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The swift clearance of apoptotic cells (ACs) (efferocytosis) by phagocytes is a critical event 
during development of all multicellular organisms. It is achieved through phagocytosis by 
professional or amateur phagocytes. Failure in this process can lead to the development 
of inflammatory autoimmune or neurodegenerative diseases. AC clearance has been 
conserved throughout evolution, although many details in its mechanisms remain to 
be explored. It has been studied in the context of mammalian macrophages, and in 
the nematode Caenorhabditis elegans, which lacks “professional” phagocytes such as 
macrophages, but in which other cell types can engulf apoptotic corpses. In Drosophila 
melanogaster, ACs are engulfed by macrophages, glial, and epithelial cells. Drosophila 
macrophages perform similar functions to those of mammalian macrophages. They 
are professional phagocytes that participate in phagocytosis of ACs and pathogens. 
Study of AC clearance in Drosophila has identified some key elements, like the recep-
tors Croquemort and Draper, promoting Drosophila as a suitable model to genetically 
dissect this process. In this review, we survey recent works of AC clearance pathways in 
Drosophila, and discuss the physiological outcomes and consequences of this process.

Keywords: phagocytosis, apoptosis, macrophages, signaling pathways, Drosophila melanogaster

iNTRODUCTiON

Programmed cell death is necessary for normal development and growth in multicellular organ-
isms, which produce billions of apoptotic cells (ACs) daily (1, 2). Exogenous pathogenic microbes 
also threaten organisms’ lives and development (3). Swift and efficient removal of ACs and patho-
gens is essential for maintaining tissue homeostasis. Failure in this process results in the release 
of potentially cytotoxic or antigenic molecules, causing inflammatory diseases or developmental 
autoimmune disorders (4–7). To clear ACs and pathogens, multicellular organisms have evolved a 
conserved cellular process named phagocytosis that is being carried out either by non-professional 
or professional phagocytes (8). The molecular mechanism of ACs clearance has been extensively 
studied in Caenorhabditis elegans, thus revealing relatively clear and detailed engulfment pathways 
(9). However, C. elegans lacks the professional phagocytes; instead ACs are engulfed by many neigh-
boring cell types (10). Absence of a professional immune system in C. elegans may limit the extent 
to which these data can be applied to higher organisms. The fruitfly Drosophila melanogaster has 
also been used as a suitable model to study ACs clearance, in which ACs are engulfed by both non-
professional phagocytes such as epithelial cells and professional phagocytes such as macrophages/
hemocytes and glial cells (11), providing the advantages for studying phagocytosis in mammals. 
ACs clearance proceeds when ACs expose “eat me” signals, which are recognized by phagocytes, 
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thereby triggering signaling cascades that lead to internalization 
of the apoptotic corpse and its degradation by the phagocytic 
vacuole known as phagosome matures by fusing with lysosomes 
(12, 13). In this review, we will summarize the current research 
on phagocytosis of ACs in D. melanogaster, and which signaling 
pathways regulate this process, thereby giving a systematic and 
general overview of this process.

SiGNALiNG BY ACs iN PHAGOCYTOSiS

Apoptotic cells generated by programmed cell death or physical 
wounds are quickly and silently removed, to maintain tissue 
homeostasis or prevent auto-inflammatory responses (14, 15). 
Once cells begin to undergo apoptosis, cell death pathway is acti-
vated, and they release multiple signaling to recruit phagocytes, 
which contains three steps: the release of “find me” signals, the 
presentation of “eat me” signals, and the removal of “don’t eat 
me” signals (16).

At the beginning of cell death, “Find me” signals are released 
from ACs to promote the migration of phagocytes to ACs. Lauber 
firstly identified lysophosphatidylcholine (LPC) as a “find me” 
signal, which is released from ACs in a caspase-3-dependent 
manner. They furthermore showed that the activation of calcium-
independent phospholipase A2 by caspase cleavage contributed 
to the release of LPC (17). Two other molecules, sphingosine-
1-phosphate produced by sphingosine kinase in a caspase-
dependent manner, and CX3CL1/fractalkine synthesized as a 
membrane-associated protein, have also been proposed to act as 
“find me” signals (18, 19). ATP and UTP that are released from 
ACs in a caspase-dependent manner have also recently been 
shown to act as “find me” signals for phagocytes (20). Whether 
these proposed “find me” signals are redundant or synergistic 
remains to be studied. Little evidence has shown that “find me” 
signals exist in Drosophila, but previous study revealed that H2O2 
may be the immediate damage signal essential for the recruit-
ment of hemocytes to wound regions in Drosophila embryos (21). 
Further research (22) found that Src42A–Draper–Shark signaling 
was important to recruitment of hemocytes by responding to 
wound-induced H2O2 in Drosophila embryos, which indicated 
that H2O2 may be Drosophila “find me” signal and Draper is 
responsible for the signal recognition. However, more evidence 
needs to be explored to verify this hypothesis.

“Don’t eat me” signals (also known as self-associated molecular 
patterns) exist on healthy cells, playing inhibitory roles to prevent 
to be engulfed by phagocytes. Some examples of “don’t eat me” 
signals include CD31, CD46, and CD47 in mammals (23).

“Eat me” signals are ligands, which can bind to engulfment 
receptors by moving to the surface of ACs. Engulfment receptors 
recognize and bind either directly to the apoptotic “eat me” signal, 
or through bridging molecules that bind the “eat me” signal. The 
best-studied and evolutionarily conserved “eat me” signal reported 
in human, Drosophila, and C. elegans is phosphatidylserine (PS) 
(24), a phospholipid exposed on the surface of ACs (25, 26).  
PS is a plasma membrane (PM) aminophospholipid maintained 
on the inner leaflet of live cells through aminophospholipid 
translocase activity (27, 28). After cell induced by apoptosis, 
aminophospholipid translocase is inactivated while a scramblase 

is activated to induce PS exposed to the cell surface in an ATP-
independent manner (28). A recent study has shown that ACs 
can generate molecular memory in macrophages, priming them 
to recognize tissue wounds or microbes (29). This subsequently 
causes macrophages to produce pro-inflammatory signals and 
boost the innate response at sites associated with extensive AC 
death in Drosophila (29).

eNGULFMeNT ReCePTORS AND 
ReLATeD SiGNAL PATHwAYS

In Drosophila, there are three cell types reported to function as 
phagocytic cells: professional phagocytes—macrophages/hemo-
cytes, glial cells, and non-professional phagocytes—epithelial cells 
(30–32). Hemocytes are macrophage-like cells reported to engulf 
ACs or dendrite debris during pruning of Drosophila sensory 
dendrites (33) and embryogenesis (34). Drosophila glia act much 
similar role in engulfing dying cells or degenerating axons of the 
nervous system as their counterparts in mammals (35), degenerat-
ing dendrites are primarily cleared by the epidermal epithelia (36).

“Eat me” signals secreted by ACs are recognized by engulf-
ment receptors, which are specifically expressed on the surface 
of phagocytic cells. In C. elegans, two seemingly independent 
engulfment signaling pathways have been genetically identified, 
which share similar functions both in fly and mouse, indicating 
that the process of ACs clearance is evolutionarily conserved. 
CED-1, a conserved transmembrane receptor protein, Draper in 
fly, MEGF10 in mouse, which have similar function in recogniz-
ing ACs, transducts the phagocytotic signal through its adaptor 
protein CED-6 (dCed-6 in fly, GULP in mouse) to regulate down-
stream effectors (37, 38). The CED-2, -5, -10, and -12 signaling 
pathway is believed to act downstream of the PS receptor PSR-1, 
a C. elegans homolog of mammalian PSR (39), which relates to 
ACs cytoskeletal rearrangements. Some of the abovementioned 
genes possess Drosophila counterparts, suggesting that fruitfly 
phagocytes share similar pathways to engulf ACs. Meanwhile, 
Drosophila has its own engulfment receptor, yet a more detailed 
mechanism remains to be unveiled in Drosophila.

Croquemort
In 1996, Franc and colleagues cloned the first Drosophila engulf-
ment receptor on embryonic macrophages, Croquemort (Crq), 
which shares 23% identity with human CD36. In mammals, CD36 
act as a scavenger receptor engulfing ACs (40) and regulates the 
host inflammatory responses (41, 42). Crq expresses specifically 
on Drosophila plasmatocytes, which become macrophages as 
they encounter ACs from late stage 11 of embryogenesis (43). 
Using AC-labeling and Crq immunostaining experiments, Crq 
was shown to be required for efficient phagocytosis of ACs, which 
was also confirmed in vivo (34). Crq is structurally unrelated to 
either CED-1 or PSR-1 (34), and how it promotes phagocytosis, 
including the identity of its ligand, is still unknown (44).

In addition to macrophages clearing ACs during embryo-
genesis, epithelial cells are responsible for prompt clearance of 
degenerating neurites to maintain tissue homeostasis and prevent 
inflammatory responses during development (36). Knocking out 
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crq results in AC clearance defects by macrophages; however, it 
has no effect on engulfment of dendrites in epithelia. Further 
studies showed that crq was required for phagosome matura-
tion during this process, while loss-of-function of crq leads to 
homotypic phagosome fusion defect, though it is not necessary 
for phagosomes to progress through the Rab7+ positive stage (43). 
Besides, recent research revealed that crq mutant flies are suscep-
tible to environmental microbes and infection, and that Crq is 
required for engulfment of bacteria in parallel to the Toll and Imd 
pathways, which play key roles in the innate immune system (45).

Draper
Freeman and colleagues first identified the homolog of CED-1 in 
Drosophila, named Draper (Drpr), which strongly expressed on 
glial and macrophage membranes, and found that it was required 
for the engulfment of apoptotic neurons and for larval locomotion 
(35). Similar to CED-1 in nematode and MEGF10 in human, Drpr 
encodes 15 extracellular atypical EGF repeats, a single transmem-
brane domain, and a novel intracellular domain (35). Manaka 
and colleagues confirmed the role of Drpr in glia and hemocytes/
macrophages, showing that it plays a role in the phagocytosis of 
ACs (44), suggesting that the Drpr pathway plays similar role 
in Drosophila as the ced-1/6/7 pathway in C. elegans. Glial cells 
expressing Drpr are essential for the pruning of Drosophila mush-
room body γ neurons, Awasaki et al. detected that Drosophila ced-6 
(mouse gulp) expressed in the same glial cells as drpr (46), genetic 
evidence showed that drpr and ced-6 played role in engulfing γ 
neuron axon in the same pathway, meanwhile, the experiment 
in vitro confirmed that Ced-6 N-terminal might interact with the 
intracellular region of Drpr (47). Different from C. elegans Ced-7, 
an ABC transporter, which both expresses in ACs and engulfment 
cells for efficient phagocytosis, the homolog in Drosophila, has not 
yet been studied. Drosophila Shark, a non-receptor tyrosine kinase 
also plays an important role in removing cell corpses or debris 
mediated by Drpr through binding to its intracellular domain 
(48). The Src family kinase Src42A phosphorylates Drpr to allow 
its intracellular domain to interact with Dmel/Ced-6, thus acti-
vating the Drpr pathway and promoting phagocytosis of pruned 
axons and degenerating neurons by glial cells (47).

In addition to the Ced-1, -6, and -7 signaling pathway, Ced-2, 
-5, -10, and -12 were found to act in a parallel and yet partially 
redundant pathway that controls actin cytoskeleton rearrangement 
in cell corpse engulfment and cell migration (49). For Drosophila, 
although the homologs of CED-2, -5, and -10 correspond to 
CG1587, myoblast city, and Rac2, respectively, their function 
in ACs clearance has not been deeply studied. The Drosophila 
homolog of Ced-12, Dmel/ced-12, was found to be required for 
cell clearance in macrophages, function in a genetically distinct 
pathway compared with Drpr, which further indicated that the 
phagocytosis signal pathways are evolutionary conserved (50).

integrin
Integrins are conserved heterodimeric transmembrane receptors, 
forming by two subunits called α and β (51, 52). The involve-
ment of integrins in phagocytosis of ACs was first described in 
mammals (53). Ina-1, an α subunit of C. elegans integrin, was also 
reported to participate in cell corpse removal (54). In Drosophila, 

there are five α- and two β-subunits. Nagaosa and colleagues 
found that loss-of-function of Drosophila integrin βv results in 
reduced levels of AC clearance, while reexpressing βv in integrin 
βv-lacking fly hemocytes rescues their phagocytosis-defective 
phenotype (55). Flies lacking either integrin βv or Drpr showed 
almost the same level of phagocytosis, while loss of these two 
receptors further decreased phagocytosis, which indicated that 
integrin βv and Drpr act independently. As Drpr was shown to 
act upstream of CED-6 and CED-10, the integrin βv appears to 
act upstream of the other engulfment pathway CED-2–CED-5–
CED-12. However, Crk and Mbc, the Drosophila homologs of C. 
elegans CED-2 and CED-5 have not been observed to participate 
in the phagocytosis of ACs at least by embryonic hemocytes, thus 
the molecular signaling downstream of βv remains unknown 
(55). Further research indicated that Drosophila βv acts as a 
phagocytic receptor to also promote clearance of Staphylococcus 
aureus via peptidoglycan binding on this bacterium (56). Another 
Drosophila integrin α-subunit, αPS3, also cooperates with βv in 
hemocytes and serves as an engulfment receptor for phagocytosis 
of ACs and S. aureus (57). In Drosophila ovary, highly polarized 
epithelial follicle cells (FCs) can engulf germline debris via their 
apical side. Meehan et al. (58) found that integrin heterodimer 
αPS3/βPS were apically enriched in engulfing FCs, which are 
required for engulfment of ACs by FCs. Thus, integrins are evo-
lutionally conserved receptors that participate in AC clearance.

BRiDGiNG MOLeCULe

Several engulfment receptors have been identified that mediate 
phagocytosis of ACs, yet little is known about their precise mech-
anism of action, or whether they cooperate or act alone. Several 
molecules have been characterized that function upstream of Drpr 
to recognize ACs that are considered as “bridging molecules.”

Six-Microns-Under (Simu)
Kurant and colleagues characterized a transmembrane protein 
named Simu, which is highly expressed on the surface of glial cells 
in the nervous system and macrophages elsewhere (59). Simu acts 
upstream of Drpr promote the recognition and engulfment of ACs 
(59). It strongly binds to ACs, through its EMILIN-like domain 
without membrane anchoring. Furthermore, Kurant and col-
leagues demonstrated that SIMU recognizes and binds PS secreted 
on ACs through its N-terminal EMILIN (EMI)-like domain, while 
the C-terminal NIM3 and NIM4 repeats regulate Simu affinity 
to PS (60). In addition, caspase activity is required for clearance 
of ACs by glial cells (60). However, the interaction mechanism 
between Simu and Drpr during clearance of ACs remains unclear, 
as Kurant and colleagues were failed to detect a directly physical 
linkage between Simu and Drpr (59). Thus, it seems likely that 
other molecules are required to connect these proteins (61).

Calreticulin (Calr), Pretaporter (Prtp), and 
Drosophila Calcium-Binding Protein 1 
(DmCaBP1)
Various proteins and lipids from the endoplasmic reticulum 
(ER) have also been found to be exposed at the surface of human 
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ACs (62). Nakanishi and colleagues identified three ER proteins 
acting upstream of Drpr to promote phagocytosis in Drosophila 
(63–65). They showed that Drosophila Calr existed at the surface 
of living cells and reassigned to form aggregates upon apoptosis 
without change of the amount and expression at the cell surface; 
and that in a Drosophila mutant strain with reduced level of Calr, 
the level of phagocytosis of ACs was about a half of that observed 
in wild-type embryos (63). Thus, like PS, Calr is considered as a 
marker for phagocytosis of ACs in Drosophila. Through protein 
pull-down analysis, Nakanishi isolated an ER protein binding 
to the extracellular region of Drpr, with a signal peptide at the 
N-terminal and an ER retention motif at the C terminal, named 
Prtp. They found that Prpt relocated from ER to cell surface 
during apoptosis in Drosophila S2 cells (64), and they further 
showed that loss-of-function of prtp leads to reduced level of 
AC clearance both by embryonic hemocytes and embryonic glia. 
Reexpression of prtp in hemocytes did not rescue this defect 
while the ubiquitous expression did, which indicated that Prtp 
functions in ACs to promote phagocytes’ engulfment (64). The 
DmCaBP1 is released and externalized from ACs, to bind to the 
extracellular region of Drpr (65). Loss of either prtp or DmCaBP1 
led to a reduced level of AC clearance in Drosophila embryos, 
but the double mutant did not cause a further decreased in 
phagocytosis, which indicated that they act in the same pathway. 
As apoptosis induced, DmCaBP1 is externalized from ACs and 
serves as a bridging molecule to connect ACs and phagocytes, 
promoting efficient and timely phagocytosis to occur.

e3, UBiQUiTiN PROTeASOMe PATHwAY

By screening for genes required for efficient phagocytosis of ACs 
in Drosophila macrophages in vivo, Silva and colleagues identi-
fied pallbearer (pall), which encodes an F-box protein (66). F-box 
proteins are generally part of Skp/Cullin/F-box (SCF) complexes 
that act as E3 ligases targeting phosphorylated proteins to ubiq-
uitylation and degradation via the 26S proteasome (67). In addi-
tion to F-box protein, the SCF complexes contain three constant 
polypeptides—Skp1, Cullin1 (Cul1), and Rbx1, which have their 
counterparts in Drosophila. In Drosophila, six Skp proteins have 
been identified; and only SkpA strongly expressed in the embryos 
(68), and Bocca reported that SkpA and Rbx1 interact with Lin19 
(dCul1) respectively (69). Silva and colleagues showed that Pall 
physically interacts with SkpA via its F-box domain, the loss func-
tion of either Lin19 or SkpA resulted in phagocytosis-defective 
phenotype, which indicated that they constitute complexes to 
promote phagocytosis of ACs (66). Xiao and colleagues then 
identified one substrate of the Pall–SCF complex, namely, the 
ribosomal protein S6 (Rps6) (70). The F-box protein Pall interacts 
with phosphorylated Rps6, which induces its ubiquitination and 
degradation via the 26S proteasome pathway (70). As a conse-
quence, Xiao and colleagues further showed that the Rac2 small 
GTPase was upregulated and activated, triggering actin cytoskel-
eton rearrangement and thus promoting the clearance of ACs 
(70). They also showed that Pall translocates from the nucleus to 
the cytoplasm upon AC exposure (70). However, the AC signal 
and molecular pathway that leads to Pall nuclear export has not 
yet been identified. Furthermore, the nature of the kinase that 

phosphorylates Rps6 upstream of its physical interaction with 
Pall and how the degradation of phosphorylated RpS6 results in 
higher levels and activation of Rac2 remain to be deciphered.

CALCiUM SiGNALiNG

Calcium signaling is a second messenger, which participates 
in a number of cellular processes (71). Studies have identified 
several Ca2+ signaling genes that are required for AC removal in 
Drosophila. Cuttell and colleagues identified Undertaker (Uta) 
(also known as retinophilin), a Drosophila protein with membrane 
occupational recognition nexus repeats related to Junctophilin-
like proteins, as required for Drpr-mediated phagocytosis (72). 
Junctophilins form junctional complexes between the PM and the 
ER or sarcoplasmic reticulum (SR) Ca2+ storage compartments 
that allow for cross talk between Ca2+ channels at the PM and the  
ER/SR Ca2+ channels (73). Cuttell and colleagues showed that  
the Drosophila ryanodine receptor, Rya-r44F, a Ca2+ channel on 
the ER membrane, also plays role in phagocytosis of ACs medi-
ated by the Drpr pathway (71). They found that uta genetically 
interacts with rya-r44F upstream of the Drpr and Dmel/Ced-6 
pathway to activate their downstream signaling cascade for 
efficient phagocytosis of ACs (72). Thus presumably, Uta forms 
junctional complexes between the PM and the ER to trigger 
the release of Ca2+ from the ER/SR compartment via Rya-R44F. 
Conversely, they showed that drpr and Dmel/ced-6 are required 
for store-operated calcium entry (SOCE) via Stim and Orai 
(71). Thus, signaling downstream of Drpr and Dmel/Ced-6 may 
promote and/or maintain Uta-mediated junctional complexes, 
consequently mediating ER Ca2+ release to SOCE via Stim and 
Orai. It appears that Ca2+ functions in Drpr signaling downstream 
during both recognition and internalization of ACs, and Uta plays 
a central role both in Ca2+ homeostasis and phagocytosis. A similar 
link between Ca2+ homeostasis and AC clearance has been found 
in mammalian systems and C. elegans (74). Interestingly, a novel 
mechanism has been found by Weavers that Drosophila embry-
onic macrophages generate a memory after the uptake of ACs, 
priming them to detect tissue damage or infections. Engulfment 
of ACs associates with calcium bursts, increasing Drpr expres-
sion, which is important for the macrophages to rapidly respond 
and migrate to subsequent injury or infections (29).

CROSS TALK wiTH iNNATe iMMUNe 
ReSPONSe

As phagocytosis is crucial for the normal development, it also 
plays important role in the immune response for the removal 
of ACs and pathogens (3, 24). The mechanisms that mediate 
phagocytosis of bacteria and how it interacts with other innate 
immune responses defense remain elusive. Hashimoto and col-
leagues showed that Drpr promotes phagocytosis of S. aureus, 
and drpr mutant flies show reduced resistance to a septic infection 
with S. aureus (75). ltaS encodes an enzyme responsible for the 
synthesis of lipoteichoic acid in S. aureus that acts as a ligand 
for Drpr in phagocytosis of S. aureus by Drosophila hemocytes. 
The integrin βv subunit promotes phagocytosis of S. aureus by 
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binding to peptidoglycan of this bacterium (56), and the integrin 
αPS3 subunit cooperates with βv in this process (57). Guillou 
and colleagues showed that crq defective mutant flies appeared 
to be more susceptible to environmental microbes both during 
development and at adulthood, they further demonstrated that 
crq is required for microbial phagocytosis (45). Interestingly, 
AC clearance by Drosophila macrophages appears essential in 
priming these cells to respond to subsequent microbial infections 
in vivo (29). Macrophages that have not engulfed ACs fail to take 
up E. coli, while those that have previously engulfed ACs can 
recognize and take up E. coli, ultimately mediating the bacterium 
phagosomal degradation (29).

JUN N-TeRMiNAL KiNASe (JNK) 
PATHwAY

After recognition of ACs by macrophages and epithelial cells in 
mammals, the stress-activated MAP kinases JNK and p38 are 
activated at the early stage (76, 77). In Drosophila imaginal epithe-
lia, normal imaginal cells exert an antitumor effect as oncogenic 
cells emerged to eliminate them (78). Ohsawa et al. revealed that 
the antitumor effect from surrounding cells was mediated by 
the activated JNK signaling, thus promoting the elimination of 
premalignant neighbors by engulfment (79). In Drosophila ovary, 

dying germline cells are cleared by neighbor follicular epithelia, 
which required Drpr signal pathway and activated JNK signal (80). 
During this process, Drpr acts upstream to activate JNK pathway, 
but another regulator exists to activate JNK pathway, which has 
not been studied. Their results suggested that the dying germline 
activates Drpr–JNK pathway, then JNK activity feeds back to 
increase Drpr expression in engulfing cells, which seem to be a 
circuit. Interestingly, although Ced-12 was showed to promote 
AC clearance in an independent pathway compared with Drpr, 
in Drosophila ovary, Timmons et al. (81) found that Ced-12 act 
upstream of JNK, which can to increase Drpr expression, similar to 
described earlier in Drosophila glia. As mentioned previously, glial 
cells play an important role in removing ACs during Drosophila 
embryonic development, neuronal pruning, and axonal degenera-
tion (47, 59). Shklover showed that excess activation of JNK signal-
ing in Drosophila embryonic glial cells does not affect the levels of 
Simu and Drpr expression but still promotes their apoptotic death 
and upregulates their phagocytic capacity by glial cells (82). As 
mentioned earlier, JNK signaling in follicular epithelia upregulates 
expression of Drpr, indicating that the phagocytosis induced by 
JNK signal may be tissue-specific. Recently, research showed that 
Drosophila glia upregulate their basal ability after neuronal injury, 
to phagocytosis through activation of the JNK pathway, which 
leads to the elevation of DRPR level (80, 83).
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