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Developmental function and state transitions of a
gene expression oscillator in Caenorhabditis elegans
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Abstract

Gene expression oscillators can structure biological events tempo-
rally and spatially. Different biological functions benefit from
distinct oscillator properties. Thus, finite developmental processes
rely on oscillators that start and stop at specific times, a poorly
understood behavior. Here, we have characterized a massive gene
expression oscillator comprising > 3,700 genes in Caenorhabditis
elegans larvae. We report that oscillations initiate in embryos,
arrest transiently after hatching and in response to perturbation,
and cease in adults. Experimental observation of the transitions
between oscillatory and non-oscillatory states at high temporal
resolution reveals an oscillator operating near a Saddle Node on
Invariant Cycle (SNIC) bifurcation. These findings constrain the
architecture and mathematical models that can represent this
oscillator. They also reveal that oscillator arrests occur repro-
ducibly in a specific phase. Since we find oscillations to be coupled
to developmental processes, including molting, this characteristic
of SNIC bifurcations endows the oscillator with the potential to
halt larval development at defined intervals, and thereby execute
a developmental checkpoint function.

Keywords bifurcation; checkpoint; development; oscillator; SNIC

Subject Category Development & Differentiation

DOI 10.15252/msb.20209498 | Received 4 February 2020 | Revised 15 June

2020 | Accepted 22 June 2020

Mol Syst Biol. (2020) 16: e9498

Introduction

Gene expression oscillations occur in many biological systems as

exemplified by circadian rhythms in metabolism and behavior

(Panda et al, 2002), vertebrate somitogenesis (Oates et al, 2012),

plant lateral root branching (Moreno-Risueno et al, 2010), and

Caenorhabditis elegans larval development (Hendriks et al, 2014).

They are well-suited for timekeeping, acting as molecular clocks

that can provide a temporal, and thereby also spatial, structure for

biological events (Uriu, 2016). This structure may represent external

time, as illustrated by circadian clocks, or provide temporal organi-

zation of internal processes without direct reference to external

time, as illustrated by somitogenesis clocks (Rensing et al, 2001).

Depending on these distinct functions, oscillators require dif-

ferent properties. Thus, robust representation of external time

requires a stable period; i.e., the oscillator has to be compensated

for variations in temperature and other environmental factors. It

also benefits from a phase-resetting mechanism to permit realign-

ments, if needed, to external time. Intuitively, either feature seems

unlikely to benefit developmental oscillators. By contrast, because

developmental processes are finite; e.g., an organism has a charac-

teristic number of somites, developmental oscillators need a start

and an end. How such changes in oscillator activity occur in vivo,

and which oscillator features enable them, is largely unknown

(Riedel-Kruse et al, 2007; Shih et al, 2015).

Here, we characterize the recently discovered “C. elegans oscil-

lator” (Kim et al, 2013; Hendriks et al, 2014) at high temporal

resolution and across the entire period of C. elegans development,

from embryo to adult. The system is marked by a massive scale

where ~3,700 genes exhibit transcript level oscillations that are

detectable, with large, stable amplitudes and widely dispersed

expression peak times (i.e., peak phases), in lysates of whole

animals. For the purpose of this study, and because insufficient

information exists on the identities of core oscillator versus output

genes, we define the entire system of oscillating genes as “the

oscillator”. We demonstrate that the oscillations are coupled to

molting, i.e., the cyclical process of new cuticle synthesis and old

cuticle shedding that occurs at the end of each larval stage. We

observe and characterize onset and offset of oscillations both

during continuous development and upon perturbation, and find

that transitions occur with a sudden change in amplitude. They

also occur in a characteristic oscillator phase and thus at specific,

recurring intervals. The transitions are a manifestation of a bifur-

cation, i.e., qualitative change in behavior, of the underlying oscil-

lator system. Hence, our observations constrain possible oscillator

1 Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
2 University of Basel, Basel, Switzerland
3 University Hospital, Basel, Switzerland

*Corresponding author. Tel: +41 61 697 6580; E-mail: helge.grosshans@fmi.ch
†These authors contributed equally to this work
Published research reagents from the FMI are shared with the academic community under a Material Transfer Agreement (MTA) having terms and conditions
corresponding to those of the UBMTA (Uniform Biological Material Transfer Agreement).

ª 2020 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 16: e9498 | 2020 1 of 21

https://orcid.org/0000-0001-6382-6449
https://orcid.org/0000-0001-6382-6449
https://orcid.org/0000-0001-6382-6449
https://orcid.org/0000-0003-1357-9712
https://orcid.org/0000-0003-1357-9712
https://orcid.org/0000-0003-1357-9712
https://orcid.org/0000-0001-8798-1443
https://orcid.org/0000-0001-8798-1443
https://orcid.org/0000-0001-8798-1443
https://orcid.org/0000-0001-7234-1435
https://orcid.org/0000-0001-7234-1435
https://orcid.org/0000-0001-7234-1435
https://orcid.org/0000-0002-3456-239X
https://orcid.org/0000-0002-3456-239X
https://orcid.org/0000-0002-3456-239X
https://orcid.org/0000-0002-9788-9875
https://orcid.org/0000-0002-9788-9875
https://orcid.org/0000-0002-9788-9875
https://orcid.org/0000-0002-8169-6905
https://orcid.org/0000-0002-8169-6905
https://orcid.org/0000-0002-8169-6905


architectures, excluding a simple negative-loop design, and

parametrization of mathematical models.

Functionally, because of the phase-locking of the oscillator and

molting, arrests always occur at the same time during larval stages,

around molt exit. This time coincides with the previously reported

recurring window of activity of a checkpoint that can halt larval

development in response to nutritionally poor conditions. Hence,

our results indicate that the C. elegans oscillator functions as a

developmental clock whose architecture supports a developmental

checkpoint function.

Results

Thousands of genes with oscillatory expression during the four
larval stages

Although previous reports agreed on the wide-spread occurrence of

oscillatory gene expression in C. elegans larvae (Kim et al, 2013;

Grün et al, 2014; Hendriks et al, 2014), the published datasets were

either insufficiently temporally resolved or too short to characterize

oscillations across C. elegans larval development. Hence, to under-

stand the extent and features of these oscillations better, including

their continuity throughout development, we performed two

extended time course experiments to cover the entire period of post-

embryonic development plus early adulthood at hourly resolution.

We extracted total RNA from populations of animals synchronized

by hatching in the absence of food. The first time course (designated

TC1) covered the first 15 h of development on food at 25°C, and the

second time course (TC2) covered the span of 5 h through 48 h after

plating at 25°C. [Fig EV1A provides a summary of all sequencing

time courses analyzed in this study.] The extensive overlap facili-

tated fusion of these two time courses into one long time course

(TC3) (Fig EV1B), and a pairwise-correlation plot of gene expres-

sion over time showed periodic similarity (Fig 1A, light-gray off-

diagonals).

The larger dataset enabled us to improve on the previous identifi-

cation of genes with oscillatory expression (Hendriks et al, 2014).

Using cosine wave fitting, and an amplitude cut-off of log2(ampli-

tude) ≥ 0.5 and P ≤ 0.01, we classified 3,739 genes (24% of total

expressed genes) as “oscillating” (i.e., rhythmically expressed) from

TC2 (Figs 1B and EV1C and Dataset EV1; Materials and Methods).

We confirmed this classification using MetaCycle (Wu et al, 2016,

2019), an algorithm that is widely used to study rhythmic circadian

gene expression. At an FDR < 0.05 and an amplitude cut-off of

log2(amplitude) ≥ 0.5, MetaCycle identified a comparable number,

and highly overlapping set, of oscillating genes with similar ampli-

tudes (Appendix Fig S1A and B). It also confirmed a predominant 7-h

period for these genes (Appendix Fig S1C). We conclude that cosine

fitting works robustly to identify oscillating genes in our data.

Relative to the previous result of 2,718 oscillating genes (18.9%

of total expressed genes) in mRNA expression data of L3 and L4

animals (Hendriks et al, 2014), this adds 1,240 new genes and

excludes 219 of the previously annotated oscillating genes. We

consider this latter group to be most likely false positives from the

earlier analysis, resulting from the fact that some genes behave

substantially different during L4 compared to the preceding stages

as shown below.

Visual inspection of a gene expression heatmap of the fused time

course (TC3; Fig 1C) revealed four cycles of gene expression for the

oscillating genes, presumably reflecting progression through the

four larval stages. Oscillations were absent during the first few

hours of larval development as well as in adulthood, from ~37 h on,

and both their onset and offset appeared to occur abruptly. We will

analyze these and additional features of the system and their impli-

cations in more detail in the following sections.

Oscillating genes are expressed in several tissues with dispersed
peak phases

An examination of the calculated peak phases confirmed the visual

impression that individual transcripts peaked at a wide variety of

time points, irrespective of expression amplitude (Fig 1D). In circa-

dian rhythms, peak phase distributions are typically clustered into

three or fewer groups when examined in a specific tissue (Koike

et al, 2012; Koren�ci�c et al, 2014). However, the identity of oscillat-

ing genes differs across cell types and tissues, and for those genes

that oscillate in multiple tissues, phases can differ among tissues

(Zhang et al, 2014). Hence, we wondered whether the broad peak

phase distribution was a consequence of our analysis of RNA from

whole animals, whereas individual tissues might exhibit a more

defined phase distribution.

▸Figure 1. A massive oscillator with dispersed peak phases in several tissues.

A Pairwise correlation plot of log2-transformed expression patterns of all genes (n = 19,934) obtained from a synchronized population of L1 stage larvae sampled and
sequenced from t = 1 h until t = 48 h (TC3; a fusion of the two time courses TC1 and TC2 after 13 h; Fig EV1A and B). An asterisk indicates an outlier, time point
t = 40 h.

B Scatter plot identifying genes with oscillatory expression (henceforth termed oscillating genes, blue) based on amplitude and 99% confidence interval (99%-CI) of a
cosine fitting of their expression quantified on TC2 (Materials and Methods). A lower CI-boundary ≥ 0, i.e., P ≤ 0.01, and a log2(amplitude) ≥ 0.5, which corresponds to
a 2-fold change from peak to trough, were used as cut-offs. Genes below either cut-off were included in the “not oscillating” group (black). Figure EV1C shows gene
distributions in a density scatter plot.

C Gene expression heatmap of oscillating genes as classified in Figs 1B and EV1C. Oscillating genes were sorted by peak phase, and mean expression per gene from
t = 7 h to t = 36 h (when oscillations occur) was subtracted. n = 3,680 as not all genes from the long time course (TC2) were detected in the early time course (TC1).
Gray horizontal bars indicate the individual oscillation cycles, C1 through C4 which start at TP6, TP14, TP20, and TP27, respectively, as later determined in
Appendix Fig S7.

D Radar chart plotting amplitude (radial axis, in log2) over peak phase (circular axis, in degrees) as determined by cosine fitting in Fig 1B.
E Enrichment (red) or depletion (blue) of tissues detected among oscillating genes expressed tissue-specifically relative to all tissue-specific genes using annotations

derived from Cao et al (2017). Significance was tested using one-sided binomial tests which resulted in P-values < 0.001 for all tissues.
F Density plot of the observed peak phases of tissue-specifically expressed oscillating genes for all enriched tissues.
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To understand in which tissue oscillations occur, we utilized a

previous annotation of tissue-specifically expressed genes (Cao

et al, 2017). 1,298, and thus a substantial minority (~35%) of

oscillating genes, fell in this category for seven different tissues.

They were strongly (~2.5-fold) enriched in the hypodermis (epider-

mis) and pharynx, and more modestly (≤ 1.5-fold) in glia and
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intestine (Fig 1E). By contrast, oscillating genes were greatly

depleted from body wall muscle, neurons, and gonad. Hence, oscil-

latory gene expression occurs indeed in multiple tissues. However,

although peak phase distributions deviated for each tissue to some

degree from that seen for all oscillating genes, they were still widely

distributed for each individual tissue (Fig 1F).

We conclude that a wide dispersion of peak phases appears to be

an inherent oscillator feature rather than the result of a convoluted

output of multiple, tissue-specific oscillators with distinct phase

preferences.

Oscillations initiate with a time lag in L1

The observation that oscillations were undetectable during the first

few hours of larval development and started only after > 5 h into L1

(Fig 1A and C) surprised us. Hence, we performed a separate experi-

ment that covered the first 24 h of larval development (TC4). This

confirmed our initial finding of a lack of oscillations during the first

few hours of larval development (Fig 2A and B).

To understand how oscillations initiate after the initial quies-

cence, we looked at individual genes and observed that the start of

detectable oscillations differed for individual genes (Fig 2A and C).

Nonetheless, the occurrence of first peaks was globally well corre-

lated with the peak phases calculated from data in Fig 1 (Fig 2D);

i.e., the order in which the first peaks of gene expression occurred

was the same as the order given by the peak phases calculated for

the stably running oscillator. (The apparent discontinuity in the data

at a first peak of ~10 h is explained by the circularity of the data,

with 0° = 360°, and the arbitrary assignment of 0° in the peak

phase calculation.) Moreover, the transcript levels of many genes

with a late-occurring (11–13 h) first peak proceeded through a

trough before reaching their first peak as exemplified in Fig 2C for

F11E6.3. We conclude that oscillations exhibit a structure of phase-

locked gene expressing patterns as soon as they become detectable.

L1 larvae undergo an extended intermolt

Although the gene expression oscillations occur in the context of

larval development, functional connections have been lacking.

However, genes encoding cuticular components were reported to be

enriched among previously identified oscillating genes (Kim et al,

2013; Hendriks et al, 2014), and Gene Ontology (GO-) term analysis

of the new extended set of oscillating genes confirms that the top 12

enriched terms all linked to cuticle formation and molting, or

protease activity (Fig 3A, Dataset EV2). These findings, and the fact

that molting is itself a rhythmic process, repeated at the end of each

larval stage, suggest the possibility of a functional link between

molting and gene expression oscillations.

If such a link were true, we would predict that the initial period

of quiescence in the early L1 stage be accompanied by a lengthened

stage, and, specifically, an extended intermolt duration. Indeed,

using a luciferase-based assay that reveals the period of behavioral

quiescence, or lethargus, that is associated with the molt

(Appendix Fig S2A and B), others had previously reported an

extended L1 relative to other larval stages (Olmedo et al, 2015).

However, they reported an extension of both molt and intermolt.

As the previously used luciferase-expressing transgenic strains

developed relatively slowly and with limited synchrony across

animals, presumably due to their specific genetic make-up, we

repeated the experiment with a newly generated strain that

expressed luciferase from a single-copy integrated transgene and

that developed with improved synchrony and speed (Fig EV2A and

B, Appendix Fig S2E–G, Materials and Methods). Our results con-

firmed that L1 was greatly extended relative to the other larval

stages (Fig EV2E). However, in contrast to the previous findings

(Olmedo et al, 2015), but consistent with our hypothesis, the dif-

ferences appeared largely attributable to an extended intermolt

(Fig EV2D). The duration of the first molt (M1) was instead compa-

rable to that of M2 and M3 (Fig EV2C).

Thus, an extended first intermolt coincides with the fact that no

oscillator activity can be detected by RNA sequencing during the

first 5 h of this larval stage. Moreover, because we performed the

experiment by hatching embryos directly into food, we can conclude

that the extended L1 stage is an inherent feature of C. elegans larval

development, rather than a consequence of starvation-induced

synchronization.

Development is coupled to oscillatory gene expression

The luciferase assay revealed that also the L4 stage took significantly

longer than the two preceding stages, though not as long as L1

(Fig EV2E). In this case, both the fourth intermolt and the fourth molt

were extended (Fig EV2C and D). As apparent from the gene expres-

sion heatmap, and quantified below, the oscillation period during L4

was also extended. Hence, grossly similar trends appeared to occur in

larval stage durations and oscillation periods, determined by the luci-

ferase assay and RNA sequencing, respectively. We considered this as

further evidence for a coupling of the two processes.

To test this hypothesis explicitly, we sought to quantify the

synchrony of oscillatory gene expression and developmental progres-

sion in individual animals at the same time. To this end, we estab-

lished a microchamber-based time-lapse microscopy assay by

adapting a previous protocol (Turek et al, 2015). In this assay,

animals are hatched and grown individually in small chambers where

they can be tracked and imaged while moving freely, enabling their

progression through molts. Using Mos1-mediated single-copy trans-

gene integration (MosSCI) (Frøkjær-Jensen et al, 2012), we generated

transgenic animals that expressed destabilized gfp from the promoter

of qua-1, a highly expressed gene with a large mRNA level amplitude.

Consistent with the RNA sequencing data, we detected oscilla-

tions of the reporter with four expression peaks (Fig 3B). Moreover,

we observed similar rates of development as in the luciferase assays

when we curated the molts (Fig 3C, Appendix Table S1, Materials

and Methods). Using a Hilbert transform (Pikovsky et al, 2001) to

quantify the instantaneous, i.e., time-varying, changes in period

(see Appendix), we observed that the averaged reporter oscillation

period times for each cycle were in good agreement with the stage

durations, for all three larval stages, L2-L4, for which oscillations

period lengths could be reliably determined (Fig 3D).

Single animal imaging enabled us to ask when molts occurred

relative to oscillatory gene expression, and we observed a very

uniform behavior across animals (Fig 3B, red segments). To quan-

tify this relationship, we determined the gene expression phases at

molt entries and exits. We obtained highly similar values across

worms within one larval stage (Fig 3E), and only a minor drift when

comparing phases across larval stages. Accordingly, when we
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plotted the times required to reach a specific, arbitrarily chosen

oscillation phase in L2 or L3 over the time required to reach M2 or

M3, we observed high levels of correlation (r > 0.9 for each

instance; Fig 3F, Appendix Fig S3). Two additional reporter transge-

nes, based on the promoters of dpy-9 and F11E6.3, which differ in

peak expression phases from qua-1 and one another, yielded similar

results (Appendix Fig S4).

We considered two possible interpretations of the close corre-

lation between developmental progression and oscillations: First,

both oscillations and development could be under independent,

but precise temporal control. In this model, certain developmental

events would merely coincide with specific phases of oscillations

rather than being coupled to them. Therefore, variations in the

periods of oscillation and development would add up, non-line-

arly, to the experimentally observed phase variations. Second,

phase-locking of oscillatory gene expression and developmental

events might result from the two processes being truly coupled

and/or from one driving the other. In this case, the variations in
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Figure 2. Oscillations start with a time lag in L1.

A Gene expression heatmap of detectably expressed oscillating genes sampled from a separate early developmental time course (TC4; t = 1 h to t = 24 h). Genes were
ranked according to their peak phase determined in Fig 1.

B Pairwise correlation plot of log2-transformed oscillating gene expression data obtained from both early larval development time courses, TC1 and TC4.
C Gene expression traces of the representative genes F11E6.3, col-68, and col-46.
D Scatter plot of calculated oscillating gene peak phase (as determined in Fig 1) over the time of occurrence of the first expression peak in L1 larvae, observed in TC4.

Peak detection was performed using a spline analysis. As visual inspection did not reveal peaks in the heatmap during the first 3 h, and as the first cycle ends at 13 h,
we performed this analysis for t = 3 h to t = 13 h to reduce noise. Generally, peak phases determined from the full developmental time course (TC3) correlate with
the time of the first peak in L1.

Data information: All analyses for oscillating genes identified in Fig 1 with detectable expression (n = 3,739 in A, n = 3,680 in B).
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the two periods would partially explain each other, causing a

reduction in the expected phase variation relative to the first

scenario (Fig 3G).

To distinguish between these scenarios, we used error-propaga-

tion to calculate the expected error for two independent processes

(Materials and Methods). Focusing on L2 and L3 stages to exclude
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any edge effects on period calculation by Hilbert transform, we

found that the observed error was consistently well below this

expected (calculated) error (Fig 3H), for all three reporter genes, for

both molt entry and molt exit, and for both larval stages. Thus, our

observations agree with the notion that development and oscillatory

gene expression are functionally coupled (Fig 3I), and potentially

causally connected.

Quantification of amplitude and period behaviors over time
reveals characteristic system properties

Consistent with the coupling between oscillations and development,

the last larval stage and the period of the last oscillation cycle both

appeared increased (Fig 3D) before oscillations ceased. The charac-

teristics of such a transition from oscillatory to non-oscillatory state

are determined by the behavior of the underlying system, which can

be understood in the light of bifurcation theory. Bifurcation, that is,

a qualitative change in system behavior, occurs in response to a

change in one or more control parameters. Depending on the

system’s topology, characteristic changes of amplitude and period

occur as the bifurcation parameter changes during bifurcation

(Fig 4A) (Izhikevich, 2000; Strogatz, 2015; Salvi et al, 2016). Thus,

transition into a quiescent state through a supercritical Hopf bifurca-

tion involves a declining, and ultimately undetectable, amplitude

and a constant period. By contrast, a Saddle Node on Invariant

Cycle (SNIC) bifurcation results in a declining frequency (and thus

increasing period) but a stable amplitude.

Hence, to gain a better understanding of the oscillator’s bifurca-

tion, we quantified oscillation amplitudes and periods over time. To

minimize variations from differences among experiments, we did

this for the contiguous 5- to 48-h time course (TC2). This enabled

reliable quantification of these features for the last three oscillation

cycles, C2 through C4, which begin at 14 h (C2), 20 h (C3), and

27 h (C4), respectively (Fig 1C and see below). Excluding a small

set of 291 genes that exhibited unusual expression trends during the

fourth larval stage, i.e., a major change in mean expression levels

(Appendix Fig S5), cosine fitting on the individual cycles revealed a

good agreement of amplitudes across stages, and in particular no

indication of damping during the last cycle, C4 (Fig 4B).

We used a Hilbert transform to quantify the period over time

with high temporal resolution, i.e., at every hour of development.

The mean oscillation period thus calculated was approximately 7 h

during the first cycles but increased during the fourth cycle (Fig 4C),

consistent with the single worm imaging results. This change was

also apparent when we reconstructed an oscillation from the mean

observed oscillation period and compared it to an oscillation with a

constant period of 7 h (Fig 4D).

In summary, these analyses reveal a sudden loss of oscillation

upon transition to adulthood without prior amplitude damping and

an oscillator that can maintain a stable amplitude in the presence of

period changes. These are features of an oscillator operating near a

SNIC rather than a supercritical Hopf bifurcation (Fig 4A)

(Izhikevich, 2000; Strogatz, 2015; Salvi et al, 2016).

Arrest of the oscillator in a specific phase upon transition
to adulthood

The observation of a period extension during the L4 stage cannot be

explained by a supercritical Hopf bifurcation (Fig 4A). However, as

little or no period change is observed during oscillation onset in the

L1 stage relative to later cycles, we lack such strong evidence

against a supercritical Hopf bifurcation. This may be caused by dif-

ferent dynamics of the parameter change: In a SNIC bifurcation, a

period change is only observed if the bifurcation parameter changes

slowly, but not if it changes immediately (Fig EV3A–C). Similarly,

for a supercritical Hopf bifurcation, an immediate change in bifurca-

tion parameter would potentially allow rapid adoption of a constant

amplitude (Fig EV3D).

Although experimentally observed transitions may thus not

exhibit characteristic period or amplitude changes, SNIC and super-

critical Hopf bifurcations differ additionally in a feature that is inde-

pendent of the rate of bifurcation parameter change, namely in the

stable state, or fixed point, that the systems adopt when oscillations

do not occur. In a supercritical Hopf bifurcation, the system spirals

from a limit cycle onto a fixed point, whereas in a SNIC bifurcation,

the fixed point emerges on the limit cycle (Fig 5A) (Saggio et al,

2017). In other words, a quiescent oscillator near a SNIC bifurcation

adopts a state similar to that of a specific phase of the oscillator; the

oscillator has become “arrested”. By contrast, following a supercriti-

cal Hopf bifurcation, the oscillator adopts a stable state that is

distinct from any phase of the oscillator. Hence, if the C. elegans

oscillator entered an arrested state through a SNIC bifurcation, the

◀ Figure 3. Oscillatory gene expression is coupled to molting.

A GO-term enrichments for oscillating genes as classified in Fig 1C. P-values were calculated using Fisher’s exact test. The top 15 enriched terms are displayed.
B GFP signal quantification for qua-1p::gfp::pest::h2b::unc-5430UTR expressing single animals (HW2523, n = 20) over larval development, starting from hatch (t = 0 h).

Individual traces are colored in black during the intermolt and in red during the molt. The mean intensity (blue line) and standard deviation across population
(shading) are indicated.

C, D Boxplots of molt, intermolt, and larval stage durations (C) and of larval stage durations and period times of oscillations (D) of single animals (HW2523) developing
in microchambers (n = 20). In (D), L1 was excluded because of the time lag before oscillations manifest after hatching.

E Boxplot of phase at molt entry (start of lethargus) and molt exit (end of lethargus) separated by larval stages for single animals (HW2523) developing in
microchambers (n = 20)

F Scatterplot comparing developmental duration until second molt entry (M2 entry) with time to reach an arbitrarily chosen, unwrapped GFP oscillation phase
obtained from data in (B). The particular phase chosen was observed close to the end of L2. The Pearson correlation is indicated with “r”.

G Schematic model of expected phase variation at molt entry (gray) and molt exit (blue) depending on the coupling status between oscillations and molting. Width
of colored blur is proportionate to observed standard deviation, sdobs, with sdobs,uncoupled > sdobs,coupled.

H Barplots displaying the ratio of observed standard deviation over expected standard deviation for phase calling from GFP intensity oscillations as measured in B, at
either molt entry or molt exit for the indicated reporters. The empty bars indicate the expected value in the case of uncoupled processes

�
sdobs
sdexp

¼1

�
. For coupled

processes, we would expect sdobs
sdexp

\1. The sdobs
sdexp

values for all reporters are below 1. A dashed line indicates parity. (See Materials and Methods)
I Schematic depiction of coordination between oscillatory gene expression and development.

Data information: Boxplots in (C–E) extend from first to third quartile with a line at the median, outliers are indicated with a cross, and whiskers show 1.5*IQR.
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Figure 4. Change in period without noticeable change in amplitude.

A Schematic depiction of amplitude and period behaviors in response to a control parameter change for an oscillatory system transitioning between a quiescent
(stationary) and an oscillatory state through the indicated bifurcations (created with BioRender.com). Note that transitions can occur in either direction.

B Amplitudes derived from cosine fitting to the individual oscillations of C2, C3, and C4 (TC2) plotted against each other. Note that the last time point of one cycle
coincides with the first time point of the following one since 0° = 360°. Pearson correlation coefficient r, slope of the linear regression (black), and the diagonals
(slope = 1; red) are indicated. 291 genes were excluded from oscillating genes due to altered mean expression in L4, see Appendix Fig S5, i.e., n = 3,448.

C Density plot showing oscillation period at every time point for each of the oscillating genes (n = 3,448) as quantified by Hilbert transform. Smoothed color density,
obtained through a kernel density estimate, provides a qualitative view of gene number and increases from blue to red. Mean oscillation period over all oscillating
genes is shown by the black line.

D Expression changes for an oscillation with a constant 7-h period (dotted line), and an oscillation reconstructed from the mean oscillation period in (C) (black line),
both amplitudes set to four. The expression of a representative gene, col-147 (mean normalized), is shown (red line).

Data information: Horizontal gray bars indicate oscillation cycles C1 through C4 which start at TP6, TP14, TP20, and TP27 as determined in Appendix Fig S7.
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overall expression profile of the oscillating genes in the adult stage

should resemble that seen at some other time point during larval

development.

To test this prediction, we analyzed the correlation of oscillating

gene expression for adult time points (TP ≥ 37 h) to all other time

points of the fused time course (TC3). (In the following, we will use

“TPx” to refer to any time point “x”, in hours, after hatching. Tech-

nically, this is defined in our experiment as the time after plating

synchronized, first larval stage animals on food.) For this analysis

(illustrated in Fig EV4), we used the pairwise correlation matrix

resulting from the oscillating gene set without the previously

excluded genes that changed in expression in the L4 stage (Fig 5B).

This provided two insights. First, correlation coefficients among

adult time points all exceeded 0.8 with little change over time, con-

firming the high similarity of samples TP37 – 48 to one another and

thus an absence of detectable oscillations. Second, in addition to

one another, TP37 – 48 are particularly highly correlated with a

specific time—and thus phase—of the oscillatory regime, namely
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Figure 5. The oscillator is phase arrested in early L1 and adults.

A Phase plane diagrams depicting supercritical Hopf (SupHopf) and SNIC bifurcations, respectively, showing the change in qualitative behavior as the bifurcation
parameter value changes (arrow). The bifurcation point, i.e., the parameter value at which the bifurcation occurs, is indicated.

B Pairwise correlation plot of log2-transformed oscillating gene expression data obtained from TC3, i.e., the fusion of TC1 (blue labels) and TC2 (black/red). Genes which
deviated in mean expression in L4 were excluded (Appendix Fig S5), resulting in n = 3,393 genes.

C Lines of correlation for TP37–48 (red) to all time points in the fused larval time course. Arrows indicate local correlation maxima at TP13, 19, and 26. The correlation
traces for TP13/19/26 are shown in orange. Figure EV4 illustrates how correlation lines were generated.

D Lines of correlation for TP1–5 (blue) and TP13/19/26 (orange) to all time points in the fused larval time course. Arrows indicate local correlation maxima at TP13, 19,
and 26.

Data information: All correlations were determined by Pearson correlation. Correlation lines plotted in (C, D) correspond to Fig 5B. Horizontal gray bars indicate
oscillation cycles C1 through C4 which start at TP6, TP14, TP20, and TP27 as determined in Appendix Fig S7.
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TP13 and the “repetitive” TP19 and TP26 (Fig 5C, arrows). In other

words, expression levels of oscillating genes in the adult resemble a

specific larval oscillator phase, providing further support for a SNIC

bifurcation.

Phase-specific arrest of the oscillator after hatching

We noticed that the gene expression states of TP37 – 48 also corre-

lated well to each of TP1 – 5; i.e., the early L1 larval stage before

oscillations is detected (Fig 5C). To examine this further, we

performed the same correlation analysis as described above, but

now for TP1 – 5. Mirroring the adult situation, correlation coeffi-

cients among all these five time points were high and exhibited little

change over time, and TP1 – 5 exhibited particularly high levels of

correlation with TP13, TP19, and TP26 (Fig 5D). These are the same

larval time points to which the adult time points exhibit maximum

similarity. We confirmed these two key observations when fusing

the independent time course TC4 to TC2 (generating TC5;

Appendix Fig S6).

We conclude that also during the first 5 h after plating, oscillat-

ing genes adopt a stable expression profile that resembles a specific

phase of the oscillator. We note that a Hopf bifurcation cannot yield

ready phase control, i.e., initiation of the oscillator from a specific

phase, in particular in the presence of noise (Fig EV3G). Hence,

these findings provide further support for the notion that both oscil-

lation onset and offset through a SNIC bifurcation. Indeed, this

explains our observation (Fig 2) that in L1 stage larvae, oscillations

exhibit a structure of phase-locked gene expressing patterns as soon

as they become detectable: The oscillator initiates from an arrested

phase.

Initiation of oscillation soon after gastrulation

We wondered how the oscillator entered the arrested state observed

in early larvae, i.e., what dynamics the class of larval oscillating

genes exhibited in embryos. Hence, we examined single embryo

gene expression data from a published time series (Hashimshony

et al, 2015). When plotting the embryonic expression patterns of

oscillating genes sorted by their peak phase defined in larvae, we

observed a dynamic expression pattern with a striking phase signa-

ture (Fig 6A). To investigate this further, we performed a correlation

analysis between embryonic and larval time points (TC3) for the
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Figure 6. Transition to an oscillatory state during embryogenesis.

A Heatmap of log2-transformed embryonic expression of oscillating genes, excluding L4 deviating genes, sorted by larval peak phase (defined in Fig 1).
B, C Pairwise correlation coefficients between embryonic and larval time points (Fig EV5) plotted over larval time for embryonic TP10-370 min (B, black-blue gradient)

and TP380-830 min (C, red-yellow gradient), respectively. Dots represent peaks of the correlation lines after spline analysis in the second oscillation cycle (C2), and
arrows indicate trends. Horizontal gray bars indicate oscillation cycles C1 through C4 as in Fig 1C.

D Polar plot of correlation coefficient peak over the time point in the second larval oscillation cycle (C2) at which the correlation peak is detected. TP14 is defined as
0° and correlates most highly to TP20, thus defined as 360°. Color scheme as in B and C.

Data information: All correlations were determined by Pearson correlation.
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oscillating genes (Fig EV5A). When we plotted the correlation coef-

ficients for each embryonic time point over larval time, we observed

two distinct behaviors (Fig 6B and C), which separated at ~380 min

(95%-CI: 317.6–444.2 min) (Fig EV5B and C): First, from the start

of embryogenesis until ~380 min, the peak of correlation occurred

always for the same larval time point, but the extent of correlation

increased rapidly (Fig 6B). Second, past ~380 min of embryonic

development, the peaks of correlation moved progressively from

TP14 (which we define as 0°/360° because it demarcates the end of

the first and the beginning of the second oscillation cycle in the

fused time course; Fig 1C) toward TP19 (accordingly defined as

300°), but the extent of correlation increased only modestly

(Fig 6C).

We conclude that the system adopts two distinct states during

embryogenesis (Fig 6D): Initially, it approaches the oscillatory

regime through increasing similarity to the oscillator phase TP14/0°.

After completion of gastrulation and around the beginning of

morphogenesis/organogenesis (Hall et al, 2017), it transitions into

the oscillatory state and reaches, at hatching, a phase corresponding

to larval ~TP19/300°, where oscillations arrest until resumption

later in L1.

A shared oscillator phase for experimentally induced and
naturally occurring bifurcations

The arrested states of the oscillator in both early L1 stage larvae and

in adults are highly similar and resemble the oscillator state at

TP19/300°. Therefore, we wondered whether state transitions of the

system in response to changes in the developmental trajectory

occurred also through this phase in other situations. To test this, we

examined animals that exited from dauer arrest, a diapause stage

that animals enter during larval development under conditions of

environmental stress such as heat, crowding, or food shortage.

Using a published time course of animals released from dauer arrest

after starvation (Hendriks et al, 2014), we found that their expres-

sion patterns of oscillating genes correlated highly with those of

animals initiating oscillations (TC3) in the L1 stage (Fig 7A and B).

Additionally, gene expression patterns at 1 h through 5 h and at
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Figure 7. Re-initiation of oscillations after dauer from an arrested oscillator phase.

A Pairwise-correlation map of log2-transformed oscillatory gene expression of dauer exit samples (“postdauer”) and fused larval time course (TC3) samples.
B Correlation of the indicated time points after plating dauer-arrested animals on food (TPpostdauer) to the fused larval time course, TC3. ‘Dauer' indicates animals

harvested before placing on food. Arrows indicate peaks of correlation to TP13/19/26 (300°) of TC3.
C Schematic depiction of behavior of the Caenorhabditis elegans oscillator from embryo to adult. A phase-specific arrest (red dot) is observed at hatch, in early L1, young

adults, and dauer-arrested animals. See Appendix Fig S7 for additional data supporting four similar oscillation cycles during L1 through L4.
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13 h post-dauer were highly correlated with those of the repetitive

TP13, TP19, and TP26 during continuous development. Hence, the

system state during a period of quiescence during the first 5 h after

placing animals on food resembles an arrest of the oscillation in a

phase seen at TP19/300° of the continuous development time

course.

We conclude that the system bifurcates in the same manner

during continuous, unperturbed development, after hatching, and in

response to a perturbation, namely starvation-induced dauer arrest.

Discussion

In this study, we have characterized biological function and behav-

ior of the C. elegans larval oscillator. Our results from single animal-

and population-based analyses reveal a close coupling to develop-

ment, and specifically molting, and imply that processes essential

for molting may not be restricted to lethargus. We have observed

that oscillations are highly similar during the four cycles (Fig 7C,

Appendix Fig S7). Yet, oscillations cease and (re-) initiate several

times during physiological development, and similar state transi-

tions of the system can be induced through an external perturbation

(Fig 7C). In particular, all non-oscillatory states correspond to an

arrest of the oscillator in one specific phase. Hence, the observed

bifurcations provide a conceptual model of how a developmental

checkpoint can operate to halt larval development at a particular,

repetitive point of development. Moreover, they constrain possible

system architectures and properties as well as the choice and

parametrization of mathematical models that can represent the

system.

A developmental oscillator with functions in and beyond molting
and lethargus

The physiological function of the C. elegans oscillator has remained

unclear. Here, we have demonstrated that it is coupled to molting.

We propose that a function of the oscillator as a developmental

clock provides a parsimonious explanation, but other models

remain possible; e.g., the oscillator may facilitate an efficient molt-

ing process by anticipating the time of peak demand for cuticular

building blocks and other factors.

Conventionally, molting is subdivided into three distinct steps,

namely apolysis (severing of connections between the cuticle and

the underlying epidermis), new cuticle synthesis, and ecdysis (cuti-

cle shedding) (La�zeti�c & Fay, 2017). The first two occur during, and

the latter terminates, lethargus, a period of behavioral quiescence.

Evidently, the C. elegans oscillator imposes a temporal structure of

gene expression that extends far beyond lethargus, with a majority

of oscillating genes exhibiting gene expression peaks outside lethar-

gus. In part, this may be explained by a role of the oscillator in coor-

dinating other physiological processes with the molt (Ruaud &

Bessereau, 2006).

However, molting itself also appears to comprise processes

that occur outside lethargus. Specifically, we observed initiation

of oscillations in embryos (which execute cuticle synthesis but

neither apolysis nor ecdysis) at ~380 min into embryo develop-

ment and thus long before the first signs of cuticle synthesis at

~600 min (Sulston et al, 1983). Instead, this time coincides with

formation of an apical extracellular matrix (ECM), the embryonic

sheath. Four genes encoding components of this ECM, namely

sym-1; fbn-1; noah-1; and noah-2 (Vuong-Brender et al, 2017),

are also required for larval molting or proper cuticle formation

(Frand et al, 2005; Niwa et al, 2009), and we find that their

expression oscillates with high amplitudes and peaks long

before lethargus. Hence, ECM remodeling, and possibly other

processes, crucial for molting can occur long before the onset of

lethargus.

Oscillatory state transitions and developmental checkpoints

We have observed a loss of oscillations under three distinct condi-

tions, in early L1 stage larvae, dauer arrested animals, and adults.

The similarity of the oscillator states under all three conditions is

striking and involves an arrest in the same specific phase.

Formally, for the L1 arrest, we cannot distinguish between

perturbation-induced or naturally occurring arrest, as the sequenc-

ing experiments required animal synchronization by hatching

animals in the absence of food, causing a transient arrest of develop-

ment. However, the fact that the L1 stage is extended also in

animals hatched into food (Figs EV2C–E and 3B) suggests that they

may adopt a similar arrested state even in the presence of food,

perhaps because the nutritional resources in the egg (i.e., egg yolk)

have become depleted by the time that hatching occurs. In other

words, synchronization of L1 animals by hatching them in the

absence of food may propagate a pre-existing transient developmen-

tal and oscillator arrest.

Irrespective of this interpretation, a key feature of the arrests

that we observe under different conditions is that they always

occur in the same phase. This is a behavior one would predict for

a repetitive developmental checkpoint. Such a checkpoint has

indeed been found to operate shortly after each larval molt exit,

arresting development in response to a lack of food (Schindler

et al, 2014). Importantly, developmental arrest does not result

from an acute shortage of resources. Rather, it is a genetically

encoded, presumably adaptive, response to nutritionally poor

conditions, critically dependent on daf-2/IGFR signaling (Baugh,

2013; Schindler et al, 2014).

Within the limits of our resolution, the phase of the arrested

oscillator corresponds to the phase seen around ecdysis. Thus, oscil-

lations and development are synchronously arrested, and we

propose that signals related to food sensing, metabolism, or nutri-

tional state of the animal help to control the state of the oscillatory

system and thereby developmental progression. An oscillator oper-

ating near a SNIC bifurcation appears ideally suited to processing

such information, because it acts as a signal integrator; i.e., it

becomes active when a signal threshold is surpassed (Izhikevich,

2000; Forger, 2017). This contrasts with the behavior of oscillators

operating near a supercritical Hopf bifurcation, which function as

resonators; i.e., they respond most strongly to an incoming signal of

a preferred frequency. Hence, both the phase-specific arrest and the

integrator function as characteristics of an oscillator operating in the

vicinity of a SNIC bifurcation are physiologically relevant features of

this C. elegans oscillator.

We note that checkpoints of the cell cycle have also been inter-

preted as bifurcations (Tyson et al, 2001, 2002). In this system,

bifurcations separate stable G1 and S–G2 states from one another as
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well as from an oscillatory M-phase state. This latter checkpoint in

particular has been reported to involve a supercritical Hopf (Qu

et al, 2003) or a SNIC bifurcation (Csikász-Nagy et al, 2006;

referred to as SNIPER in this report). Although further conceptual

and mechanistic similarities between the cell cycle checkpoints

and the checkpoints of the C. elegans oscillator and development

remain to be explored, this parallel suggests that implementation

of checkpoints through system bifurcations may be a unifying

concept in biology.

Insights into oscillator architecture and constraints for
mathematical modeling

The behavior of the oscillator that we characterized here

constrains its architecture. Specifically, the change in period with-

out a noticeable change in amplitude seen in L4 stage larvae is

considered incompatible with the function of a simple negative

feedback loop but compatible with the operation of interlinked

positive and negative feedback loops (Tsai et al, 2008; Mönke

et al, 2017). Indeed, among synthetic genetic oscillators, operation

near a SNIC bifurcation is rare and seen only for so-called ampli-

fied negative feedback oscillators, which rely on interlinked nega-

tive and positive feedback loops (Purcell et al, 2010)—and only

within a certain parameter space (Guantes & Poyatos, 2006;

Conrad et al, 2008). Hence, our findings constrain not only possi-

ble oscillator architectures and mathematical models thereof, but

also their parametrization.

Finally, we note that mathematical models of somitogenesis

clocks, inspired by mechanistic knowledge about the identity of

individual oscillator components and their wiring, tend to represent

oscillators operating near a supercritical Hopf bifurcation (Jensen

et al, 2010; Webb et al, 2016). This appears consistent with obser-

vations on isolated cells in vitro (Webb et al, 2016). At the same

time, changes in period, observed along with changes in amplitude

in zebrafish embryos during somite formation and prior to cessation

of oscillation (Shih et al, 2015), are not compatible with a supercriti-

cal Hopf bifurcation. Thus, and because an analysis of bifurcation

behavior of somitogenesis clocks in vivo is challenging due to a

complex space dependence of oscillation features (Soroldoni et al,

2014), it remains to be answered whether and to what extent the

C. elegans oscillator and the somitogenesis clocks share specific

properties. In any case, a comparison of the similarities and dif-

ferences in behaviors, architectures, and topologies will help to

reveal whether and to what extent diverse developmental oscillators

follow common design principles.

Materials and Methods

Caenorhabditis elegans strains

The Bristol N2 strain was used as wild type. The following trans-

genic strains were used:

HW1370: EG6699; xeSi136[F11E6.3p::gfp::h2b::pest::unc-54 30UTR;
unc-119 +] II (this study).

HW1939: EG6699; xeSi296[eft-3p::luc::gfp::unc-54 30UTR, unc-119

(+)] II (this study).

HW2523: EG6699; xeSi437[qua-1p::gfp::h2b::pest::unc-54 30UTR;
unc-119 +] II (this study).
HW2526: EG6699; xeSi440[dpy-9p::gfp::h2b::pest::unc-54 30UTR;
unc-119 +] II (this study).

PE254: feIs5[sur-5p::luc::gfp; rol-6(su1006)] V (Lagido et al, 2008).

PE255: feIs5[sur-5p::luc::gfp; rol-6(su1006)] X (Lagido et al, 2008).

All transcriptional reporters and luciferase constructs produced

for this study were generated using Gibson assembly (Gibson et al,

2009) and the destination vector pCFJ150 (Frøkjaer-Jensen et al,

2008). First, a starting plasmid was generated by combining NotI

digested pCFJ150, with either Nhe-1::GFP-Pest-H2B or Nhe-1::luci-

ferase::GFP (adapted from pSLGCV (Lagido et al, 2008)) and

ordered as codon optimized, intron-containing gBlocks� Gene Frag-

ment (Integrated DNA Technologies), and unc-54 30UTR (amplified

from genomic DNA) to yield pYPH0.14 and pMM001, respectively.

Second, promoters consisting of either 2 kb upstream of the ATG or

up to the next gene were amplified from C. elegans genomic DNA

before inserting them into NheI-digested pYPH0.14 or pMM001.

PCR primers and resulting plasmids are listed in the

Appendix Table S2. Third, we obtained transgenic worms by single-

copy integration into EG8079 worms, containing the universal

ttTi5605 locus on chromosome II by following the published proto-

col for injection with low DNA concentration (Frøkjær-Jensen et al,

2012). All MosSCI strains were backcrossed at least twice.

Method luciferase assay

Gravid adults were bleached, and single embryos were trans-

ferred by pipetting into a well of a white, flat-bottom, 384-well

plate (Berthold Technologies, 32505). Embryos hatched and

developed in 90 ll volume containing E. coli OP50 (OD600 = 0.9)

diluted in S-Basal medium (Stiernagle, 2006), and 100 lM Firefly

D-Luciferin (p.j.k., 102111). Plates were sealed with Breathe

Easier sealing membrane (Diversified Biotech, BERM-2000).

Luminescence was measured using a Luminometer (Berthold

Technologies, Centro XS3 LB 960) for 0.5 s every 10 min for

72 h at 20°C in a temperature-controlled incubator and is given

in arbitrary units.

Luminescence data were analyzed using an automated algorithm

for molt detection on trend-corrected data as described previously

(Olmedo et al, 2015), but implemented in MATLAB, and with the

option to manually annotate molts in a Graphical User Interface.

The hatch was identified as the first data point (starting from time

point 4 to avoid edge effects) that exceeds the following value: the

mean + 5*stdev of the raw luminescence of the first 20 time points.

To quantify the duration of the molts, we subtracted the time

point at molt entry from the time point at molt exit. To quantify the

duration of larval stages, we subtracted the time point at molt exit

of the previous stage (or time point at hatch for L1) from the time

point at molt exit of the current stage. The duration of the intermolt

was quantified as duration of the molt subtracted from duration of

the larval stage. For statistical analysis, we assumed the durations

to be normally distributed and used Welch two-sample and two-

sided t-test, i.e., the function “t.test” of the package “stats” (version

3.5.1) (R Core Team) in R.
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RNA sequencing

For RNA sequencing, synchronized L1 worms, obtained by hatch-

ing eggs in the absence of food, were cultured at 25°C and

collected hourly from 1 h until 15 h of larval development, or

5 h until 48 h of larval development, for L1–L2 time course

(TC1) and L1–YA time course (TC2), respectively. A replicate

experiment was performed at room temperature from 1 h until

24 h (TC4). RNA was extracted in Tri Reagent and DNase-treated

as described previously (Hendriks et al, 2014). For TC2 and TC4,

libraries were prepared using the TruSeq Illumina mRNA-seq

(stranded—high input), followed by the Hiseq50 Cycle Single-end

reads protocol on HiSeq2500. For TC1, libraries were prepared

using the Illumina TruSeq mRNA-Seq Sample Prep Kit (Strand-

sequenced: any), followed by the Hiseq50 Cycle Single-end reads

protocol on a HiSeq2500.

Processing of RNA-seq data

RNA-seq data were mapped to the C. elegans genome using the

qAlign function (splicedAlignment = TRUE) from the QuasR pack-

age (Au et al, 2010; Gaidatzis et al, 2015) in R. Gene expression

was quantified using qCount function from the QuasR package in R.

For TC2 and Dauer exit (Hendriks et al, 2014) time courses, QuasR

version 1.8.4 was used, and data were aligned to the ce10 genome

using Rbowtie aligner version 1.8.0. For TC1, QuasR version 1.2.2

was used, and data were aligned to the ce6 genome using Rbowtie

aligner version 1.2.0. For TC4 (Fig 2), RNA-seq data were mapped

to the C. elegans ce10 genome using STAR with default parameters

(version 2.7.0f) and reads were counted using htseq-count (ver-

sion = 0.11.2).

Counts were scaled by total mapped library size for each sample.

A pseudocount of 8 was added, and counts were log2-transformed.

For TC2, lowly expressed genes were excluded (maximum log2-

transformed gene expression - (log2(gene width)-mean(log2(gene

width))) ≤ 6). This step was omitted in the early time courses

because many genes start robust expressing only after 5–6 h.

Expression data of the dauer exit time course were obtained from

(Hendriks et al, 2014).

Classification of genes by Cosine fitting

To classify genes, we applied cosine fitting to the log2-transformed

gene expression levels from t = 10 h until t = 25 h of developmen-

tal time (mid-L1 until late L3) of TC2, when the oscillation period is

most stable (Fig 4C). During this time, the oscillation period is

approximately 7 h, which we used as fixed period for the cosine fit-

ting. We built a linear model as described (Hendriks et al, 2014)

using cos(xt) and –sin(xt) as regressors (with 13 degrees of free-

dom). In short, a cosine curve can be represented as follows:

C � cosðxt þ uÞ ¼ A � cosðxtÞ � B � sinðxtÞ

with A = C � cos (u)
and B = C � sin (u)

From the linear regression (“lm” function of the package “stats” in

R), we obtained the coefficients A and B, and their standard errors. A

and B represent the phase and the amplitude of the oscillation:

phase ¼ arctanðA;BÞ

amplitude ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p
As the density of the genes strongly decreased around 0.5

(Fig EV1C), we used log2(amplitude) ≥ 0.5 as a first classifier. We

propagated the standard error of the coefficients A and B to the

amplitude using Taylor expansion in the “propagate” function

(expr = expression(sqrt(((A^2)+(B^2))), ntype = “stat”,

do.sim = FALSE, alpha = 0.01) from the package “propagate” (ver-

sion 1.0-6) (Spiess, 2018) in R. We obtained a 99% confidence inter-

val (99%-CI) for each gene. As 99%-CI that does not include 0 is

significant (P-value = 0.01), we used the lower boundary (0.5%) of

the CI as a second classifier. Thus, we classified genes with an

amplitude ≥ 0.5 and lower CI-boundary ≥ 0 as “oscillating” and

genes with an < 0.5 or a lower CI-boundary < 0 were classified as

“not oscillating” (Figs 1B and EV1C, Dataset EV1). Every gene thus

has an amplitude and a peak phase (Dataset EV1). A peak phase of

0° is arbitrarily chosen, and thus, current peak phases are expected

to differ systematically from the previously assigned peak phases

(Hendriks et al, 2014). To compare the peak phases of TC2 with

those of the previously published L3-YA time course (TC6), we

calculated the phase difference (TC2–TC6) (Fig EV1D and E). We

added 360° to the difference and used the modulus operator (%%

360), to maintain the circularity within the data. The coefficient of

determination, R2, was calculated by 1-(SSres/SStot), in which the

SStot (total sum of squares) is the sum of squares in peak phase of

the L1-YA time course. SSres (response sum of squares) is the sum

of squares of the phase difference.

Our previous work (Hendriks et al, 2014) identified ~2,700 oscil-

lating (i.e., rhythmically expressing) genes, a number that we now

increase to 3,739 genes (24% of total expressed genes). We attribute

this increase to a combination of slightly different cut-offs and a

focus, in the new analysis, on the L1, L2 and L3 stages, where a

constant oscillation period of ~7 h of facilitates cosine wave fitting.

This contrasts with the situation in the previous experiment, which

used data from the L3 and L4 stages and thus, as we reveal here, a

time of changing period.

Even our current estimate is conservative, i.e., the “non-oscil-

lating” genes contain genes that exhibit oscillatory expression with

low amplitude or, potentially, strongly non-sinusoidal shapes. It is

possible that such dynamics may play important roles for specific

genes and processes and our data provide a resource to identify

these in the future. However, here we focused on genes with robust

and extensive oscillations to facilitate functional dissection of the

oscillator.

Classification of oscillating genes by Meta2D

As an alternative approach, we classified oscillating genes using the

MetaCycle package (version 1.2.0) in R (Wu et al, 2016, 2019),

which is an algorithm that incorporates three different algorithms,

i.e., ARSER, JTK_CYCLE, and Lomb-Scargle, to detect periodic

signals from time-series experiments. Similar to cosine fitting, we

used the log2-transformed gene expression levels from t = 10 h until

t = 25 h of developmental time (mid L1 until late L3) of TC2. We

applied the meta2d algorithm (cycMethod = c(“ARS”,”JTK”)) with

a period ranging between 4 and 9 h (minper = 4, maxperiod = 9,
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ARSdefaultPer = 7), weighted scores based on the P-value of each

method to calculate the integrated period length and phase

(weightedPerPha = TRUE), and otherwise default parameters. [As

the package documentation highlights a poor performance of the

Lomb-Scargle algorithm in quantifying the oscillation amplitude,

which was used as one of our cut-offs, we excluded it.] We classi-

fied genes with an amplitude ≥ 0.5 and FDR < 0.05 as “Meta2D”

oscillating genes and compared them to the set of oscillating genes

determined by cosine fitting.

Time course fusion

In order to obtain an RNA-seq time course spanning the complete

larval development, we fused the L1–L2 time course (TC1, TP1–

TP15) with the L1–YA course (TC2, TP5–TP48). To decide which

time points to choose from the individual time courses, we corre-

lated the gene expression of all genes (n = 19,934) of both time

courses against each other using the log2-transformed data with a

pseudocount of 8 with Pearson correlation. In general, we saw good

correlation between the two time courses, e.g., TP5(TC1, L1–L2) corre-

lated well with TP5(TC2, L1–YA), etc. (Fig EV1B). We fused the two

time courses at TP13, i.e., combined TP1–TP13(TC1, L1–L2) with

TP14–TP48(TC2, L1–YA).

Exclusion of genes based on L4 mean expression

Given that oscillating genes were identified based on gene expression

in TP10-TP25, when oscillation period is most stable, some genes

showed deviating behavior in the last oscillation cycle, C4. Hence, for

quantification of oscillation amplitude, period, and correlation, we

excluded those genes. We determined the mean expression levels for

each gene over time in oscillation cycles C2 (TP14-TP20), C3 (TP20-

TP27), and C4 (TP27-TP36). Genes (n = 291) were excluded if the

absolute value of the difference in mean expression between L2 and L4

normalized by their mean difference exceeded 0.25, i.e.: abs((L2mean-

Expr-L4meanExpr)/(0.5*(L2meanExpr+L4meanExpr)))>0.25.

Quantification of oscillation amplitude

To quantify the oscillation amplitude for each larval stage, we split

the TC2 in 4 separate cycles, roughly corresponding to the develop-

mental stages, i.e., C1: TP6-TP14, C2: TP14-TP20, C3: TP20-TP27,

and C4: TP27-TP36 developmental time. We applied cosine fitting to

C2, C3, and C4 as described above to the expression of oscillating

genes in TC2, excluding genes with deviating mean expression in L4

as described above. We excluded C1, because amplitudes were

sometimes difficult to call reliably. We used a fixed period of 7 h for

C2-C3 and 8.5 h for C4 as determined by quantification of the oscil-

lation period (Fig 4C). We applied a linear regression using the

function “lm” of the package “stats” in R to find the relationship

between the amplitudes across different stages, i.e., the slope. The

correlation coefficient, r, was determined using the “cor” function

(method = Pearson) of the package “stats” in R.

Quantification of oscillation period

For a temporally resolved quantification of the oscillation period,

we filtered the mean-normalized log2-transformed gene expression

levels of oscillating genes, excluding L4 deviating genes (we selected

TP5-TP39, because oscillations cease at ~TP36 and the inclusion of

3 additional time points avoided edge effects) using a Butterworth

filter (“bwfilter” function of the package “seewave” (version 2.1.0)

(Sueur et al, 2008) in R, to remove noise and trend-correct the data.

The following command was used to perform the filtering: bwfilter(-

data, f = 1, n = 1, from = 0.1, to = 0.2, bandpass = TRUE,

listen = FALSE, output = “matrix”). The bandpass frequency from

0.1 to 0.2 (corresponding to 10- and 5-h period, respectively) was

selected based on the Fourier spectrum obtained after Fourier trans-

form (“fft” function with standard parameters of the package

“stats”). As an input for the Hilbert transform, we used the Butter-

worth-filtered gene expression. The “ifreq” function (with standard

parameters from the package “seewave”) was used to calculate the

instantaneous phase and frequency based on the Hilbert transform

(see Appendix). To determine the phase progression over time, we

unwrapped the instantaneous phase (ranging from 0 to 2p for each

oscillation) using the “unwrap” function of the package “EMD”

(version 1.5.7) (Kim & Oh, 2018) in R. To avoid edge effects, we

removed the first 4 data points (TP5-TP8) and last 3 data points

(TPTP37-TP39) of the unwrapped phase (retaining TP9-TP36). The

angular velocity is defined as the rate of phase change, which we

calculated by taking the derivative of the unwrapped phase. The

instantaneous period was determined by 2p/angular velocity and

was plotted for each gene individually and as mean in a density

plot. The mean of the instantaneous period over all oscillating genes

was used to reconstruct a “global” oscillation by taking the follow-

ing command: sin(cumsum(mean angular velocity)) and plotted

together with a 7-h period oscillation and the mean normalized

expression of a representative gene, col-147.

Correlation analyses of RNA-seq data

Log2-transformed data were filtered for oscillating genes and then

plotted in a correlation matrix using the R command cor(data,

method = “pearson”). The correlation line plots represent the corre-

lations of selected time points to the fused full developmental time

course (Fig EV4) and are specified in the line plot.

To reveal the highest correlations for a selected time point, we

analyzed the correlation line of this time point between TP7 and

TP36 (the time in which oscillations occur) using a spline analysis

from Scipy (v1.2.1) (Jones et al, 2001) in python (“from scipy.inter-

polate import InterpolatedUnivariateSpline” with k = 4) and stored

the spline as variable “spline”. We identified peaks of the correla-

tion line by finding the zeros of the derivative of the spline (cr_-

points = spline.derivative().roots()). The highest correlations of the

respective correlation line were thus the value of the spline at the

time point where the spline derivative was zero and the value was

above the mean of the correlation line (cr_vals = spline(cr_pts)

followed by pos_index = np.argwhere(cr_vals>np.mean(data.iloc

[i])) and peak_val = cr_vals[pos_index]). Thus, we identified the

correlation of particular time points (e.g., TP14–TP19) with their

corresponding time points in the next oscillation cycle. Thereby, we

were able to identify cycle time points as described in the results

section. We defined the first cycle time point, e.g., TP14 of cycle 2,

as 0°, and the last unique one, TP19, as 300°. TP14 (0° of cycle 2) is

also 360° of cycle 1. Note that a sampling interval of 1 h means that

a TP in one cycle may correlate equally well to two adjacent TPs in
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another cycle, as seen for instance in the correlation of TP13 to

TP26 and TP27. The spline interpolation places the peak of correla-

tion in the middle of these time points at ~TP26.5. The spline analy-

sis thus annotates cycle points correctly even in C4 which has an

extended period.

We performed correlation analyses without mean normalization

of expression data, and hence, correlation values cannot be negative

but remain between 0 and 1. We made this decision because a

correlation analysis using mean-centered data, where correlations

can vary between -1 and +1, requires specific assumptions on which

time points to include or exclude for mean normalization, and

because it is sensitive to gene expression trends. However, we con-

firmed, as a proof of principle, the expected negative correlation of

time points that are in antiphase when using mean-centered data

(Appendix Fig S8) using oscillating genes without a trend in L4 in

TC3 (n = 3,393).

GO-term analysis

GO-term analysis was performed using the GO biological process

complete option (GO ontology database, release 2019-02-02) from

the online tool PANTHER (PANTHER Classification System) (over-

representation test, release 2019-03-08, standard settings).

Tissue-specific analysis

In order to reveal whether particular tissues are enriched in oscillating

genes, we used single cell sequencing data from Cao et al (2017). In

particular, we used Appendix Table S6: Differential expression test

results for the identification of tissue-enriched genes where each gene’s

highest and second highest tissue expression and the ratio thereof is

reported. We selected tissue-specific genes based on a ratio > 5 and a

qvalue < 0.05 (these criteria reduced the number of genes to investi-

gate). Using this list of genes, we calculated the percentage of tissues

present in all genes and in oscillating genes, respectively, using the

function “Counter” from “collections” in python (labels, values = zip

(*Counter(tissue_info_thr[“max.tissue”]).items())). In order to obtain

the enrichment of tissues, we divided the percentage of tissue X among

oscillating genes in the tissue enriched dataset by the percentage of

tissue X among all genes in the tissue-enriched dataset and plotted the

resulting values. The list of tissue-specific oscillating genes was further

used to investigate the peak phases within one tissue by plotting a

density plot of the peak phase (from Fig 1) for every tissue. As we lack

data below 0 degree and above 360 degree, density values at these

borders are distorted as the density is calculated over a moving

window. Since we are confronted with cyclical data, and thus, 0 degree

corresponds to 360 degree, we added and subtracted 360 degree to

each phase value, thus creating data that ranged from -360 degree to

720 degree which allowed us to plot the correct density at the borders

0 and 360 degree. We used python (pandas, v0.24.1) to plot these data

using the following command:

data_tissue [“Phase”].plot(kind = “kde”, linewidth = 5,

alpha = 0.5, bw = 0.1).

Identification of first gene expression peaks in L1 larvae

To identify the first peak of oscillating genes, we used a spline anal-

ysis from Scipy (v1.2.1) (Jones et al, 2001) in Python (“from

scipy.interpolate import InterpolatedUnivariateSpline”) from TP3 to

TP13. We chose these time points to remove false positives in the

beginning due to slightly higher noise for the first 2 time points as

well as not to identify the second peak which occurred at ≥ TP14 for

some very early genes. The function used was “InterpolatedUnivari-

ateSpline” with k = 4. After constructing the spline, we identified

the zeros of the derivative and chose the time point value with the

highest expression value and a zero derivative as the first peak time

point.

Embryonic gene expression time course

Embryonic gene expression data were obtained from Hashimshony

et al (2015) and represented precisely staged single embryos at 10-

min intervals from the 4-cell stage up to muscle movement and

every 10–70 min thereafter until 830 min. We obtained the gene

count data from the Gene Expression Omnibus database under the

accession number GSE50548, for which sequencing reads were

mapped to WBCel215 genome and counted against WS230 annota-

tion.

We normalized the gene counts to the total mapped library size

per sample, added a pseudocount of 8, and log2-transformed the

data. We selected genes according to the larval oscillating gene

annotation, with L4 deviating genes excluded, and plotted their

embryonic expression patterns according to peak phase in larvae.

The embryonic time course was correlated with the fused larval

time course (TC3) using the “cor” function (method = “pearson “)

of the package “stats” in R (Fig EV5A). Correlation line plots were

generated by plotting the correlation coefficients for each embryonic

time point over larval time. To identify the peaks of the correlation

lines with a resolution higher than the sampling frequency, we inter-

polated the correlation lines using the “spline” function (n = 240,

method = ‘fmm’) of the package “stats” in R. To call the peaks of

the interpolated correlation lines, we applied the “findpeaks” func-

tion (with nups = 5, ndowns = 5) of the package “pracma” (version

2.2.5) on the time points on the interpolated time points 10–185,

that cover the four cycles. To find the embryonic time point at

which oscillations initiate, we plotted the larval TP in cycle 2 at

which the correlation peak occurred over embryonic time

(Fig EV5B) and determined the intersection of the two linear fits,

using the “solve” function of the package “Matrix” (version 1.2-17)

(Bates & Maechler, 2018) and the “lm” function of the package

“stats” in R, respectively. To determine the 95%-CI of the x-coordi-

nate of the intersect, the standard error of the slope a and the inter-

cept b of the two linear fits was propagated using Taylor expansion

in the “propagate” function (expr = expression((b1-b2)/(a2-a1)),

ntype = “stat”,do.sim = FALSE, alpha = 0.05) from the package

“propagate” (version 1.0-6) in R. The pairwise correlation map was

generated with the “aheatmap” function of the package “NMF” (ver-

sion 0.21.0) (Gaujoux & Seoighe, 2010), and the 3D plot was gener-

ated with the “3Dscatter” function of the package “plot3D” (version

1.3) (Soetaert, 2017) in R.

Dauer exit gene expression time course

The dauer exit time course TP1-15 were obtained from Hendriks

et al (2014), https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE52910. TP0 is from the same experiment and is accessible
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through GEO accession number GSM4448413 (https://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSM4448413).

Time-lapse imaging of single animals

Single worm imaging was done by adapting a previous protocol

(Turek et al, 2015) and is similar to the method reported in Gritti

et al (2016). Specifically, we replaced the previous 3.5-cm dishes

with a “sandwich-like” system: The bottom consisted of a glass

cover slip onto which two silicone isolators (GRACE Bio-Labs, SKU:

666103) with a hole in the middle were placed on top of each other

and glued onto the glass cover slip. We then placed single eggs

inside the single OP50 containing chambers, which were made of

4.5% agarose in S-basal. The chambers including worms were then

flipped 180 degree and placed onto the glass cover slip with the sili-

cone isolators, so that worms faced the cover slip. Low melt agarose

(3% in S-basal) was used to seal the agarose with the chambers to

prevent drying out or drifts of the agarose chambers during imaging.

The sandwich-like system was then covered with a glass slide on

the top of the silicone isolators to close the system.

We used a 2× sCMOS camera model (T2) CSU_W1 Yokogawa

microscope with 20× air objective, NA = 0.8 in combination with a

50-lm disk unit to obtain images of single worms. For a high

throughput, we motorized the stage positioning and the exchange

between confocal and brightfield. We used a red LED light to

combine brightfield with fluorescence without closing the shutter.

Additionally, we used a motorized z-drive with 2 lm step size and

23 images per z-stack. The 488 nm laser power for GFP imaging

was set to 70%, and a binning of 2 was used.

To facilitate detection of transgene expression and oscillation,

we generated reporters using the promoters of genes that exhibited

high transcript levels and amplitudes, and where GFP was concen-

trated in the nucleus and destabilized through fusion to PEST::H2B

(see strain list above). We placed embryos into chambers contain-

ing food (concentrated bacteria HT115 with L4440 vector) and

imaged every worm with a z-stack in time intervals of 10 min

during larval development in a room kept at ~21°C, using a double

camera setting to acquire brightfield images in parallel with the flu-

orescent images. We exploited the availability of matching fluores-

cent and brightfield images to identify worms by machine learning.

After identification, we flattened the worm at each time point to a

single-pixel line and stacked all time points from left to right,

resulting in one kymograph image per worm. We then plotted

background-subtracted GFP intensity values from the time of hatch

(t = 0 h), which we identified by visual inspection of the bright-

field images as the first time point when the worm exited the egg

shell.

Time-lapse images were analyzed using a customized KNIME

workflow (see Data availability). We analyzed every worm over

time using the same algorithm. First, we identified the brightest

focal planes per time point by calculating the mean intensity from

all focal planes per time point and selecting the focal planes that

had a higher intensity than the mean. Then, we maximum-

projected the GFP images over Z per time point and blurred the

DIC image and also max projected over Z (blurring the DIC

improved the machine learning process later on). All images per

worm over time were analyzed by Ilastik machine learning in order

to identify the worm in the image. The probability map from Ilastik

was used to select a threshold that selected worms of a particular

experiment best. (The threshold might change slightly as DIC

images can look slightly different due to differences in the sample

prep amongst experiments.) Using a customized ImageJ plug-in, we

straightened the worm. The straightened GFP worm image was

then max projected over Y which resulted in a single-pixel line

representing the GFP intensities in a worm and after stacking up all

the single-pixel lines in Y direction, and we obtained the kymo-

graphs. In order to remove noise coming from the head and tail

regions of the worm due to inaccuracy of the machine learning, we

measured mean GFP intensities per time point ranging from 20%

until 80% of the worms anterior–posterior axis. For background

subtraction, we exploited the fact that only the nuclei were GFP

positive and thus subtracted the minimum intensity value between

GFP nuclei from their intensity values.

After the KNIME workflow, we imported the measured GFP

intensities into Python and analyzed the traces using a Butterworth

filter and Hilbert transform analysis (both from Scipy, v1.2.1 (Jones

et al, 2001)). We used the Butterworth bandpass filter using b,

a = butter(order = 1, [low,high], btype = “band”) with low = 1/14

and high = 1/5, corresponding to 14- and 5-h periods, respectively.

We then filtered using filtfilt(b, a, data, padtype = ‘constant’) to

linearly filter backwards and forwards.

For individual time points where the worm could not be identi-

fied by the Ilastik machine learning algorithm, we linearly interpo-

lated (using interpolation from pandas, v0.24.1, (McKinney, 2010))

using “pandas.series.interpolate(method = ‘linear’, axis = 0,

limit = 60, limit_direction = ‘backward’“, between the neighboring

time points to obtain a continuous time series needed for the Hilbert

transform analysis. Using Hilbert transform, we extracted the phase

of the oscillating traces for each time point and specifically investi-

gated the phase at molt entry and molt exit for our different reporter

strains.

In order to determine time points in which worms are in lethar-

gus, we investigated pumping behavior. As the z-stack of an individ-

ual time point gives a short representation of a moving worm, it is

possible to determine whether animals pump (feeding, corresponds

to intermolt) or not (lethargus/molt). Additionally to the pumping

behavior, we used two further requirements that needed to be true

in order to assign the lethargus time span: First, worms needed to

be quiescent (not moving, and straight line), and second, a cuticle

needed to be shed at the end of lethargus. Usually worms start

pumping one to two time points before they shed the cuticle. This

analysis was done manually with the software ImageJ, and results

were recorded in an excel file, where for every time point, the

worms’ behavior was denoted as 1 for pumping and as 0 for non-

pumping.

To determine a possible connection between oscillations and

development, we applied error propagation, assuming normal distri-

bution of the measured phases and larval stage durations. Thereby,

we exploited the inherent variation of the oscillation periods and

developmental rates among worms, rather than experimental

perturbation, to probe for such a connection. The durations are

represented with the mean (l) and the standard deviation (r2). We

define the phase at either molt entry or molt exit as

hentry � 2p
To

� TIM �ðl; r2Þ

ª 2020 The Authors Molecular Systems Biology 16: e9498 | 2020 17 of 21

Milou WM Meeuse et al Molecular Systems Biology

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4448413
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM4448413


and

hexit � 2p
To

� TL � ðl; r2Þ

the intermolt duration and TL �ðlL;r2LÞ the larval stage duration of the

respective larval stages. These calculations result in a phase with mean

l and a standard deviation r at molt entry and molt exit, respectively,

for each larval stage indicated. Should the two processes be coupled as

in scenario 2, we would expect robserved < rcalculated.
To calculate the phase at molt entry and molt exit with error

propagation, we used the “uncertainties” package (v3.0.3) (Lebigot)

in python. The larval stage duration and intermolt duration and

period were treated as ufloat numbers, representing the mean and

standard deviation of the distributions coming from our measure-

ment (e.g., 7.5 � 0.2). These distributions were then used to calcu-

late the expected phase at molt entry (using the intermolt duration)

and molt exit (using the larval stage duration) using the above-

mentioned formulas. This resulted in the phase being represented

by an ufloat number and thus a distribution which we used for plot-

ting after normalizing for the mean to compare the variation of the

data. In order to confirm that the package worked correctly, we

performed the error propagation ourselves using the formula:

rentry error propagated ¼ 2p � TIM

To

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rTIM

TIM

� �2

þ rTo

To

� �2
s

and

rexit error propagated ¼ 2p � TL

To

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rTL

TL

� �2

þ rTo

To

� �2
s

which led to the same results as the package.

Correlation analysis of phase and developmental events

Using single worm imaging data, we compared the absolute time at

which we observed a specific but arbitrarily chosen unwrapped

phase from the GFP oscillation with the absolute time at which we

observed either molt entry or molt exit.

The unwrapped phases we chose were 11rad for L2 comparisons

and 18rad for L3 comparisons. We chose these phases because they

occurred late in L2 and L3, respectively. The scatterplot reveals a

good correlation with Pearson correlation coefficients exceeding 0.9

which was calculated using the pandas (v0.24.1) function df.corr

(method = “pearson”). We used linear models to fit the data with

the function “regression.linear_model.OLS” from statsmodels.api

(v0.10.1) assuming an intercept of 0. From these models, we

obtained the slope with 95% confidence intervals. The predicted

values from the linear model are plotted in blue with the shaded

area corresponding to the 95% confidence intervals.

Simulations

To examine the bifurcation dynamics in response to temporally

changing parameters, we simulated the model

dx

dt
¼ x b� x2 � y2

� �� 2pyð1� kyÞ;

dy

dt
¼ yðb� x2 � y2Þ þ 2pxð1� kyÞ; 8x; y 2 R

where x and y are two variables describing the state of the oscilla-

tor, and b and k are the Hopf and SNIC parameters, respectively.

Default values for b and k were 1 and 0, respectively. The model

was integrated using the ODE solver in the Scipy package (v1.3.1)

(Jones et al, 2001) in python (“from scipy.integrate import

odeint”). Stochastic simulations were performed by using the

Euler–Maruyama method.

The model can be better understood when the system is trans-

formed into polar coordinates, i.e.,

dr

dt
¼ rðb� r2Þ;

dh
dt

¼ 2pð1� kr sin hÞ; 8r; h 2 Rþ (1)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and h = tan -1(y/x) are the amplitude and

phase of the system. For fixed parameter values, this system

shows oscillations for positive values of b and |kr| < 1, with

maximum amplitude given by the radius of the limit cycle,

rLC ¼ ffiffiffi
b

p
. At the limit cycle, for a fixed b, the period of the

oscillator is given by

T ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bk2

p

Hopf simulations

To simulate the effects of a Hopf bifurcation under a slowly chang-

ing parameter, Equation 1 was simulated with a fixed value of k = 0

and

bðtÞ ¼ kbt;

where kb is the rate of change of b. For illustrative purposes,

the value of b(t) was defined to be 1 when b(t) > 1. All deter-

ministic simulations for a slowly changing b were performed

with initial conditions of r = 10�5 and stochastic simulations

with a value of r0 = 0. The initial phase was defined to be

h0 = p/2.
Solutions for the amplitude go through an interval where the

solution remains close to the steady state and then jumps suddenly

to a neighborhood of the limit cycle. However, the amplitude

approaches asymptotically the limit cycle, and thus, the system was

determined to have reached the limit cycle if the difference between

the rate of change of the radius of the limit cycle and the amplitude

was sufficiently small, i.e.,

dr

dt
� kb

����
����\u:

For the simulations, the threshold u = 0.01.
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SNIC simulations

To simulate the effects of a SNIC bifurcation under a slowly chang-

ing parameter, Equation 1 was simulated for a value of b = 1 and

kðtÞ ¼ 1� kkt;

where kk is the rate of change of k. As the effect for k is symmet-

ric, values were constrained to the positive real numbers including

zero. Negative values were set to zero.

The system was initialized at the SNIC bifurcation point on the

limit cycle; i.e., the initial conditions for phase and amplitude were

defined to be h0 = p/2 and r0 = 1, respectively.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

• All RNA-seq data: NCBI’s Gene Expression Omnibus (Edgar et al,

2002) SuperSeries accession number GSE133576 (https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE133576).

• Single worm imaging analysis code: Github (https://github.com/

fmi-basel/ggrosshans_SWIanalysis).

• Single worm imaging KNIME workflow: Nodepit (https://node

pit.com/workflow/com.nodepit.space%2Fyannickhauser%

2Fpublic%2FWorm%20images_final_with%20workaround.knwf),

including a FMI-specific plug-in (fmi-ij2-plugins, https://doi.org/

10.5281/zenodo.3560533).

• Simulations of bifurcations: https://github.com/fmi-basel/

ggrosshans_BifurcationModel_Meeuse2020

Expanded View for this article is available online.
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