.43 3.05e-03 142.22–150.04 4

Last-Rib Backfat 16-wk 6 ALGA0104402 147.74 – 0.06 0.47 2.63e-04 142.75–153.05 5

Last Lumbar Backfat 6 ALGA0104402 147.74 – 0.05 0.41 1.38e-02 142.75–153.13 5

10th-Rib Backfat 10-wk 6 ASGA0029651 144.64 + 0.06 0.41 1.56e-02 144.55–147.74 2

10th-Rib Backfat 22-wk 6 ALGA0104402 147.744 – 0.04 0.47 2.69e-02 144.60–147.74 2

10th-Rib Backfat 16-wk 6 ALGA0104402 147.74 – 0.06 0.49 2.14e-03 0 2

10th-Rib Backfat 19-wk 6 ALGA0104402 147.74 – 0.05 0.50 8.72e-03 147.74–147.74 2

Last-Rib Backfat 19-wk 6 ALGA0104402 147.74 – 0.06 0.57 3.41e-04 147.74–150.04 2

Number of Ribs 7 ALGA0043983 98.51 + 0.12 0.36 4.19e-09 59.41–111.38 10

Cook Yield 8 DRGA0008986 134.93 – 0.03 0.31 2.01e-02 134.93–134.93 1

Dressing Percent 11 M1GA0014839 6.88 + 0.03 0.24 4.33e-02 1.72–6.88 2

Loin Weight 11 ALGA0060368 4.51 – 0.03 0.30 3.10e-02 4.51–4.51 2f

Last-Rib Backfat 10-wk 12 ASGA0054658 41.73 – 0.02 0.35 4.03e-02 41.73–41.73 2

Protein Percent 15 MARC0093624 122.22 + 0.21 0.38 8.71e-20 48.78–131.28 21f

24-h pH 15 MARC0093624 122.22 + 0.09 0.19 3.35e-07 110.22–131.45 16f

Cook Yield 15 MARC0093624 122.22 + 0.15 0.31 3.61e-13 113.26–132.44 16f

Drip Loss 15 MARC0093624 122.22 – 0.13 0.28 4.20e-11 113.26–137.87 17f

SP Overall Tenderness 15 H3GA0052416 121.81 + 0.07 0.28 3.59e-05 118.55–122.90 16f

WBS 15 MARC0093624 122.22 + 0.06 0.26 4.07e-04 120.03–122.90 16f

SP Juiciness 15 H3GA0052416 121.81 + 0.04 0.07 5.06e-03 120.03–122.22 16f

SP Tenderness 15 H3GA0052416 121.81 + 0.07 0.29 1.90e-05 120.03–122.90 16f

SNP significantly associated with phenotype
aEffect of peak pQTL SNP on phenotype, positive indicates B allele increases phenotypic trait
bProportion of phenotypic variance explained by peak SNP
cGWAS qvalue for peak SNP
dInterval for pQTL: start and end position
eNumber of eQTL co-localized with the pQTL
fContains at least one eQTL significantly associated with the phenotype
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SSC2:4.341–12.242-Mb was associated with the FERM
domain-containing 8 gene (FRMD8) and WBS, sensory
panel tenderness and overall tenderness phenotypes, and
a 110.21Mb region on SSC15:27.666–137.874-Mb was as-
sociated with 11 genes and eight meat quality or carcass
composition phenotypes (Tables 3 and 4). Significant
negative correlations were observed between WBS and all
three sensory panel phenotypes as expected for these traits
(r = − 0.44 ± 0.14, p-value ≤8e-05, Fig. 4); more force
needed to break myofibers (i.e., higher shear force values)
was correlated with lower meat tenderness based on sub-
jective scores evaluated by a trained sensory panel. The
peak pQTL markers, M1GA0002229 and H3GA0005676,
for meat quality traits on SSC2 accounted for approxi-
mately 5 % of the phenotypic variance and 8 % of FRMD8
gene expression variance (Fig. 4) with increased expres-
sion of FRMD8 associated with increased sensory panel
tenderness and overall tenderness scores and decreased
WBS. High linkage disequilibrium (LD) was observed
between these two SNPs (r = 0.64).
Eleven of the eQTL significantly associated with pQTL

were distant regulators of gene expression, and all of
these were also associated with a plausible hotspot
within the 110.21-Mb region on SSC15. The SSC15
plausible hotspot marker H3GA0052416 was the peak
pQTL marker for sensory panel juiciness, tenderness
and overall tenderness (Table 3), as well as the peak
eQTL marker for seven gene transcripts (Table 4). The
peak pQTL marker for WBS, 24-h pH, cook yield, drip
loss and protein percent on SSC15 (MARC0093624) is
in high LD with the H3GA0052416 marker (Pearson

correlation 0.89). The expression of eight (CEP128,
CHRNA9, MRLN, NQO1, PFKFB3, PKP2, SUCLG2,
TEX9) of the eleven genes associated with the
H3GA0052416 marker were significantly correlated with
the protein percent phenotype (r = − 0.34 ± 0.05, FDR ≤
0.05; Table S4 in Additional file 1). These results suggest
a potential candidate variant(s) on SSC15 accounting for
a significant portion of phenotypic variation for meat
quality and carcass composition phenotypes, as well as
individual gene expression variation. Since the two
markers (H3GA0052416 and MARC0093624) are in
high LD, the proportion of phenotypic and gene expres-
sion variance was estimated for the H3GA0052416
marker for all eight phenotypes and eleven gene tran-
scripts including CCDC60, CEP128, CHRNA9, CIT,
MRLN, NQO1, PFKFB3, PKP2, SUCLG2, TEX9, and a
novel transcript SSC15:48.94-Mb (mapped to the unchar-
acterized locus LOC110257028). The H3GA0052416
marker accounted for 4–16% of the phenotypic variance
and approximately 23% of the gene expression variance
(Fig. 4). The B allele of the H3GA0052416 marker was as-
sociated with increased expression of the eleven genes,
and was also associated with an increase in sensory panel
scores and drip loss, and a decrease in WBS, 24-h pH,
cook yield and protein percent (Fig. 4).
The gene protein kinase AMP-activated non-catalytic

subunit gamma 3 (PRKAG3) maps to this region of
SSC15, and variants of PRKAG3 have been implicated in
affecting meat quality phenotypes [22, 23]. We geno-
typed all F2 animals for two PRKAG3 coding SNPs [21]
and included these SNP in our GWAS. However, the

Fig. 4 Proportion of variance explained by peak pQTL SNP for phenotypes (blue) and gene transcript abundance (green). Traits are shown on the
x-axis, and the proportion of phenotypic variance explained by the SNP marker is shown on the y-axis. Directionality of bar plots indicates SNP
effect on phenotype or gene expression (i.e., increase or decrease)

Velez-Irizarry et al. BMC Genomics            (2019) 20:3 Page 8 of 19



Ta
b
le

4
Ex
pr
es
si
on

Q
TL

si
gn

ifi
ca
nt
ly
as
so
ci
at
ed

w
ith

ph
en

ot
yp
ic
tr
ai
ts

G
en

e
SS
C
G
en

e
h2

SS
C
eQ

TL
In
te
rv
al
eQ

TL
Re
gu

la
to
rb

P
ea
k
eQ

TL
SN

P
Po

si
tio

n
Ec

va
lu
ed

Ph
en

ot
yp
ee

TE
X9

1
3.
76
e-
01

15
27
.6
66
–1
22
.2
19

D
is
ta
nt

H
3G

A
00
52
41
6

12
1.
80
6

+
6.
09
e-
04

M
ea
t
Q
ua
lit
y,
Pr
ot
ei
n
Pe
rc
en

t

FR
M

D
8

2
4.
00
e0
1

2
6.
38
3–
12
.2
42

Lo
ca
l

A
SG

A
00
98
75
6

12
.2
42

–
7.
25
e-
04

W
BS
,S
P
Te
nd

er
ne

ss
,S
P

O
ve
ra
ll
Te
nd

er
ne

ss

PK
P2

5
2.
91
e-
01

15
12
1.
80
6–
12
1.
87
3

D
is
ta
nt

H
3G

A
00
52
41
6

12
1.
80
6

–
9.
47
e-
03

M
ea
t
Q
ua
lit
y,
Pr
ot
ei
n
Pe
rc
en

t

N
Q
O
1

6
3.
28
e-
01

15
12
1.
80
6–
12
2.
21
9

D
is
ta
nt

H
3G

A
00
52
41
6

12
1.
80
6

+
1.
74
e-
04

M
ea
t
Q
ua
lit
y,
Pr
ot
ei
n
Pe
rc
en

t

H
PN

6
3.
62
e-
01

6
43
.8
09
–7
2.
62
5

Lo
ca
l

A
LG

A
01
13
42
0

68
.0
85

+
1.
20
e-
03

Lo
in

M
us
cl
eA

re
a1
6-
w
k
La
st
-R
ib

Ba
ck
f
at

10
,1
3,
22

M
ET
TL
4

6
1.
70
e-
01

6
99
.9
32
–1
36
.0
22

Lo
ca
l

M
A
RC

01
07
78
5

10
1.
29

–
9.
55
e-
04

w
k,
C
ar
ca
ss

10
th
-
Ri

b
Ba
ck
f
at
,L
oi
n
W
ei
gh

t

SS
X
21

P
6

4.
60
e-
01

6
12
0.
49
7–
14
3.
33
8

Lo
ca
l

A
LG

A
01
04
76
1

14
1.
31
7

+
5.
27
e-
03

C
ar
ca
ss

10
th
-
Ri
b
Ba
ck
f
at
,L
oi
n
W
ei
gh

t

C
EP
12
8

7
4.
47
e-
01

15
12
1.
56
2–
12
2.
21
9

D
is
ta
nt

H
3G

A
00
52
41
6

12
1.
80
6

+
1.
39
e-
04

M
ea
t
Q
ua
lit
y,
Pr
ot
ei
n
Pe
rc
en

t

C
H
RN

A
9

8
4.
21

e-
01

15
12
0.
03
1–
12
2.
21
9

D
is
ta
nt

D
IA

S0
00
06
78

12
1.
56
2

–
7.
96
e-
05

M
ea
t
Q
ua
lit
y,
Pr
ot
ei
n
Pe
rc
en

t

PF
KF
B3

10
7.
44
e-
03

15
12
1.
80
6–
12
1.
87
3

D
is
ta
nt

M
A
RC

00
27
29
1

12
1.
87
3

–
5.
03
e-
03

M
ea
t
Q
ua
lit
y,
Pr
ot
ei
n
Pe
rc
en

t

SS
C
11
:2
.1
9a

11
5.
23
e-
01

11
0.
21
5–
5.
40
6

Lo
ca
l

A
LG

A
00
60
27
7

2.
79
8

1.
05
e-
04

Lo
in

W
ei
gh

t

SU
C
LG

2
13

2.
34
e-
01

15
12
0.
03
1–
12
1.
87
3

D
is
ta
nt

M
A
RC

00
27
29
1

12
1.
87
3

–
1.
06
e-
03

M
ea
t
Q
ua
lit
y,
Pr
ot
ei
n
Pe
rc
en

t

C
IT

14
1.
90
e-
01

15
12
1.
56
2–
12
2.
21
9

D
is
ta
nt

H
3G

A
00
52
41
6

12
1.
80
6

+
9.
14
e-
06

M
ea
t
Q
ua
lit
y,
Pr
ot
ei
n
Pe
rc
en

t

C
C
D
C6

0
14

3.
90
e-
01

15
12
1.
80
6–
12
2.
76
7

D
is
ta
nt

H
3G

A
00
52
41
6

12
1.
80
6

+
1.
67
e-
03

M
ea
t
Q
ua
lit
y,
Pr
ot
ei
n
Pe
rc
en

t

M
RL
N

14
4.
00
e-
01

15
12
1.
56
2–
12
2.
21
9

D
is
ta
nt

M
A
RC

00
27
29
1

12
1.
87
3

–
1.
54
e-
04

M
ea
t
Q
ua
lit
y,
Pr
ot
ei
n
Pe
rc
en

t

SS
C
15
:4
8.
94

a
15

1.
75
e-
01

15
12
1.
56
2–
12
1.
87
3

D
is
ta
nt

SC
H
3G

A
00
52
41
6

12
1.
80
6

+
4.
67
e-
03

M
ea
t
Q
ua
lit
y,
Pr
ot
ei
n
Pe
rc
en

t
a N

ov
el

ge
ne

tr
an

sc
rip

ts
:S
us

sc
ro
fa

ch
ro
m
os
om

e
an

d
st
ar
t
po

si
tio

n
b
Re

gu
la
to
r
ty
pe

fo
r
eQ

TL
c E
ff
ec
t
th
e
pe

ak
eQ

TL
m
ar
ke
r
ha

s
on

th
e
ge

ne
’s
ex
pr
es
si
on

:p
os
iti
ve

in
di
ca
te
s
B
al
le
le

in
cr
ea
se
s
an

d
ne

ga
tiv

e
in
di
ca
te
s
B
al
le
le

de
cr
ea
se
s
ex
pr
es
si
on

d
qv

al
ue

of
pe

ak
eQ

TL
m
ar
ke
r
(F
D
R
<
0.
01

)
e P
he

no
ty
pe

s
si
gn

ifi
ca
nt
ly

as
so
ci
at
ed

w
ith

th
e
ge

ne
’s
ex
pr
es
si
on

.M
ea
t
Q
ua

lit
y
in
cl
ud

es
th
e
ph

en
ot
yp

es
fo
r
se
ns
or
y
pa

ne
lj
ui
ci
ne

ss
,t
en

de
rn
es
s
an

d
ov

er
al
lt
en

de
rn
es
s,
W
ar
ne

r
Br
at
zl
er

Sh
ea
r
Fo

rc
e,

C
oo

k
Yi
el
d,

D
rip

Lo
ss

an
d
24

-h
pH

Velez-Irizarry et al. BMC Genomics            (2019) 20:3 Page 9 of 19



eQTL scan did not reveal associations with either of the
PRKAG3 markers. To further assess the effect of
PRKAG3, we performed a conditional analysis to esti-
mate the significance of these markers on identified
eQTL (Additional file 1 Table S5). Only one gene,
NQO1, was significantly associated with the PRKAG3
T30 N SNP (FDR ≤ 0.01), where T30 N accounted for up
to 12% of the gene expression variance (data not shown).
Given the high signal of the H3GA0052416 marker on
SSC15 for various genes and meat quality traits, we esti-
mated the proportion of phenotypic variance explained by
both H3GA0052416 and the PRKAG3 T30N marker for
meat quality and carcass composition traits (Additional
file 2 Figure S4). The PRKAG3 T30N marker accounted
for 0.1–2% of phenotypic variance for meat quality traits,
whereas the H3GA0052416 marker accounted for 2–14%.
This analysis shows the H3GA0052416 marker accounts
for a greater proportion of phenotypic variance than the
PRKAG3 T30N SNP.

RT-qPCR confirmation of CHRNA9
The statistical model identified 24 eQTL mapped to a
125-Mb region on SSC15. Eleven of these eQTL
co-localized with pQTL for meat quality and carcass
composition traits, and among these the CHRNA9 gene
was selected for verification using RT-qPCR (Fig. 4).
CHRNA9 is implicated in catecholamine secretion and
the adaptive response to chronic stress [24], and is es-
sential for muscle contraction [25]. The genomic pos-
ition of the CHRNA9 gene is on SSC8: 31.44–31.51-Mb,
and the eQTL associated with this gene mapped to
SSC15, therefore exhibiting distant-acting regulation of
CHRNA9 gene expression. RT-qPCR was performed to
confirm the expression pattern of the CHRNA9 gene in
longissimus dorsi muscle. Pearson correlation between
the ΔCt and RNA-seq log-cpm for CHRNA9 transcript
abundance was − 0.58. The marker DIAS0000678 was
significantly associated with both RNA-seq and ΔCt for
CHRNA9 (p-value ≤4.23e-06), exhibiting a significant
dominant effect with the B allele associated with in-
creased CHRNA9 transcript abundance (p-value ≤0.05,
Additional file 1 Table S6).

Discussion
For this study, we identified eQTL for longissimus dorsi
muscle transcripts from pigs in an F2 resource popula-
tion, and we declared local versus distant eQTL effects
based on LD structure. When an eQTL and the associ-
ated gene are located on the same chromosome, the low
resolution of the swine genome due to long range LD
[26, 27] limits the ability to distinguish between
cis-acting and trans-acting eQTL. Most eQTL associ-
ation studies use a fixed distance threshold between the
position of the eQTL interval and the gene transcript to

define cis-acting (i.e., local) versus trans-acting (i.e.,
distant) regulation. For instance, distance thresholds be-
tween 1-Mb and 10-Mb have been used in recent pig
eQTL maps [10, 13, 28–31]. Human eQTL scans have
used more conservative distance thresholds of 100-Kb –
500-Kb between gene position and eQTL to declare
local regulation [32, 33]. A shorter local threshold is lo-
gical for human eQTL studies because they typically
show higher resolution due to increased SNP density
(millions of genotyped markers [32]), and the extent of
LD is less than in livestock populations due to greater
genetic diversity in human populations [33]. In this
study, we present an alternative to the use of a fixed dis-
tance for declaring local versus distant eQTL effects.
This is important because the range of a mapped eQTL
will depend on the LD pattern at the QTL genomic pos-
ition. Building upon previous approaches to determine
local regulation [11, 15, 34, 35] in eQTL linkage maps,
this study considered the significance of each individual
marker surrounding the plausible position range of the
eQTL interval to distinguish between local and distant
modes of action. In cases where there are no genotyped
markers between the plausible position of the eQTL
interval and the location of the associated gene, there is
not sufficient information to determine local versus dis-
tant; here we consider this scenario as plausible local
regulation. We note that in our study the median dis-
tance between plausible local eQTL regulators and their
associated gene was 31-Kb, which is a shorter distance
than eQTL designated as local for other pig eQTL map-
ping studies [10, 13, 28–31]. Therefore, it is feasible that
most of these regulators may be acting locally, since
cis-acting transcription factor binding sites have been
found located ~ 100 kb from the mapped position of a
gene transcript [36]. However, without a denser SNP set
and/or a larger population size, we cannot definitively
identify the mode of action of these eQTL. A potential
way to further investigate if these eQTL are acting
locally or distantly would be through allele-specific ex-
pression analyses [14].
Heritability of gene expression contributes to our under-

standing of the inheritance of gene expression regulation.
Estimating the heritability of gene expression is common in
human eQTL studies to elucidate the genetic contribution
of gene expression variation and its influence on the diver-
gence of complex traits [32, 33, 37, 38]. Human studies
have shown higher heritability estimates for housekeeping
genes and genes with local eQTL, whereas genes with dis-
tant eQTL tend to exhibit lower heritability [32, 37, 38].
Bryois et al. [37] suggested a fraction of missing heritability
may be due to common variants with both local and distant
effects on gene expression, with the latter being of small
effect size. Examples of local eQTL with large distant effects
in human studies include variants influencing the
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expression of transcription factor genes or histone methyl-
transferase genes [37]. Heritability of gene expression has
not been emphasized in pig eQTL studies, except for one
report where heritability was used as a filtering criteria to
prioritize genes [35]. In this study, we estimated
narrow-sense heritability for all gene expression profiles
and determined significance with likelihood ratio tests.
Consistent with previous studies in humans, the observed
heritabilities for genes with distant eQTL were significantly
lower than for locally regulated genes [32]. This trend is
consistent with previous findings where genes influenced
by many distant factors of small effect tend to exhibit lower
heritability than genes with local regulation. Testing for sig-
nificant additive genetic effects of transcript abundance in
outbred animal populations requires a large sample size to
increase power to detect smaller effects. In our GWA scan,
we were able to capture the variance associated with gene
transcripts subject to genetic control with low heritability.
A previous eQTL scan performed with 57 muscle tissue
samples from an F2 swine population observed an average
heritability of 0.45 for eQTL genes [35]. While this value is
greater than the average heritability observed in our study
(0.32), Liaubet et al. [35] limited the eQTL scan to gene
transcripts with heritability greater than 0.05. The use of a
heritability threshold to filter genes in eQTL studies may
miss potential associations, especially those of low effect
such as distant eQTL, which we show to have lower aver-
age heritability estimates.
We identified three gene transcripts that were associ-

ated with pQTL for fat deposition and carcass compos-
ition traits on SSC6. One of these eQTL genes, synovial
sarcoma X breakpoint 2 interacting protein (SSX2IP),
was significantly associated with pQTL for carcass 10th
rib backfat and loin weight. An eQTL was previously
identified for this gene on SSC6 using microarray data
from the same animals used in this study, and consistent
with our results, Peñagaricano et al. [39] reported a
negative causal effect of increased expression of SSX2IP
on backfat thickness [39]. In addition, SSX2IP has been
associated with waist to hip ratio, a common measure of
body fat distribution, in women of African descent [40].
The genes associated with pQTL for tenderness phe-

notypes on SSC2 or meat quality phenotypes on SSC15
share biological processes known to directly influence
the organoleptic properties of meat, including calcium
signaling (FRMD8, MRLN, PKP2 and CHRNA9), energy
metabolism (SUCLG2 and PFKFB3), redox hemostasis
(NQO1 and CEP128) and cytoskeletal structure (CIT and
CCDC60). One of the genes related to calcium signaling
is the FERM domain containing 8 (FRMD8) gene associ-
ated with pQTL for WBS, and sensory panel tenderness
and overall tenderness on SSC2. Two independent GWAS,
one in a crossbred commercial pig population [41] and an-
other in a multigenerational Landrace-Duroc-Yorkshire

composite population [42], reported QTL for slice shear
force (a technique similar to WBS) in the same genomic re-
gion as this study. Zhang et al., [41] identified FRMD8 to
be one of four genes in the region to play a role in pork ten-
derization, and the peak SNP reported by Nonneman et al.
[42] was the same peak SNP identified in our analysis
(H3GA0005672). We showed with our conditional analysis
that increased expression of FRMD8 was associated with
improvements in pork tenderness. FRMD8 is a member of
the FERM (Four-point-one, Ezrin, Radixin, Meosin) protein
superfamily known to possess both structural and signaling
functions including numerous protein-binding interactions
mainly in the cytoskeleton of cells [43]. This includes inter-
actions with transmembrane ion channels and membrane
lipids including the phosphatidylinositol 4,5-bisphosphate
(PIP2). PIP2 is the precursor of inositol 1,4,5-triphosphate
(IP3) involved in Ca2+ signaling [44–46] and IP3 has been
suggested as a potential indicator of meat tenderness in
beef cattle [47]. The activation of the PIP2 Ca2+ signaling
system controls diverse cellular processes in numerous tis-
sues [48]. In skeletal muscle the sarcoplasmic reticulum
ryanodine receptor is the Ca2+ release channel, however,
PIP2 has been localized to the transverse tubular mem-
brane, and IP3 receptors have been found in differentiated
muscle fibers and implicated in excitation-contraction
coupling (for review see Csernoch et al. [49]). Thus,
FRMD8 may play a role in Ca2+ signaling and
excitation-contraction coupling of skeletal muscles through
interactions with PIP2.
Similar to FRMD8, the MRLN gene is also implicated

in muscle contraction. MRLN encodes myoregulin, a
micropeptide inhibitor of the sarco/endoplasmic
reticulum Ca+ 2 ATPase (SERCA). SERCA regulates re-
laxation after muscle contraction, specifically by pump-
ing Ca+ 2 back to the sarcoplasmic reticulum. Binding
myoregulin to SERCA lowers its affinity to Ca+ 2, redu-
cing the rate of Ca+ 2 reuptake into the sarcoplasmic
reticulum [50]. Increased expression of MRLN was asso-
ciated with improvements in pork tenderization, de-
creased 24-h pH and increased drip loss in our study.
The observed effect of MRLN gene expression on meat
quality phenotypes may be due to its involvement in
regulating muscle contractility and calcium signaling,
which have a direct effect on postmortem proteolysis.
Additional genes implicated in calcium signaling and

associated with meat quality phenotypes and the
H3GA0052416 marker were the PKP2 and CHRNA9
genes. PKP2 encodes a plakophilin protein known to
localize to cell desmosomes and nuclei, and play a role
in linking cadherins to intermediate filaments in the
cytoskeleton. In mouse cardiac muscle, PKP2 has been
shown to regulate the transcription of genes controlling
intercellular calcium homeostasis, and reduced expres-
sion of PKP2 decreases the expression of several calcium
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signaling genes including the cardiac muscle ryanodine
receptor [51]. In this study, increased expression of
PKP2 was associated with improvements in pork tender-
ness, and decreases in 24-h pH, protein percent and
cook yield, suggesting a role for this gene in modulating
skeletal muscle calcium signaling during the conversion
of muscle to meat. The CHRNA9 gene is one of sixteen
subunits of the nicotinic acetylcholine receptor (AChR).
These ligand-gated ion channels permit the transmission
of presynaptic acetylcholine release and postsynaptic ex-
citatory potential. Found only in neuronal tissue,
CHRNA9 is one of three AChR containing only α sub-
units [25] (α9-AChR), and in neuromuscular junctions
AChR are essential for muscle contraction [25]. Since
α9-AChR possess higher calcium permeability, they play
a role in catecholamine secretion and the adaptive re-
sponse to chronic stress [24]. In this study, increased ex-
pression of CHRNA9 was associated with improved
tenderness scores, increased drip loss, and decreased
cook yield, protein percent and 24-h pH. In addition, we
verified the expression of CHRNA9 in skeletal muscle
with RT-qPCR and confirmed a significant dominance
effect of the peak eQTL SNP (DIAS0000678) on
CHRNA9 gene expression. Changes in the expression of
CHRNA9 may potentially regulate the postsynaptic exci-
tatory potential during the conversion of muscle to meat
thereby influencing Ca2+ release to the cytoplasm, apop-
totic mitochondrial changes and proteolytic enzymatic
activity.
Additional genes associated with meat quality traits on

SSC15 (PFKFB3, CEP128, NQO1 and SUCLG2) were im-
plicated in biological processes related to redox homeo-
stasis and energy metabolism. The PFKFB3 gene
regulates the synthesis and degradation of fructose-2,
6-bisphosphate and fructose-6-phosphate in the process
of glucose metabolism. The promoter of the PRKFB3
gene contains hypoxia-inducible factor-1 (HIF-1) bind-
ing sites [52]. The transcription factor HIF-1 is a master
regulator of oxygen homeostasis by activating several
downstream pathways including the mitogen-activated
protein kinase (MAPK), mammalian target of rapamycin
(mTOR), phosphoinositide 3-kinase-protein kinase B
(PI3K-Akt), vascular endothelial growth factor (VEGF)
and calcium signaling pathways, as well as anaerobic
metabolism. PFKFB3 is consistently overexpressed in
many tumor cells, and knockdown of PFKFB3 promotes
apoptosis of tumor cells [52]. Rapidly proliferating tumor
cells have the ability to increase glucose uptake by using
anaerobic glycolysis as the primary source of energy,
known as the Warburg effect. Taken together, PFKFB3 is
critical for cell proliferation and survival by regulating glu-
cose metabolism and prevents apoptosis through the acti-
vation of cyclin-dependent kinases [52, 53]. No reports
have suggested a role for PRKFB3 in meat quality.

However, in our study, increased expression of PRKFB3
was associated with increased pork tenderness. Thus,
similarly to PRKAG3, PRKFB3 may be involved in post-
mortem glycolytic potential.
The CEP128 gene is related to the PI3K-Akt-mTOR sig-

naling pathway. Centrosomal protein 128 (CEP128) is part
of the centrosomal protein family, including CEP55 that
has been implicated in cancer progression [54]. Mutations
within CEP128 have been associated with an aggressive
type of lymphoma, the diffuse large B-cell lymphoma
(DLBCL) [55]. Functional gene studies have not been per-
formed for CEP128, however mutations identified in re-
fractory DLBCL patients, including those in CEP128, were
associated with PI3K-Akt-mTOR signaling pathways and
increased mitochondrial oxidative phosphorylation, and
play an important role in treatment resistance [55]. The
PI3K-Akt-mTOR pathway is upregulated in cancer cells,
controlling the survival and proliferation of these cells. In
our study, increased expression of CEP128 was associated
with improved tenderness scores, potentially involving
PI3K/Akt/mTOR signaling.
The Edomucin (EMCN) gene associated with a

local-acting eQTL on SSC8 plays a critical role in angio-
genesis. Angiogenesis is the process of new blood vessel
formation with its key regulator, vascular endothelial
growth factor (VEGF), triggering downstream signaling
cascades including MAPK-ERK1/2, PI3k/Akt and
p38-MAPK pathways [56]. These signaling pathways
promote endothelial cell migration, proliferation, and
survival and are activated by HIF-1 which induces VEGF
expression [57]. While this eQTL is not directly associ-
ated with a phenotype in our population, it is connected
to the pathways regulated by the genes associated with
the H3GA0052416 marker on SSC15.
The remaining two genes, NQO1 and SUCLG2, were

associated with improvements in meat tenderization and
pH decline. The nuclear erythroid-2-p45-related factor-2
(Nrf2) is a transcription factor known to regulate redox
homeostasis and anti-inflammatory response by control-
ling the expression of Phase I and Phase II anti-oxidant
enzymes containing the antioxidant response element
(ARE; cis-acting regulatory or enhancer sequence) in
their promoter regions. NQO1 (NADPH quinone
oxidoreductase-1) is one of these enzymes whose expres-
sion is induced by Nrf2 in several tissues [58–61].
Consequently, knockdown of Nrf2 has been reported to
significantly decrease expression of NQO1 in both
mouse skeletal muscle [60] and C2C12 mouse myotubes
[61]. In early postmortem muscle, the antioxidant
defense system is speculated to influence proteolysis and
thereby meat tenderization [5]. Increased expression of
NQO1 in this study was associated with several meat
quality traits including tenderness, pH and drip loss phe-
notypes implying a significant role in post-mortem
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proteolysis. The succinate-CoA ligase GDP-forming beta
subunit (SUCLG2) has been implicated in the SUCL-
G1-related mitochondrial DNA depletion syndrome af-
fecting brain and skeletal muscle tissues. Individuals
affected by this syndrome present an array of symptoms
including spasmodic muscle contractions, contracture or
destruction of muscle cells and hypoglycemia [62].
Knockdown of the SUCLG2 gene in fibroblasts was re-
ported to decrease mitochondrial DNA, mitochondrial
nucleoside diphosphate kinase and cytochrome c oxidase
activities [63]. These results highlight the critical role
SUCLG2 plays in mitochondrial DNA maintenance and
ATP production. In our study, increased expression of
SUCLG2 was associated with improvements in meat
quality traits suggesting a potential role in regulating
ATP production and postmortem pH decline.
In addition to genes involved in specific biological

functions, genes encoding structural proteins were also
observed to be associated with the H3GA0052416
marker on SSC15 (CIT and CCDC60). CIT, citron
Rho-interacting serine/threonine kinase, is considered to
be a scaffold protein that binds to several mitotic pro-
teins, and knockout of CIT leads to cytokinetic defects.
One such protein-protein interaction involves the
two-pore channel 1 (TPC1), which Horton et al. [64] re-
ported to cause disruption in myosin light chain phos-
phorylation (pMLC). In skeletal muscle, pMLC has been
associated with age-related muscle dysfunction [65], and
decreased pMLC is associated with a reduced fraction of
myosin heads interacting with thin filaments [65]. Thus,
increased expression of CIT could potentially increase
muscle breakdown, which is consistent with our findings
where higher expression of CIT was associated with im-
provements in pork tenderization, and reduced protein
content and cook yield. CCDC60 is a coil-coil domain
protein, which are believed to act as “cellular velcro”
holding together molecules, cellular structures and tis-
sues [66]. The biological function of CCDC60 is unknown,
but recent GWAS have associated this gene with the
neurological disorder schizophrenia in humans [67]. Prote-
omic analysis of post-mortem pre-frontal cortex of schizo-
phrenia patients and non-schizophrenia individuals
identified differentially expressed proteins involved in cal-
cium homeostasis, cytoskeleton assembly and energy me-
tabolism [68]. Therefore, it is feasible that similar functions
may occur in skeletal muscle tissue. In this study, increased
expression of CCDC60 was associated with tenderness, pH,
cook yield and drip loss phenotypes implicating the role of
this gene in the conversion of muscle to meat.
Eleven eQTL genes were enriched in pQTL for meat

quality traits on SSC15 (PFKFB3, SUCLG2, CIT, CCDC60,
MRLN, PKP2, NQO1, CEP128, CHRNA9,TEX9 and a novel
transcript SSC15:48.94). The novel transcript mapped to an
uncharacterized locus, LOC110257028, on SSC15. The

other ten gene transcripts mapped to different chromo-
somes than their associated eQTL. These results illustrate
the advantage of the joint analysis of gene expression pro-
files and trait phenotypes to uncover the genetic architec-
ture of polygenic traits. In this study, increased expression
of the 11 genes was associated with improvements in meat
quality phenotypes. Moreover, this QTL region harbors a
plausible putative hotspot (H3GA0052416) regulating the
expression of all 11 gene transcripts. Breitling et al. reported
the high false positive rate associated with hotspot discov-
ery. Therefore, to mitigate this, we used a higher threshold
of significance to detect eQTL. The H3GA0052416 marker
on SSC15 was also associated with multiple meat quality
phenotypes. The high correlation observed between the 11
gene expressions, and between the eight meat quality
phenotypes suggests the potential that these associations
are due to a master regulator on SSC15 (i.e., a putative
hotspot). The PRKAG3 gene has been suggested as such a
regulator of meat quality traits in pigs. PRKAG3 regulates
glycogen potential, which has a cascading effect in post-
mortem metabolism. The SNP panel used in this study
does not have sufficient coverage of the PRKAG3 gene. To
address this, our F2 population was genotyped for two
known PRKAG3 SNPs [21]. However, PRKAG3 did not
explain the relationship observed in the putative hotpot. A
missense polymorphism within the PRKAG3 gene, T30N
SSC15:120.865-Mb, was significantly associated with just
one of the 11 genes, NQO1, despite showing significant
association with all eight meat quality phenotypes in this
population [21].

Conclusions
In summary, the joint analysis of pQTL with eQTL from
our well-characterized pig resource population identified
molecular markers significantly associated with both
economically important phenotypes and gene transcript
abundance. This approach revealed both local- and
distant-acting regulators of gene expression influencing
meat quality, carcass composition and growth traits.
These phenotypic traits are correlated, and we show
how correlated phenotypes exhibit correlated gene ex-
pression measured through a plausible hotspot con-
tained within QTL regions for both expression and
phenotypic traits. We highlight novel candidate genes
with specific roles in cytoskeletal structure and signaling
pathways regulating meat quality phenotypes including
redox hemostasis (NQO1 and CEP128), energy metabol-
ism (SUCLG2 and PRKFB3), Ca2+ signaling (FRMD8,
MRLN, PKP2 and CHRNA9) and cytoskeletal structure
(CIT and CCDC60) during the initial conversion of
muscle to meat. Taken together the identified genes and
their associated functions and pathways increase our
knowledge of the genomic architecture of meat quality
phenotypes.
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Methods
Pig population and phenotype collection
Animal housing and care protocols were evaluated and
approved by the Michigan State University All University
Committee on Animal Use and Care (AUF # 09/03–
114-00). The experimental design, phenotyping and sample
collection for the MSUPRP has been reported previously
[17–19]. All MSUPRP pigs were reared at the Michigan
State University Swine Teaching and Research Center, and
pigs for this study were euthanized by humane slaughter in
a USDA inspected abattoir at Michigan State University.
The MSUPRP was developed from 4 Duroc boars and 15
Pietrain sows [18, 19]. From the F1 progeny, 56 animals (6
males and 50 females) were retained to produce the F2
generation, which included 1259 animals from 142 litters.
A total of 67 phenotypic traits were collected for the F2
generation [18, 19]. A subset of the F2 pigs (168) were se-
lected for this study using a selective profiling scheme
based on extremes in loin muscle area and backfat thick-
ness phenotypes within litter (44 litters) and sex [69]. Sum-
mary statistics for the 67 phenotypic traits (29 growth
traits, 20 carcass composition traits and 18 meat quality
traits) in the F2 population, and the subset of animals used
for this study are shown in Additional file 1 Table S7.

Genotyping
SNP genotypes for the MSUPRP were available from
prior studies [70, 71]. Genotyping was performed by
Neogen Corporation - GeneSeek Operations (Lincoln
NE) using the Illumina PorcineSNP60 BeadChip [72] for
the F0, F1 and ~ 1/3 of the F2 population (including all
F2 pigs used for the eQTL analysis), and the GeneSeek
Genomic Profiler for Porcine Low Density (GGP-Porcine
LD) for the remaining F2 pigs [70, 71]. Missing geno-
types were imputed with an accuracy of 0.97 [70, 71].
Monomorphic markers and non-autosomal markers
were eliminated from further analysis, as were those
showing divergence from Mendelian inheritance rules.
An updated genomic map for SNPs on the Sscrofa11.1
genome assembly was obtained from Neogen (Lincoln
NE). Additional filtering was performed to exclude
markers with a minor allele frequency lower than 0.01
and to reduce the degree of correlation between adjacent
markers (i.e., if a pair of neighboring markers had a cor-
relation of allelic dosage greater than 0.95, one of the
two markers was eliminated; this filtering was performed
only for the eQTL analysis). Filtering resulted in 23,162
markers for the eQTL analysis and 43,130 markers for
the pQTL analysis. Two coding SNPs in the protein
kinase AMP-activated non-catalytic subunit gamma 3
(PRKAG3) gene, I199V and T30 N [22, 23], were also ge-
notyped in the MSUPRP as previously described in
Casiro et al. [21].

RNA extraction and RNA sequencing
Tissue samples were collected immediately post mortem
from the longissimus dorsi muscle, flash frozen in liquid
nitrogen and stored at − 80 °C until processed [17]. RNA
extraction was performed with the miRNeasy Mini Kit
(Qiagen, Germantown, MD) following the manufac-
turer’s protocol. Quality and quantity of extracted total
RNA were determined using the Agilent 2100 Bioanaly-
zer (RIN ≥ 7). Sequencing was performed at the Mich-
igan State University Research Technology Support
Facility. Libraries for 24 samples were prepared using
the Illumina TruSeq RNA Library Prep Kit v2, and se-
quenced on the Illumina HiSeq 2000 platform (2 × 100
bp paired-end reads). The remaining 152 libraries were
prepared using the Illumina TrueSeq Stranded mRNA
Kit, and sequenced on the Illumina HiSeq 2500 platform
(2 × 125 bp, paired-end reads). Base calling was per-
formed with the Illumina Real Time Analysis v1.18.61
software, and the Illumina Bc12fastq v1.8.4 was used for
conversion to FastQ format. A total of 96 sequence files
(741Gb) consisting of ~ 63 million short-reads per li-
brary were obtained from the HiSeq 2000 platform, and
1218 sequence files (~ 2 Tb) of ~ 23 million short-reads
per library were obtained from the HiSeq 2500 platform.
Eight samples were removed from further analysis due
to low sequence quality, leaving a total of 168 samples
for subsequent analyses. Sequence data has been
deposited in the NCBI Sequence Read Archive accession
number PRJNA403969.
Raw RNA sequence reads were first filtered for adapter

sequences using Trimmomatic [73] followed by quality
trimming using Condetri where the first six bases at the
3′ end and low quality reads were filtered out, retaining
reads with a minimum length of 75 bases (Figure S5 in
Additional file 2). The quality of each sequenced nucleo-
tide was evaluated on adapter filtered and quality
trimmed RNA-seq reads using the FASTX toolkit [74],
and a mean Phred quality score of 37.01 ± 0.99 was ob-
tained. After adapter and quality filtering, RNA-seq
reads were mapped to the reference genome assembly
Sus scrofa 11.1 using the splice aware aligner Tophat2
[75]. Sample-specific transcriptomes were assembled
using Cufflinks and merged with the reference genome
to create a set of known and novel isoforms using Cuff-
merge [76]. A total of 28,033 full-length transfrags were
identified (Figure S5 in Additional file 2). Alignment sta-
tistics and base coverage were obtained with SAMtools
[77]. Samples showed on average 92.4% of sequencing
reads mapping to the reference genome, and 73.3% were
unique and properly paired with their complementary
sequence (Figure S5 in Additional file 2). Total gene ex-
pression abundance was quantified using unique and
properly paired reads using HTseq [78]. Genes with total
count abundance less than 168 were removed from
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further analysis to reduce the number of genes with low
expression, leaving 15,249 gene transcripts for eQTL
analysis (Figure S5 in Additional file 2).

RNA-seq count normalization and transformation
Expressed gene counts were normalized using the
trimmed mean of M-values (TMM) to reduce systematic
technical biases of sequenced transcripts [79]. TMM
normalization has been shown to control false positive
associations [80]. The normalized gene counts were then
transformed to follow an approximately Gaussian distri-
bution by calculating the log counts per million
(log-cpm) as described in Law et. al. [81]. Briefly, a lin-
ear model was fit to obtain the expected log-cpm for
each gene, E(y) = xβ, where y are the log-cpm, x is a vec-
tor of ones and β is a vector of estimated regression co-
efficients. The residual standard deviations for each gene
and their calculated average log-cpm were used to esti-
mate the mean variance trend, ŵ , by fitting a LOWESS
curve [81]. Variance coefficients were standardized to
keep similar scales for residual variance and additive
variance:

dwstd ¼
1
ffiffiffiffi

ŵ
p

1
n

X 1
ffiffiffiffi

ŵ
p

ð1Þ

where, dwstd are the variance coefficients, n is the total
number of animals, and ŵ is the estimated mean vari-
ance trend. The normalized log-cpm were used as the
response variable, y, and the variance coefficients, dwstd ,
were used to model heterogeneity of error variance in
the eQTL scan. This approach accounts for the mean
variance relationship of each gene expression instead of
assuming equal variance for all observations.

Heritability of phenotype and gene expression
A genomic best-linear unbiased prediction (GBLUP)
model [70, 71] was used to estimate the heritability of
each phenotype and gene expression by fitting the fol-
lowing equation:

y ¼ Xbþ aþ e; ð2Þ
where, y is a vector with measurements of a phenotype
for each animal when estimating phenotypic heritability,
and a vector with normalized log-cpm gene expression
when estimating the heritability of gene expression. X is
an incidence matrix of fixed effects including sex and
additional covariates unique to each phenotype [20, 21],
and includes the transcriptional profiling selection
scheme (i.e., within litter and sex extremes for loin
muscle area or back fat thickness) when analyzing gene
expression. The vector b contains the estimated fixed

effect, a is a vector of random additive genetic effects
and e is a vector of random residual errors. The additive
genetic effects are assumed a � Nð0;Gσ2

aÞ with the gen-
omic relationship matrix [82], G = ZZ′. Z is a matrix of
normalized SNP genotypes, with elements:

Z ¼ M−2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

2p 1−pð Þð Þp ; ð3Þ

where, M is the matrix of SNP genotypes and p is a vector
with the frequency of each reference allele. The error term
is e � Nð0; σ2e diagðdwstdÞ Þ with a variance inversely pro-
portional to the variance coefficients, dwstd . These variance
coefficients account for the heteroskedasticity across
genes with different expression. The heritability of gene
expressions were calculated by taking the ratio of the vari-
ance of the additive genetic effects to the total phenotypic
variance, h2 ¼ σ2

a=ðσ2a þ σ2eÞ.
Statistical significance of heritability was determined

using a likelihood ratio test, LR ¼ 2½logLðθ̂Þ−logLð bθ0Þ�;
comparing the likelihood of the model represented in

Eq. 1 ðLðθ̂ÞÞ and the likelihood of a null model that does

not include the genetic additive effect ðLð bθ0ÞÞ . Testing
the null hypothesis σ2

a ¼ 0 is equivalent to testing h2 = 0.
The likelihood ratios were compared to a chi-squared
distribution with one degree of freedom, and the result-
ing p-value divided by 2 to account for the asymptotic
distribution of the likelihood ratios that tend to follow a
mixture of chi-square distributions with different de-
grees of freedom [83]. Multiple test corrections were
performed using a FDR of 0.01 [84]. Differences in herit-
ability between local and distant eQTL were determined
with Wilcoxon rank sum test [85].

Genome wide association
The SNP effects, ĝ, and their variances VarðĝÞ were esti-
mated as a linear transformation of the BLUP breeding
values, â, from Eq. 2 [86, 87]. A test statistic for the as-
sociation of each marker with each phenotype or gene
expression measure is computed by standardizing the
SNP effects:

T ¼ ĝ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ĝð Þp ; ð4Þ

The p-values associated with this T test statistic were
calculated using the Gaussian cumulative distribution
function, Φ, as follows:

p−value ¼ 2 1−Φ Tj jð Þ½ �; ð5Þ
and subject to multiple test corrections per each gene
(FDR ≤ 0.01) [84]. If a gene had more than one
expressed transcript, the FDR was computed for the
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merged p-values of all transcripts expressed for the
gene.
It has been demonstrated [86, 87] that the T test sta-

tistics and p-values resulting from Eqs. (4 and 5 are
equivalent to those obtained from fitting a single marker
model, specifically the Efficient Mixed-Model Associ-
ation (EMMA) model [88].

Local and distant regulators
Due to low SNP density and long-range LD in this pig
population, distinguishing local versus distant regulation
of gene expression is difficult. We applied the following
algorithm to classify putative eQTL as local or distant
regulators of a gene’s expression:

1) An eQTL was defined as any gene whose
expression was associated with at least one marker
surpassing the significance threshold (FDR ≤ 0.01).

2) The plausible position range of each eQTL was
defined by the position of the first significant
marker at the beginning of the QTL and last
significant marker at the end of the QTL. If the
eQTL had only one marker association, the position
of the marker was used.

3) Given the mapped position of the gene profile (start
and end position of the transcript), there are several
possibilities
a. The associated eQTL plausible position range

overlaps totally or partially: Local eQTL
b. The associated eQTL is on a different

chromosome: Distant eQTL
c. The associated eQTL is on the same

chromosome but does not overlap:
i. There are non-significant SNP (FDR ≥ 0.01)

between the mapped position of the gene
profile and its associated eQTL range: Dis-
tant eQTL same chromosome

ii. There are no SNP between gene and eQTL
range (including the filtered SNP due to
high LD): Plausible Local

The distance between an eQTL and the corresponding
gene location was estimated as the difference between
the peak SNP and the nearest position of the gene
transcript.

Co-localization analysis
The genomic positions of the mapped eQTL were
co-localized with pQTL previously identified for the F2
MSUPRP for growth, carcass composition and meat
quality traits. An eQTL was considered co-localized if its
QTL position overlapped the mapped location of a
pQTL. The statistical significance of each co-localized
eQTL with pQTL was determined through a conditional

analysis that tested the effect of the most significant
marker associated with the pQTL on the co-localized
eQTL gene expression, as follows:

y ¼ Xbþ ZSNPbSNP þ aþ e; ð6Þ
where, y is the expression of the co-localized eQTL gene.
The X,b, a and e were previously described in Eq. 2.
ZSNP is a vector of standardized marker genotypes for
the pQTL peak marker, co-localized with the eQTL
gene, and bSNP is the estimated marker effect. Type I
error rate of 0.05 and Bonferroni p-value cutoff based
on the number of tests performed (p-value ≤5.952e-04)
was used to determine SNP effect significance. We also
considered the effect the peak pQTL marker had on the
eQTL peak by performing a linear transformation of the
BLUP breeding values from Eq. 6 to estimate the indi-
vidual SNP effects, and tested their significance as de-
scribed in Eqs. (4 and 5. Multiple test corrections were
performed using an FDR ≤ 0.01 [84]. If fitting the top
pQTL marker completely eliminated the eQTL interval,
the two QTL were considered to be significantly co-
localized. The proportion of variance explained by the
peak pQTL markers for each co-localized eQTL was es-
timated as described in Casiro et al. [21]. Briefly, the
variance associated with the co-localized peak pQTL
marker, σ2SNP , was estimated as:

dσ2SNP ¼ b2 var ZSNPð Þ; ð7Þ
where, b2 is the calculated peak pQTL marker effect
from Eq. 6, and the proportion of gene expression vari-
ance accounted for by the co-localized pQTL peak SNP
is dσ2SNP=ðdσ2SNP þ bσ2

a þ bσ2eÞ . The estimated additive genetic
variance, σ2a , and error variance, σ2

e , are obtained after
fitting Eq. 6. A conditional analysis for each eQTL inter-
val, fitting the peak SNP, was also performed to identify
potential additional peaks within an eQTL. Pearson cor-
relations among phenotypes and gene expressions were
calculated using residuals from Eq. 6, and significance
was determined with a t test and FDR ≤ 0.05. LD was es-
timated between the peak SNP for the pQTL and colo-
calized eQTL. Equations 6 and 7 were also used to
estimate the proportion of gene expression variance ex-
plained by the PRKAG3 T30 N SNP for all identified
eQTL to uncover eQTL significantly associated with
PRKAG3, and the proportion of phenotypic variance ex-
plained for meat quality phenotypes with an associated
pQTL on SSC15.

RT-qPCR
To verify the expression of CHRNA9, 28 animals were
selected based on the genotypes of the peak eQTL SNP
(10 animals per genotype equally weighted by sex except
for the AA genotype that had only eight animals, four
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per sex). Total RNA was extracted from the longissimus
muscle samples as described above, and 2 μg was reverse
transcribed using the High Capacity cDNA Reverse
Transcriptase Kit with RNase inhibitor (Applied Biosys-
tems, Foster City, CA). A custom Taqman Gene Expres-
sion Assay (ThermoFisher Scientific, Waltham, MA) was
designed for CHRNA9 using pig RNA sequence to span
exons 4 and 5 (determined based on the structure of the
human CHRNA9 gene, Accession No. AC118275). The
GeNorm [89] algorithm was used to select two reference
genes, PPIA (ThermoFisher Scientific Assay No.
Ss03394781_g1) and SDHA (ThermoFisher Scientific
Assay No. Ss03376909_u1), with the highest
gene-stabilizing measure to normalize the expression of
CHRNA9. RT-qPCR was performed in triplicate using
50 ng cDNA and TaqMan Gene Expression Master Mix
for a final volume of 20 μl. Assays were run on a StepO-
nePlus Real-Time PCR System (Applied Biosystems).
The cycling conditions were 52 °C for 2 min, 95 °C for
10 min followed by 50 cycles of 95 °C for 15 s and 60 °C
for 1 s. ΔCt values were calculated as the mean differ-
ence between the geometric mean of the reference genes
and the target gene. To verify the RNA-seq results, the
effect of the peak eQTL marker for CHRNA9 was mea-
sured using Eq. 6 with the response variable being the
ΔCt transcript abundance. Analysis of variance with a
type I error rate of 0.05 was used to determine signifi-
cant additive and dominance effects of the peak
CHRNA9 eQTL SNP (DIAS0000678).
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