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Abstract Aquaporin-1 (AQP1), a membrane water chan-
nel protein, is expressed exclusively in the choroid plexus
epithelium in the central nervous system under physiologi-
cal conditions. However, AQP1 expression is enhanced in
reactive astrocytes, accumulating in brain lesions of Creutz-
feldt-Jakob disease and multiple sclerosis, suggesting a role
of AQP1-expressing astrocytes in brain water homeostasis
under pathological conditions. To clarify a pathological
implication of AQP1 in Alzheimer disease (AD), we inves-
tigated the possible relationship between amyloid-beta
(A�) deposition and astrocytic AQP1 expression in the
motor cortex and hippocampus of 11 AD patients and 16
age-matched other neurological disease cases. In all cases,
AQP1 was expressed exclusively in a subpopulation of
multipolar Wbrillary astrocytes. The great majority of

AQP1-expressing astrocytes were located either on the top
of or in close proximity to A� plaques in AD brains but not
in non-AD cases, whereas those independent of A� deposi-
tion were found predominantly in non-AD brains. By West-
ern blot, cultured human astrocytes constitutively expressed
AQP1, and the levels of AQP1 protein expression were not
aVected by exposure to A�1-42 peptide, but were elevated by
hypertonic sodium chloride. By immunoprecipitation, the
C-terminal fragment-beta (CTF�) of amyloid precursor
protein interacted with the N-terminal half of AQP1 span-
ning the transmembrane helices H1, H2 and H3. These
observations suggest the possible association of astrocytic
AQP1 with A� deposition in AD brains.

Keywords Alzheimer disease (AD) · Amyloid-beta (A�) · 
Aquaporin-1 (AQP1) · Astrocytes · Water homeostasis

Introduction

The aquaporins (AQPs) constitute a family of integral
channel proteins that facilitate the osmotically driven bidi-
rectional water transport across the cell membrane [2, 54].
Previous studies identiWed at least 13 mammalian members,
widely expressed in various Xuid-transporting epithelial
and endothelial cells. AQP1, AQP2, AQP4, AQP5 and
AQP8 are chieXy water selective, while AQP3, AQP7,
AQP9 and AQP10 transport glycerol in addition to water.
Among AQP family members, AQP1, AQP4 and AQP9 are
expressed in the central nervous system (CNS) [2, 54].
AQP1, initially identiWed in red blood cells and renal proxi-
mal tubular epithelium, is expressed constitutively in the
apical surface of choroid plexus epithelium in the CNS [8,
39]. The crystal structure of AQP1 water channel is
composed of a dumbbell-shaped homotetramer of 28-kDa
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subunits, each of which contains six transmembrane
domains and an extracellular epitope that deWnes the Colton
blood group antigen on erythrocyte membranes [10]. Out-
side the brain, AQP1 is expressed in retinal amacrine cells
[24], Schwann cells [14], dorsal root ganglia neurons [48],
lungs and hepatobiliary epithelium. AQP1-null individuals
negative for the Colton antigen, having homozygous muta-
tions in the AQP1 gene exhibit a defect in urinary concen-
tration and reduced pulmonary vascular permeability after
overloading Xuid [27, 28]. AQP1-null mice show a
decrease in cerebrospinal Xuid (CSF) production, indicating
a pivotal role of AQP1 in CSF secretion in the CNS [42].
Although AQP1 is expressed widely in vascular endothelial
cells outside the CNS, the levels of AQP1 expression are
very low in brain endothelial cells, and no expression is
found in cultured rodent astrocytes [12].

Earlier studies showed that high-grade astrocytoma
cells intensely express both AQP1 and AQP4, suggesting
the involvement of water channel upregulation in develop-
ment of tumor-associated brain edema [41, 45]. AQP1-null
mice show a reduction in tumor vascularity and migratory
capacity [46]. In contrast, overexpression of AQP1 in
Wbroblast in culture accelerates anchorage-independent
cell growth characteristic of malignant transformation
[19]. Mouse melanoma cells, overexpressing AQP1 show
an increase in metastatic potential [21]. AQP1 plays a cen-
tral role in macrophage and leukocyte recruitment during
acute inXammation [40]. Based on these observations, it is
proposed that AQP1 regulates cell growth and migration
by a mechanism that involves cytoskeletal reorganization,
triggered by water transport at the leading edge of
proliferating and migrating cells [54]. Furthermore, AQP1
plays a role in apoptotic cell shrinkage by regulating the
cell volume [22].

Increasing evidence indicates that astrocytes express
AQP1 in CNS under pathological conditions. The expres-
sion of both AQP1 and AQP4 is enhanced markedly in
reactive astrocytes accumulating in the lesions of subarach-
noid hemorrhage [4], contusion [51], Creutzfeldt-Jakob
disease (CJD) [44], cerebral infarction [47], and multiple
sclerosis (MS) [47]. However, the precise mechanism
accounting for upregulation of AQP1 in reactive astrocytes
remains unknown. A recent study showed that the expres-
sion of AQP1 but not that of AQP4 is augmented in cortical
astrocytes at the early stage of Alzheimer disease (AD),
suggesting a pathological role of abnormal regulation of
water transport in AD [43]. Because intracerebral accumu-
lation of amyloid-� (A�) plays a central role in the
pathogenesis of AD [16], and activated astrocytes are often
associated with A� plaques in AD brains [37, 55], we
investigated the possible relationship between A� deposi-
tion and AQP1 expression in astrocytes in the cerebral
cortex of AD.

Materials and methods

Human brain tissues

Ten micron-thick serial sections were prepared from autop-
sied brains of 11 AD patients composed of Wve men and six
women with the mean age of 71 § 9 years and 16 other
neurological disease (non-AD) patients composed of nine
men and seven women with the mean age of 67 § 12 years.
The non-AD cases include three patients with Parkinson
disease (PD), three with multiple system atrophy (MSA),
four with amyotrophic lateral sclerosis (ALS), three with
myotonic dystrophy, one with spinal and bulbar muscular
atrophy (SBMA), one with schizophrenia, and one with
mitochondrial myopathy, encephalopathy, lactic acidosis,
and stroke-like episodes (MELAS). The average of brain
weight was 1,038 § 163 g in AD cases and 1,220 § 173 g
in non-AD cases. Brain tissues of the motor cortex and hip-
pocampus were Wxed with 4% paraformaldehyde (PFA)
and embedded in paraYn. In the present study, we tenta-
tively deWned the hippocampus and parahippocampal cor-
tex as the hippocampus. All AD cases were satisWed with
the Consortium to Establish a Registry for Alzheimer’s dis-
ease (CERAD) criteria for diagnosis of deWnite AD [34].
They were categorized into stage C of amyloid deposition
and stage VI of neuroWbrillary degeneration, following the
Braak’s staging [9]. The autopsied brain samples were
obtained from Research Resource Network (RRN), Japan.
Written informed consent was obtained from all the cases
examined. The Ethics Committee of National Center of
Neurology and Psychiatry approved the present study.

Human astrocytes in culture

Human astrocytes were established from neuronal progeni-
tor (NP) cells isolated from a human fetal brain (BioWhit-
taker-Cambrex, Walkersville, MD, USA). NP cells plated
on a polyethyleneimine-coated surface were incubated in
DMEM/F-12 medium (Invitrogen, Carlsbad, CA, USA)
containing an insulin-transferrin-selenium (ITS) supple-
ment (Invitrogen), 20 ng/ml recombinant human EGF (Hig-
eta, Tokyo, Japan), 20 ng/ml recombinant human bFGF
(PeproTech EC, London, UK), and 10 ng/ml recombinant
human LIF (Chemicon, Temecula, CA, USA). For the
induction of astrocyte diVerentiation, NP cells were incu-
bated for several weeks in DMEM (Invitrogen) supple-
mented with 10% fetal bovine serum (FBS), 100 U/ml
penicillin and 100 �g/ml streptomycin (feeding medium).
The inclusion of FBS in the culture medium induced vigor-
ous proliferation and diVerentiation of astrocytes accompa-
nied by a rapid reduction in non-astroglial cells. The purity
of astrocytes exceeded 98% by GFAP immunolabeling, as
described previously [47].
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To determine the eVects of stress-inducing stimuli on
AQP1 expression, human astrocytes were incubated for
48 h in the feeding medium with inclusion of 10 �M human
A�1-40 peptide (Peptide Institute, Osaka, Japan), 10 �M
human A�1-42 peptide (Peptide Institute), 100 mM NaCl,
100 �M sodium nitroprusside, a NO donor (SNP; Merck-
Calbiochem, Tokyo, Japan), 10 �M all trans retinoic acid
(RA; Sigma, St Louis, MO, USA), 100 nM phorbol 12-
myristate 13-acetate (PMA; Sigma), 1 mM dibutyryl cyclic
AMP (dbcAMP; Sigma), 10 �M MG-132, a proteasome
inhibitor (Merck-Calbiochem), or 1 �M thapsigargin, an
endoplasmic reticulum (ER) stress inducer (TG; Sigma), or
incubated in the serum-free DMEM/F-12 medium contain-
ing 100 �M hydrogen peroxide.

Double-labeling immunohistochemistry

After deparaYnation, tissue sections were heated in 10 mM
citrate sodium buVer, pH 6.0 by autoclave at 125°C for 30 s
in a temperature-controlled pressure chamber (Dako, Tokyo,
Japan). For A� immunolabeling, tissue sections were pre-
treated with formic acid for 5 min at room temperature (RT).
All tissue sections were incubated with phosphate-buVered
saline (PBS) containing 10% normal goat serum (NGS) at RT
for 15 min to block non-speciWc staining. Then, tissue sec-
tions were initially stained at 4°C overnight with primary anti-
bodies listed in Table 1, followed by incubation with alkaline
phosphatase (AP)-conjugated secondary antibody (Nichirei),
and colorized with New Fuchsin substrate. The speciWcity of
anti-AQP1 antibody (H-55, Santa Cruz Biotechnology, Santa
Cruz, CA, USA) and anti-AQP4 antibody (H-80, Santa Cruz
Biotechnology) was veriWed by Western blot analysis of
HEK293 cells that express the transgene of human AQP1 or
AQP4 as described previously [47]. In addition, we found that
choroid plexus epithelial cells, representing a positive control
cell type, were stained intensely by H-55 (Supplementary
Fig. 1). After inactivation of the antibody by autoclaving the
sections at 125°C for 30 s in 10 mM citrate sodium buVer, pH
6.0 following the manufacturer’s instruction (Nichirei), they
were treated for 15 min with 3% hydrogen peroxide-contain-
ing distilled water to block the endogenous peroxidase activ-
ity. Then, they were relabeled with diVerent primary
antibodies listed in Table 1, followed by incubation with
horseradish peroxidase (HRP)-conjugated secondary antibody
(Nichirei), and colorized with DAB substrate and counter-
stained with hematoxylin. For negative controls, the step of
incubation with primary antibodies was omitted.

In the motor cortex and hippocampus of each case, the
number of A�+AQP1+ plaques, A�¡AQP1+ spots, and
A�+AQP1¡ plaques with size exceeding the diameter of
50 �m was counted in ten random Welds at 400£ micro-
scopic magniWcation on the Olympus BX51 universal
microscope. The average of percentages of A�+AQP1+

plaques, A�¡AQP1+ spots, and A�+AQP1¡ plaques, the
average of numbers of A�-immunoreactive plaques, and
the average of numbers of AQP1-immunoreactive plaques/
spots were compared between AD and non-AD cases by
statistical analysis with a Mann–Whitney’s U test. The
P value of <0.05 was considered as signiWcant.

Immunocytochemistry

For immunocytochemistry, the cells on cover glasses were
Wxed with 4% PFA in 0.1 M phosphate buVer, pH 7.4 at RT
for 5 min, followed by incubation with PBS containing
0.5% Triton X-100 at RT for 3 min. After blocking non-spe-
ciWc staining by PBS containing 10% NGS, the cells were
incubated at RT for 30 min with a mixture of anti-GFAP
antibody GA5 and anti-AQP1 antibody H-55. Then, they
were incubated at RT for 30 min with a mixture of Alexa
Fluor 568-conjugated anti-mouse IgG (Invitrogen) and
Alexa Fluor 488-conjugated anti-rabbit IgG (Invitrogen).
After several washes, they were mounted with an anti-fade
reagent containing 4�, 6�-diamidino-2-phenylindole (DAPI)
(Invitrogen), and examined on the Olympus BX51 universal
microscope. Negative controls were processed following all
the steps, except for exposure to anti-AQP1 antibody.

Western blot analysis

To prepare total protein extract, the cells were homoge-
nized in RIPA lysis buVer, composed of 50 mM Tris–HCl,
pH 7.5, 150 mM NaCl, 1% Nonidet P40, 0.5% sodium
deoxycholate, 0.1% SDS, and a cocktail of protease inhibi-
tors (Sigma), followed by centrifugation at 12,000 rpm for
10 min at RT. The supernatant was collected, solved in the
lysis buVer containing 2.5 M urea, and separated on a 12%
SDS-PAGE gel [47]. The protein concentration was deter-
mined by a Bradford assay kit (BioRad, Hercules, CA,
USA). After gel electrophoresis, the protein was transferred
onto nitrocellulose membranes, and immunolabeled at
RT overnight with anti-AQP1 antibody H-55. Then, the
membranes were incubated at RT for 30 min with HRP-
conjugated anti-rabbit IgG (Santa Cruz Biotechnology).
The speciWc reaction was visualized by exposing to a
chemiluminescent substrate (Pierce, Rockford, IL, USA).
After the antibodies were stripped by incubating the mem-
branes at 50°C for 30 min in stripping buVer, composed of
62.5 mM Tris–HCl, pH 6.7, 2% SDS and 100 mM 2-mer-
captoethanol, the membranes were processed for relabeling
with mouse monoclonal anti-�-actin antibody AC-15 (Sigma).

Immunoprecipitation analysis

To determine the molecular interaction between A� and
AQP1, the N-terminal half of AQP1, including the transmem-
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brane helices H1, H2 and H3 (amino acid residues 2-132;
NTF), the C-terminal half of AQP1, including the transmem-
brane helices H4, H5 and H6 (amino acid residues 133–269;
CTF) [10, 32] (GenBank accession No. NM_198098), and the
C-terminal fragment � (amino acid residues 597–695; CTF�)
of amyloid precursor protein (APP) (NM_201414) were
ampliWed by PCR using PfuTurbo DNA polymerase (Strata-
gene, La Jolla, CA, USA) and the sense and antisense primer
sets following: 5�ccgaattccggccagcgagttcaagaagaag3� and
5�for the NTF of AQP1, 5’cggaattccggtgaactcgggccagggcct3�

and 5�cggggtaccccgctatttgggcttcatctccac3� for the CTF of
AQP1, and 5�and 5’cgggatcccgctagttctgcatctgctcaaagaa3� for
the CTF� of APP. After digestion with EcoRI, KpnI, XbaI
or BamHI (New England BioLabs, Beverly, MA, USA),
the PCR products were cloned in the expression vectors
pCMV-Myc (Clontech, Mountain View, CA, USA) or
p3XFLAG-CMV7.1 (Sigma) to express a fusion protein with
an N-terminal Flag or Myc tag. At 48 h after co-transfection
of the vectors, HEK293 cells were homogenized in M-PER
lysis buVer (Pierce) supplemented with a cocktail of protease
inhibitors. After preclearance, the supernatant was incubated
at 4°C overnight with mouse monoclonal anti-Flag M2 aYn-
ity gel (Sigma), rabbit polyclonal anti-Myc antibody-conju-
gated agarose (Sigma), or the same amount of normal mouse
or rabbit IgG-conjugated agarose (Santa Cruz Biotechnology).
After several washes, the immunoprecipitates were processed
for Western blot with rabbit polyclonal anti-Myc antibody
(Sigma) and mouse monoclonal anti-FLAG M2 antibody
(Sigma).

Cell imaging analysis

The open reading frame (ORF) of the genes encoding AQP1
(amino acid residues 2–269) and the CTF� or A�1-42 of APP
were ampliWed by PCR using PfuTurbo DNA polymerase
and the sense and antisense primer sets following: 5�gcc
agcgagttcaagaagaagctc3� and 5�ctatttgggcttcatctccaccct3�for
AQP1, 5�and 5’cgggatcccgctagttctgcatctgctcaaagaa3� for the
CTF� of APP, and 5� cgggatcccgctacgctatgacaacaccgcccac3�

for A�1-42. After digestion with EcoRI, KpnI, XhoI or BamHI,
the PCR products were cloned in the expression vectors pDs-
Red-Express-C1 (Clontech) or pcDNA3.1/NT/GFP-TOPO
(Invitrogen) to express a fusion protein with an N-terminal
DsRed or GFP tag. At 24–48 h after co-transfection of the
vectors, HEK293 cells were Wxed brieXy in 4% PFA and
mounted with the anti-fade reagent containing DAPI.

Tissue protein overlay analysis

To identify AQP1-binding targets in brain tissues in situ, we
prepared recombinant human AQP1 protein tagged with
Xpress (AQP1-Xpress), serving as a probe for tissue protein
overlay. The ORF of AQP1 gene ampliWed by PCR

described above was cloned into a prokaryotic expression
vector pTrcHis-TOPO (Invitrogen), expressed in E. coli,
and puriWed to obtain a fusion protein having an N-terminal
Xpress tag. After deparaYnation, tissue sections were
heated in 10 mM citrate sodium buVer, pH 6.0 by autoclave
at 125°C for 30 s. They were treated with formic acid and
3% hydrogen peroxide, and then incubated at 4°C overnight
with AQP1-Xpress at the concentration of 167 �g/ml or
with the same amount of recombinant �-galactosidase frag-
ment tagged with Xpress (LacZ-Xpress), serving as a nega-
tive control. After washing with PBS, the tissue sections
were incubated at RT for 45 min with anti-Xpress antibody,
followed by incubation with HRP-conjugated secondary
antibody, and colorized with DAB substrate. After inactiva-
tion of the antibodies by autoclaving, the tissue sections
were processed for immunolabeling with anti-A� antibody,
followed by incubation with AP-conjugated secondary anti-
body, and colorized with New Fuchsin substrate.

Results

The close association of AQP1-expressing astrocytes 
with A� deposition in the cerebral cortex of AD

First, we studied AQP1 and AQP4 expression in the motor
cortex and hippocampus of 11 AD cases and 16 age-
matched other neurological disease (non-AD) cases by dou-
ble-labeling immunohistochemistry with a combination of
anti-AQP1 antibody, anti-AQP4 antibody, anti-A� anti-
body, and antibodies against cell type-speciWc markers.
In all cases, examined, AQP1 was expressed exclusively in
multipolar Wbrillary astrocytes with highly-branched
processes that often surround blood vessels and neurons
(Figs. 1a, b, d–f, 2a, c–e). Neither NSE+ neurons nor
CD68+ microglia nor factor VIII-related antigen-positive
vascular endothelial cells were immunolabeled with AQP1
antibody (Figs. 1e, f, 2a). Approximately 70% of AQP1+

multipolar Wbrillary cells coexpressed an intense GFAP
immunoreactivity, verifying that they represent a subpopu-
lation of astrocytes with a unique morphology (Fig. 1d).
Importantly, AQP1-expressing astrocytes were either often
located on the top of or in close proximity to A� plaques in
the motor cortex and hippocampus of AD, but rarely in
non-AD cases (Fig. 1a).

In contrast, AQP4 immunoreactivity was distributed
more diVusely in the whole neuropil, gliotic and perivascu-
lar lesions, and the pia matter in the cerebral cortex of both
AD and non-AD cases, although the staining was more
intense in AD brains (Fig. 2b; Supplementary Fig. 2). In all
the cases, multipolar Wbrillary astrocytes expressing an
intense immunoreactivity for AQP4 were less prominently
found,when compared with AQP1-expressing astrocytes.
123
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Double labeling identiWed three distinct populations of astro-
cytes, AQP1+AQP4+, AQP1+AQP4¡, and AQP1¡AQP4+,
suggesting that AQP1 and AQP4 might play an overlapping
but non-redundant role in astrocytic water channel function
(Fig. 2c). AQP1+AQP4+ cells consisted of approximately
15% of all AQP-immunoreactive cells. Owing to the diVuse
distribution of intense neuropil staining of AQP4, we could
not clearly discriminate AQP4-immunoreactive astrocytes
with or without a contact with A�, making it highly diYcult
to count exactly the number of AQP4-expressing astrocytes
located in the proximity to A� plaques.

Next, tissue sections of the motor cortex and hippocampus
of AD and non-AD patients were processed for double-label-
ing immunohistochemistry with a combination of anti-AQP1

antibody and anti-A� antibody. Then, we counted the num-
ber of A�+AQP1+ plaques (Figs. 1a, 2d), A�¡AQP1+ spots
(Figs. 1b, 2e), and A�+AQP1¡ plaques (Figs. 1c, 2f) with the
size exceeding the diameter of 50 �m, by random scanning
of the cerebral cortex at a 400£ magniWcation under micro-
scope (Fig. 3a, b). The average of percentages of A�+AQP1+

plaques was signiWcantly greater in both the motor cortex
and hippocampus of AD than that of non-AD (P = 1.092E-05
in the motor cortex; P = 1.410E-05 in the hippocampus). In
contrast, the average of percentages of A�¡AQP1+ spots was
signiWcantly greater in both the motor cortex and hippocam-
pus of non-AD than that of AD (P = 1.865E-05 in the motor
cortex; P = 5.035E-04 in the hippocampus). By counting of
ten random high magniWcation Welds, the average of total

Fig. 1 Multipolar Wbrillary 
astrocytes express AQP1 in the 
cerebral cortex of AD. The 
tissue sections of the motor 
cortex of AD patients were 
processed for double-labeling 
immunohistochemistry using a 
panel of antibodies listed in 
Table 1. a–c AQP1 (brown) and 
A� (red), d AQP1 (red) and 
GFAP (brown), e AQP1 (brown) 
and CD68 (red), and f AQP1 
(brown) and factor VIII-related 
antigen (red). Multipolar Wbril-
lary astrocytes expressing an 
intense AQP1 immunoreactivity 
are often located on the top of 
A� deposition (a)

Fig. 2 Multipolar Wbrillary astrocytes express AQP1 and AQP4 in the
cerebral cortex of AD and other neurological diseases. The tissue sec-
tions of the motor cortex and the hippocampus of the patients with AD,
Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) were
processed for double-labeling immunohistochemistry using a panel of
antibodies listed in Table 1. a the motor cortex of the patient with AD;

AQP1 (red) and NSE (brown), b the hippocampus of the patient with
AD; AQP4 (brown) and A� (red), c the hippocampus of the patient
with ALS; AQP1 (red) and AQP4 (brown), and d–f the motor cortex
of the patient with PD; AQP1 (brown) and A� (red). Three distinct
populations of astrocytes, AQP1+AQP4+ (thick arrow), AQP1+AQP4¡

(arrowhead), and AQP1¡AQP4+ (thin arrows), are identiWed (c)
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number of A�-immunoreactive plaques or AQP1-immuno-
reactive plaques/spots larger than 50 �M diameter was
16.2 § 4.7 for A� and 16.3 § 4.4 for AQP1 in the motor cor-
tex of AD, and 15.1 § 4.1 for A� and 16.5 § 4.0 for AQP1
in the hippocampus of AD. In contrast, it was 0.6 § 1.9 for
A� and 2.7 § 1.8 for AQP1 in the motor cortex of non-AD,
and 2.6 § 4.5 for A� and 8.6 § 6.1 for AQP1 in the hippo-
campus of non-AD. Thus, the average number of A�-immu-
noreactive plaques and AQP1-immunoreactive plaques/
spots, was elevated signiWcantly in the cerebral cortex of AD
compared with non-AD (P = 1.217E-05 for A� in the motor
cortex; P = 6.416E-05 for A� in the hippocampus;
P = 1.092E-05 for AQP1 in the motor cortex; and P = 0.003
for AQP1 in the hippocampus). All of these observations

suggest a close association of AQP1 with A� deposition in
the cerebral cortex of AD. Alternatively, the possibility
should be considered that the population of A� +AQP1+

plaques is much smaller in non-AD brains, because there
existed less amounts of A� deposition and smaller numbers
of AQP1-immunoreactive astrocytes in the brains of non-AD
cases. In this setting, A� deposition might not be obligatory
for induction of the astrocytic expression of AQP1.

The expression and induction of AQP1 in cultured human 
astrocytes

Since a subset of astrocytes intensely expressed AQP1 in
AD and non-AD brains, in the next step, we investigated
AQP1 expression in cultured human astrocytes. Consistent
with high levels of AQP1 mRNA expression in cultured
human astrocytes, as we reported previously [47], virtually
all of them expressed constitutively a discernible immuno-
reactivity for AQP1, located mostly on the plasma mem-
brane and less abundantly in the cytoplasm (Fig. 4a–d). The
expression of AQP1 in astrocytes was further validated by
Western blot. Cultured human astrocytes expressed consti-
tutively a substantial amount of AQP1 protein with a
molecular weight of 28-kDa, which represents the non-
glycosylated form (Fig. 5a, lanes 1, 4, 6). They did not
consistently express the glycosylated form with a larger
molecular weight (data not shown). Then, cultured human
astrocytes were exposed for 48 h to various stimuli that
potentially aVect the levels of AQP1 expression. The levels
of AQP1 protein expression were not aVected by treatment
with either A�1-42 or A�1-40 peptide, but elevated markedly
by exposure to 100 mM NaCl, modestly by 10 �M MG-
132, and reduced substantially by treatment with 100 nM
phorbol 12-myristate 13-acetate (PMA) (Fig. 5, panel a,
lanes 2, 3, 5, 10, 12). Upregulation by NaCl and downregu-
lation by PMA were veriWed by real-time RT-PCR analysis
(Supplementary Fig. 3). In contrast, the treatment with
either sodium nitroprusside (SNP), hydrogen peroxide, reti-
noic acid (RA), dibutyryl cyclic AMP (dbcAMP), or thapsi-
gargin (TG) did not aVect the levels of AQP1 protein
expression (Fig. 5 lanes 7, 8, 9, 11, 13). These results sug-
gest that human astrocytes that express substantial amounts
of AQP1 protein under the baseline culture condition are
fairly resistant to induction of AQP1 by non-osmotic stimuli.

Molecular interaction of AQP1 and CTF� of APP

Finally, the molecular interaction between AQP1 and A�
was investigated by immunprecipitation of recombinant
fusion proteins with distinct epitope tags coexpressed in
HEK293 cells, followed by pull down with tag-speciWc
antibodies. Since preliminary experiments suggested that
the segment spanning A�1-42 alone is not enough to identify

Fig. 3 The number of AQP1 and A�-immunoreactive plaques in the
cerebral cortex of AD. The tissue sections of the motor cortex and the
hippocampus of 11 AD patients and 16 age-matched non-AD patients
were processed for double-labeling immunohistochemistry with anti-
AQP1 antibody H-55 and anti-A� antibody 12B2. The number of
A�+AQP1+ plaques, A�+AQP1¡ plaques, and A�¡AQP1+ spots with
the size exceeding the diameter of 50 �m was counted by random scan-
ning of the cerebral cortex at a 400£ magniWcation under microscope.
The percentage of immunoreactive plaques/spots, A�+AQP1+, A�
+AQP1¡ or A�¡AQP1+, per the total was calculated, and the average
is shown as the bar with standard deviation. a Motor cortex. b Hippo-
campus. *P = 1.092E-05, **P = 1.865E-05, *** P = 1.410E-05, and
****P = 5.035E-04
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the protein–protein interaction owing to its small size
(4 kDa) on a conventional Tris-glycine SDS-PAGE gel, we
have chosen the CTF� of APP, spanning both A� and the
APP intracellular domain (AICD), expressed as a Flag-
tagged fusion protein. Alternatively, either the NTF or the
CTF of AQP1 was expressed as a Myc-tagged fusion pro-
tein. Pull-down assay showed that the CTF� of APP inter-
acts with the NTF of AQP1, but not with the CTF of AQP1,
indicating that the molecular interaction is not attributable

to an artifact caused by overexpression in HEK293 cells
(Fig. 6a, b, upper and lower panels; lane 2).

To obtain additional evidence to support the results of
immunoprecipitation analysis, we conducted cell imaging anal-
ysis. Either the CTF� or A�1-42 was expressed as a DsRed-
tagged fusion protein, while the full-length AQP1 was
expressed as a GFP-tagged fusion protein. The CTF� of APP,
as well as A�1-42, was located chieXy in the cytoplasm, while
AQP1 was expressed mainly on the plasma membrane, and

Fig. 4 Cultured human astro-
cytes express AQP1 immuno- 
reactivity. Cultured human 
astrocytes were processed for 
triple-labeling immunocyto-
chemistry with anti-AQP1 anti-
body H-55, anti-GFAP antibody 
GA5, and DAPI. a AQP1, lower 
magniWcation; b AQP1, higher 
magniWcation; c GFAP, and d 
merge of b and c with DAPI

Fig. 5 AQP1 protein levels in cultured human astrocytes exposed to
various stimuli. Cultured human astrocytes were exposed for 48 h to
the stimuli, and then processed for Western blot analysis with anti-
AQP1 antibody H-55. The identical blot was relabeled with anti-�-
actin antibody AC-15. The panels consist of three distinct sets of
experiments, composed of the set #1 (lanes 1–3), the set #2 (lanes 4
and 5), and the set #3 (lanes 6–13). The lanes (1–13) represent (1, 4, 6)
untreated or vehicle-treated cells, (2) 10 �M A�1-40 peptide, (3) 10 �M

A�1-42 peptide, (5) 100 mM NaCl, (7) 100 �M sodium nitroprusside,
(8) 100 �M hydrogen peroxide, (9) 10 �M all trans retinoic acid, (10)
100 nM phorbol 12-myristate 13-acetate, (11) 1 mM dibutyryl cyclic
AMP, (12) 10 �M MG-132, and (13) 1 �M thapsigargin. Twenty-Wve
microgram of protein was loaded on each lane. The expression levels
indicate the ratio of AQP1 protein level of treated cells versus untreat-
ed cells, which were standardized against �-actin protein level
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none of them were expressed in the nucleus, when overexpres-
sed in HEK 293 cells. A discernible GFP Xuorescence was also
detected in the cytoplasm, where AQP1 was found to be colo-
calized with CTF� of APP and A�1-42 (Fig. 6c, panels a–f).

To determine the in vivo molecular interaction between
AQP1 and A�, we performed tissue protein overlay analy-
sis using recombinant human AQP1 protein spanning the
entire ORF tagged with Xpress (AQP1-Xpress) that enables
us to identify the expression of AQP1-binding proteins in
situ. This probe was recognized by both anti-AQP1 anti-
body and anti-Xpress antibody (Fig. 7a, panels a and b;
lane 2). By tissue protein overlay, the AQP1-Xpress probe
did not decorate the entire surface of A�-immunoreactive
plaques, but the core of the plaques often expressed a nodu-
lar or irregular-shaped AQP1-Xpress-immunoreactivity
(Fig. 7b, panel a). The AQP1-Xpress probe also reacted

intensely with many neurons, neuropil, and microglia in
AD brains, suggesting that these cells and constituents
might express the molecules with AQP1-binding epitopes
(Fig. 7b, panel a). The AQP1-Xpress probe did not label
multipolar Wbrillary astrocytes. In contrast, the LacZ-
Xpress probe did not react with neurons, microglia,
astrocytes, or A� plaques, excluding non-speciWc inter-
action via the Xpress epitope of recombinant proteins
(Fig. 7b, panel b).

Discussion

In the present study, we investigated the relationship
between A� deposition and astrocytic AQP1 expression in
the motor cortex and hippocampus of 11 AD patients and

Fig. 6 Molecular interaction of AQP1 and the CTF� of APP. a, b
Immunoprecipitation (IP) analysis. The C-terminal fragment-beta
(CTF�) of amyloid precursor protein (APP) was expressed as a Flag-
tagged fusion protein, while either the NTF or the CTF of AQP1 was
expressed as a Myc-tagged fusion protein. They were coexpressed in
HEK293 cells, and processed for pull-down with anti-Flag or anti-Myc
antibody, followed by Western blot reciprocally with anti-Myc or anti-
Flag antibody. a The interaction between CTF� and NTF of AQP1.
b The interaction between CFT� and CTF of AQP1. The lanes (1–3)

represent (1) input control of cell lysate, (2) IP with anti-tag antibodies,
and (3) IP with normal mouse or rabbit IgG. c Cell imaging analysis.
Either the CTF� or A� -42 was expressed as a DsRed-tagged fusion pro-
tein, while the full-length AQP1 was expressed as a GFP-tagged fusion
protein. They were coexpressed in HEK293 cells. a AQP1 with a GFP
Xuorescence, b CTF� with a DsRed Xuorescence, c merge of a and b
with DAPI, d AQP1 with a GFP Xuorescence, e A�1-42 with a DsRed
Xuorescence, and f merge of d and e with DAPI
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16 age-matched non-AD cases. We found that AQP1 was
expressed exclusively in a subpopulation of multipolar
Wbrillary astrocytes in all cases. The great majority of
AQP1-expressing astrocytes were located either on the top
of or in close proximity to A� plaques in AD brains but not
in non-AD cases, whereas AQP1-expressing astrocytes
independent of A� deposition were found predominantly in
non-AD brains. By tissue protein overlay analysis, AQP1-
Xpress-immunoreactivities, reXecting the existence of the
molecules with AQP1-binding epitopes, were located in the
core of A� plaques in AD brains. A number of previous
studies showed that astrocytes, keeping in touch with A�
plaques, are activated by A� itself in AD brains [37, 55]. In
line with the previous observations, we showed that AQP1-
expressing multipolar Wbrillary astrocytes are closely asso-
ciated with A� deposition in AD brains. These observations
suggest the hypothesis that A� deposition might cause
abnormal brain water homeostasis by interfering with astro-
cytic water channel function. The present study included
solely AD brains classiWed into the most advanced stage of
the disease. To evaluate the hypothesis described above, it
is important to investigate AQP1 expression in AD brains
at early stages with minimal deposition or diVuse plaques
of A�. Importantly, a recent study using Western blot and
immunohistochemistry showed that the levels of AQP1

protein expression are signiWcantly elevated in the frontal
cerebral cortex of AD at the Braak’s stage II, where reac-
tive astrocytes similar to multipolar Wbrillary astrocytes
observed in the present study express a cell-surface punctu-
ate AQP1 immunoreactivity [43]. In contrast, no diVer-
ences are found in AQP1 protein levels between the stages
V–VI of AD and the age-matched control cases, suggesting
the possibility that upregulated expression of AQP1 on
astrocytes in AD brains is a disease stage-dependent event
[43].

To obtain a deeper insight into our in vivo observations
of close association of AQP1-expressiong astrocytes with
A�, we studied the molecular interaction between AQP1
and A� in a transient expression system of HEK293 cells in
vitro. By the pull-down assay, the CTF� of APP interacts
with the N-terminal half (amino acid residues 2–132; NTF)
of AQP1 spanning the transmembrane helices H1, H2, and
H3, which contains one of two NPA motifs pivotal for
water transport function [2, 32]. A recent study indicated
that the amino acid residues composed of Phe 58, His 182,
Cys 191, and Arg 197 are involved in constituting the con-
striction region of water channel, while both His 76 and Val
155 act as a valve by dynamically blocking water perme-
ation [49]. AQP1, along with the CTF� and A�1-42, were
colocalized on the cell-surface membrane and in the cyto-
plasm, when they were coexpressed in cultured cells.
Although the primary site of AQP1 expression is the cell-
surface membrane, the intracellular location of AQP1 has
been reported previously. AQP1 integrates into the ER
membrane, when overexpressed in HEK293 cells [11].
Secretin induces a redistribution of AQP1 protein from
intracellular vesicles to the plasma membrane in cholangio-
cytes [33]. Importantly, both APP and AQP1 constitute
transmembrane proteins, and A� and AQP1 are enriched in
lipid rafts of the plasma membrane [7, 52], raising the pos-
sibility of a direct protein–protein interaction between A�
and AQP1 at cell-to-cell contact interfaces in situ.

However, it should be kept in mind that the binding of
AQP1 to A� in vitro does not always precisely reXect the in
vivo situation of the interaction between AQP1-expressing
astrocytes and A�. Importantly, both reactive astrocytes
and activated microglia express scavenger receptors that
mediate the clearance of extracellularly-deposited Wbrillar
A� [1]. Therefore, it is meaningful to study in the next step
the molecular interaction of AQP1 and Wbrillar A�, and its
physiological interference with water transport in an astro-
cyte culture model in vitro. Although the present study, in
the absence of high-resolution immunoelectron micro-
scopic analysis dose not provide deWnitive evidence to
show the direct interaction between A� and AQP1 in vivo,
we could currently propose two diVerent working models
of the molecular interaction of AQP1 and A�; (1) astrocytic
AQP1 could interact with extracellular deposition of

Fig. 7 Tissue protein overlay analysis with recombinant AQP1 pro-
tein as a probe. a Western blot of recombinant proteins. The identical
blot was labeled sequentially with a anti-Xpress antibody or b anti-
AQP1 antibody H-55. b Tissue protein overlay. The tissue sections of
the motor cortex of AD were incubated with a AQP1-Xpress or b
LacZ-Xpress. Then, they were processed for immunolabeling with
anti-Xpress antibody. After inactivation of the antibodies by autoclav-
ing, the tissue sections were processed for relabeling with anti-A� anti-
body. Xpress (brown) and A� (red). The arrows indicate an existence
of AQP1-binding molecules in the core of A� deposition
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Wbrillary A� (Fig. 8a) and (2) astrocytic AQP1 could inter-
act with the A� and/or AICD transmembrane/intracellular
segment of endogenous APP (Fig. 8b).

Regulatory mechanisms underlying AQP1 expression
are highly complex. Systemic hyponatremia elevates the
levels of expression of AQP1 on choroid plexus epithelial
cells [35]. Thyroid transcription factor-1 (TTF1), expressed
in choroids plexus epithelium, facilitates CSF production
by enhancing AQP1 gene expression [25]. Hypertonic
stress induces the expression of AQP1 in rodent renal med-
ullary cells by activating extracellular signal-regulated
kinase (ERK), p38 MAP kinase, and c-Jun N-terminal
kinase (JNK), all of which regulate a hypertonicity-respon-
sive element (HRE) located in the AQP1 promoter [53].
Acetazolamide inhibits the osmotic water permeability by
reducing AQP1 protein expression [56]. Treatment with
corticosteroids increases the levels of AQP1 protein expres-
sion in the capillary endothelium of the peritoneal mem-
brane and the lung [26, 50]. AQP1 expression is induced in
rat gliosarcoma cells by exposure to hypoxia, dexametha-
sone, and PDGF, and by incubating the cells in hypertonic
culture media containing NaCl, D-glucose or fructose [17].

Treatment with proteasome inhibitors elevates the levels of
AQP1 protein expression in mouse Wbroblasts [29]. All of
these observations suggest that distinct promoter elements
are activated in response to osmotic and non-osmotic stim-
uli in diVerent cell types. We found that AQP1 expression
in cultured human astrocytes is upregulated markedly by
hypertonic sodium chloride, modestly by MG-132, and
downregulated by PMA, an activator of protein kinase C
(PKC). It is worthy to note that tetradecanoylphorbol 13-
acetate (TPA), another activator of PKC, induces a rapid
decrease in AQP4 mRNA in rat astrocytes in culture [38].

The pathophysiological role of AQP1-expressing multi-
polar Wbrillary astrocytes in AD brains remains unknown.
Increasing evidence indicate that AQP1 acts as a gas trans-
porter, such as O2, CO2, and NO [6, 13, 18]. AQP1, by
transporting NO out of endothelial cells and into vascular
smooth muscle cells, plays a pivotal role in endothelium-
dependent vasorelaxation [18]. AQP1 expression is mark-
edly upregulated in rat lungs by hypoxia [13]. AQP1 is
required for hypoxia-inducible angiogenesis in human reti-
nal vascular endothelial cells [23]. We showed previously
that AQP1-expressing astrocytes accumulate in ischemic

Fig. 8 Working models of the 
molecular interaction between 
AQP1 and A�. AQP1 is com-
posed of a homotetramer of 28-
kDa subunits. Each monomeric 
subunit contains six transmem-
brane helices (H1–H6) with two 
hemipores with an Asparagine–
Proline–Alanine (NPA) motif, 
which fold to form a water chan-
nel (see the reference [32]). Pull-
down assay suggested that the 
CTF� of APP, composed of 
A� and AICD, interacts with the 
N-terminal half of AQP1 
spanning H1, H2, and H3. Two 
diVerent working models could 
be proposed for the molecular 
interaction of AQP1 and A�; a 
astrocytic AQP1 could interact 
with extracellular deposition of 
Wbrillary A�, and b astrocytic 
AQP1 could interact with the A� 
and/or AICD transmembrane/
intracellular segment of 
endogenous APP
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lesions of cerebral infarction and active demyelinating
lesions of MS [47]. Because the production of NO and
reactive nitrogen species (RNS), as well as reactive oxygen
species (ROS), is markedly enhanced in the brains of ische-
mia, MS and AD [3], the possibility exists that AQP1-
expressing astrocytes with a great migratory capacity [54]
act as a scavenger of RNS and ROS by patrolling the cortex
of AD. However, treatment with SNP and hydrogen perox-
ide did not aVect the levels of AQP1 protein expression in
human astrocytes in culture, suggesting that these stimuli
do not directly upregulate AQP1 expression in astrocytes.

We found that the levels of AQP1 protein expression on
cultured human astrocytes were not aVected by exposure to
A�1-42 peptide at least within a 48 h-observation period,
although we observed a drastic change in morphology of
astrocytes, exhibiting the morphology with ruZed cell-sur-
face membranes (Supplementary Fig. 4). The molecular
basis for this change remains unknown. Even though A�
desposition does not act as a potent inducer for AQP1
expression in cortical astrocytes in AD brains, the close
association of AQP1 with A� suggests that extensive A�
deposition could cause abnormal brain water homeostasis
by interfering with astrocytic water channel function. Sup-
porting this view, previous clinical studies showed that
brain ion and water homeostasis is profoundly disturbed in
AD [5, 20]. Recent studies have indicated that intracerebral
accumulation of not only A� oligomers but also that of the
APP intracellular domain (AICD) aVects the gene expres-
sion involved in neuronal survival [36]. Human astrocytes
produce A� in response to TGF�, suggesting that astrocytes
might coexpress A�, along with AQP1, when activated by
cytokines in AD brains [30]. The great majority of APP
holoprotein is located in intracellular membranous com-
partments in cultured astrocytes [15]. AQP1 is produced
initially as a precursor protein with four transmembrane
segment-spanning topology at the ER membrane, and fol-
lowing topological reorientation it is processed to form a
mature protein with six transmembrane segment-spanning
topology at the plasma mambrane [31]. After overexpres-
sion of the transgenes without signal peptide sequences in
HEK 293 cells, the CTF� of APP, as well as that of A�1-42,
was located chieXy in the cytoplasm, while AQP1 was
expressed mainly on the plasma membrane and less abun-
dantly in the cytoplasm. Although the overexpression
experiments in HEK293 cells do not precisely reXect the
physiological situation, a discernible colocalization was
detected in the cytoplasm, not excluding the interaction in
intracellular membranous compartments. The pull-down
assay showed that the CTF�, composed of both A� and
AICD, interacts directly with the NTF of AQP1, although
these observations did not specify the AQP1-interacting
domain of APP, either A� or AICD, or both. Therefore, the
possible scenario could be raised that astrocytic A� and/or

AICD segment of endogenous APP interacts with AQP1
either on the plasma membrane or at speciWc intracellular
membrane compartments (Fig. 8b). In addition, the hypo-
thetical view could be proposed that A� and AICD, by
binding to AQP1, not only aVect water permeability, but
also modulate signaling pathways in astrocytes essential for
supporting neuronal survival in the brains of AD.

In conclusion, AQP1-expressing Wbrillary astrocytes,
which represent a unique subset of astrocytes, might have a
close association with A� in the brains of advanced stages
of AD, although there exists no deWnitive evidence to show
the direct contact. However, these observations suggest the
working hypothesis that A� deposition could cause abnor-
mal brain water homeostasis by interfering with astrocytic
water channel function. Further studies, including the
immunohistochemical analysis of various disease stages,
high-resolution morphological analysis, and cell physiolog-
ical analysis, are required to evaluate this hypothesis.
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