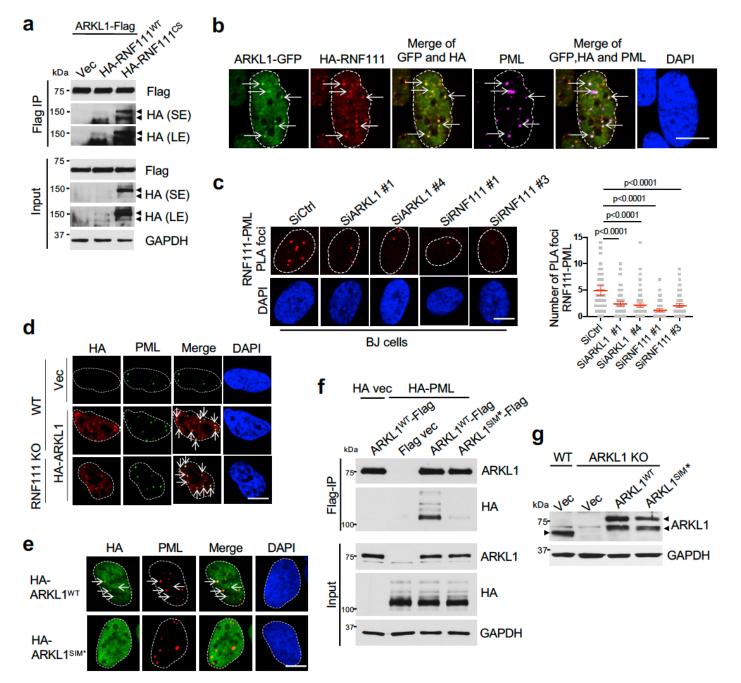
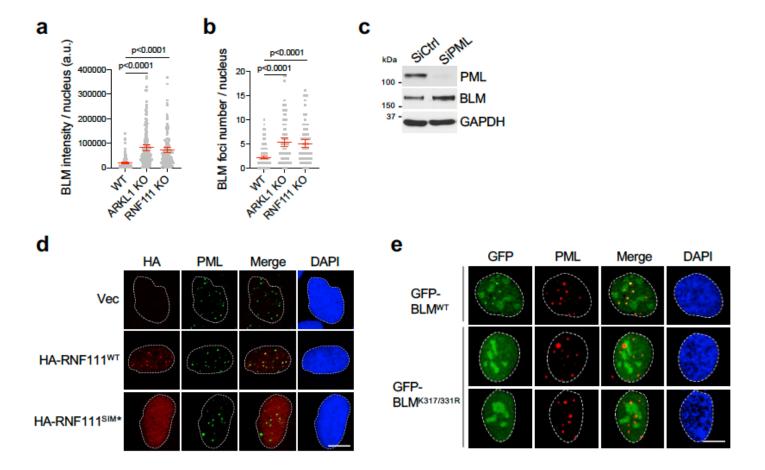

Supplementary Fig.1 (related to Fig. 1). RNF111 ubiquitinates BLM and regulates BLM levels. (a) Alignment of RNF111 RING domain and generation of RNF111^{CS} mutant. (b) RNF111 ubiquitinates purified GFP-BLM *in vitro*. In vitro ubiquitination reaction was carried out with purified GFP-BLM in the absence or presence of immunoprecipitated RNF111-Flag WT or CS mutant. Left panel, western blots were performed with antibodies to BLM or RNF111; right panel, purified GFP-BLM with silver staining. (c) A schematic of RNF111/Arkadia and BLM protein domains and indicated mutants. RNF111 SIMs and RING domain, as well as BLM SIMs, SUMO modification sites (K317 and K331), helicase ATP-binding, RQC (RecQ C-terminal) and HRDC (helicase-and-ribonuclease D-C-terminal) domains are shown. Source data are provided as a Source Data file.

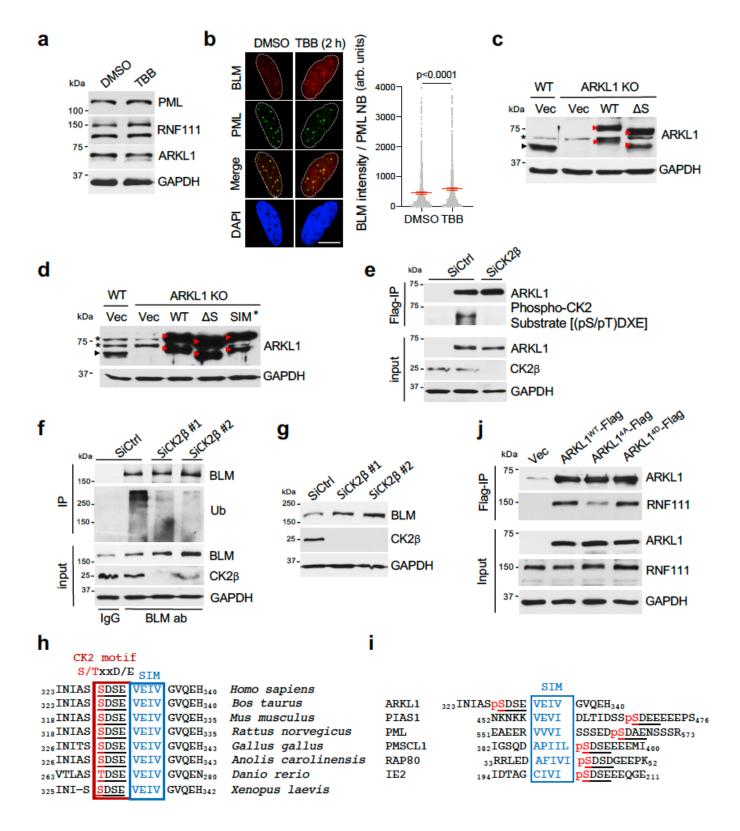
212SSESEQIDLTEEQKDDSEWLDDSVICIDDGPI 212SSESEQADATEEQKDDSEWLDDSAACIDDGPI


Supplementary Fig. 2 (related to Fig. 2). ARKL1 promotes BLM ubiquitination and regulates BLM protein level (a) Increased RNF111 levels in ARKL1 KO cells. **(b)** ARKL1-Flag interacts with BLM^{WT} or BLM^{SIM*} mutant. Flag IP was performed with lysates from 293T cells co-expressing ARKL1-Flag and GFP, GFP-BLM^{WT} or GFP-BLM^{SIM*}.

Source data are provided as a Source Data file.

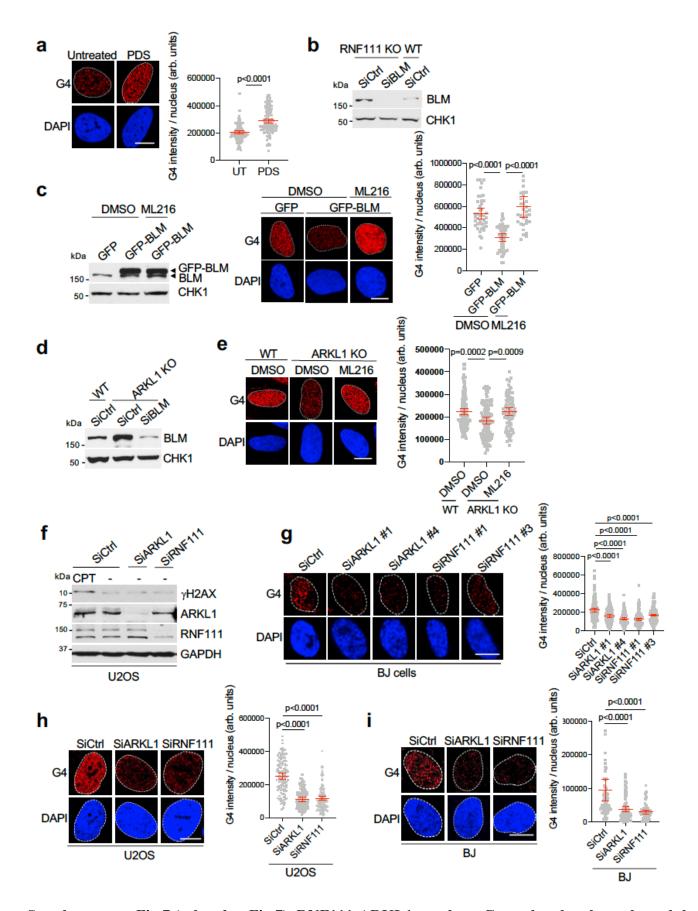
Supplementary Fig.3 (related to Fig.3). ARKL1 interacts with RNF111 in a SIM-SUMO dependent manner. (a) Knockdown of BLM does not affect ARKL1 and RNF111 interaction. The IPs were performed with Flag antibody using lysates of 293T cells expressing vector or ARKL1-FLAG and treated with indicated siRNAs. (b) The SIMs of RNF111 are not required for RNF111-ARKL1 interaction. The IPs were performed with FLAG antibody using lysates of 293T cells co-expressing ARKL1-Flag and vector, HA-RNF111^{WT} or HA-RNF111^{SIM*}. Relative level of HA-RNF111 in ARKL1-FLAG IP (normalized by input HA-RNF111 and


ARKL1-Flag immunoprecipitates) is quantified (n=2 independent experiment). (c) Generation of ARKL1 SIM mutant. (d-g) Deletion of 214-246 amino acids of RNF111 decreases RNF111 interaction with ARKL1. The IPs were performed with Flag antibody using lysates of 293T cells co-expressing ARKL1-Flag and HA-tagged RNF111 deletion mutants. Chk1 or GAPDH was used as a loading control. Relative level of HA-RNF111 in ARKL1-Flag IP (normalized by input HA-RNF111 and ARKL1-Flag immmunoprecipitates) is quantified (n=2 independent experiment). (h) K237R mutation alone does not affect HA-Flag-RNF111 SUMOylation. (j) K238R mutation alone does not affect HA-Flag-RNF111 SUMOylation of RNF111 at K237/238 is not required for RNF111 and BLM interaction. The IPs were performed with HA antibody using lysates of 293T cells expressing vector, HA-RNF111^{WT} or HA-RNF111^{K237/238R}. Source data are provided as a Source Data file.


Supplementary Fig.4 (related to Fig.4). ARKL1 promotes RNF111 localization to PML NBs.

(a) RNF111^{CS} is intact in the interaction with ARKL1. The IPs were performed with Flag antibody using lysates from 293T cells co-expressing ARKL1-Flag and empty vector, HA-RNF111^{WT} or HA-RNF111^{CS}. (b) ARKL1-GFP and HA-RNF111 form foci that colocalize with PML NBs. IF was carried out with GFP, HA and PML antibodies in U2OS cells. Arrows point to the colocalized foci. (c) ARKL1 knockdown reduces RNF111 and PML colocalization in BJ cells. PLA was performed with RNF111 and PML antibodies. Quantification is shown with mean ± 95% CI for cells treated with indicated siRNAs, siCtrl (n=119), SiARKL1 #1 (n=122), SiARKL1 #4 (n=127), SiRNF111 #1 (n=94), SiRNF111 #3 (n=129) from two biological replicates. Statistics: one-way ANOVA with Sidak's correction. (d) HA-ARKL1 localization to PML NBs is independent of RNF111. IF was carried out with HA and PML antibodies in WT or RNF111 KO U2OS cells expressing empty vector or HA-ARKL1. (e) ARKL1^{SIM*} fails to localize to PML NBs. (f) ARKL1 SIM domains are required for the interaction of ARKL1-Flag with HA-PML. (g) ARKL1 SIM domains are required for RNF111 recruitment to PML NBs. Expression of ARKL1^{WT} and ARKL1^{SIM*} in ARKL1 KO Hela cells for Fig.4g is shown. Left arrow, endogenous ARKL1; right arrow, Flag-tagged ARKL1.

Scale bar, 10 µm for **b**, **c**, **d**, **e**. Source data are provided as a Source Data file.


Supplementary Fig.5 (related to Fig.5). RNF111-mediated ubiquitination of BLM is associated with PML NBs. (a) (b) BLM levels and foci number are increased in ARKL1 KO and RNF111 KO U2OS cells. IF was performed with antibodies to BLM and PML. The representative images are shown in Fig. 5a. Quantification of BLM intensity and number of foci in each nucleus are shown with mean ± 95% CI for WT (n=174), ARKL1 KO (n=105), RNF111 KO (n=101) cells from two biological replicates. Statistical analysis was performed using one-way ANOVA test with Sidak's correction. (c) Depletion of PML leads to an elevation of BLM protein levels. (d) RNF111^{SIM*} mutant is deficient in localizing to PML NBs. (e) BLM^{K317/331R} mutant is deficient in localizing to PML NBs. Scale bar, 10 μm for d, e. Source data are provided as a Source Data file.

Supplementary Fig.6 (related to Fig. 6). CK2 phosphorylates ARKL1 promoting ARKL1-RNF111 interaction and BLM ubiquitination.

(a) TBB treatment does not reduce the protein levels of PML, RNF111 or ARKL1. U2OS cells were treated with DMSO or TBB ($50\mu M$, 4 h). GAPDH was used as a loading control. (b) TBB treatment ($50\mu M$, 2 h) leads to increased BLM intensity in PML NBs in U2OS cells. Quantification with arbitrary (arb.) units is shown with mean \pm 95% CI for DMSO-treated (n=1351) or TBB-treated (n=1154). Statistics: two-tailed unpaired t-test. Scare bar, $10\mu m$. (c) Complementation of ARKL KO U2OS cells with expression of Flag-tagged ARKL1^{WT} or ARKL1^{ΔS} (related to Fig. 6e). Black arrow, endogenous ARKL1; red arrow, ARKL1-Flag; *non-specific band.

(d) Western blot of WT or ARKL1 KO U2OS expressing indicated constructs used in Fig. 6f. Black arrow, endogenous ARKL1; red arrow, ARKL1-Flag; *non-specific band. (e) Knockdown of CK2β abolishes ARKL1 phosphorylation by CK2. Western blot was performed with phospho-CK2 substrate [(pS/pT)DXE] antibody. (f) Knockdown of CK2β reduces BLM ubiquitination. (g) Knockdown of CK2β leads to increased BLM protein levels. (h) CK2 phosphorylation site on ARKL1 is conserved through various species. (i) Alignment of CK2 phosphorylation site adjacent to a SIM present in several SIM-containing proteins. (j) ARKL1^{4D} (S327/328/330/385D) mutant interacts with RNF111 as ARKL1^{WT} does while ARKL1^{4A} (S327/328/330/385A) mutant exhibits decreased interaction with RNF111. 293T cells expressing indicated constructs were used. Source data are provided as a Source Data file.

Supplementary Fig.7 (related to Fig.7). RNF111-ARKL1 regulates G-quadruplex through modulating BLM levels. (a) Increased G4 levels detected by BG4 antibody in U2OS cells treated with Pyridostatin (PDS) ($10\mu M$, 24h). G4 intensity was quantified with arbitrary (arb.) units for untreated (n=148) or PDS-treated (n=138) cells from two biological replicates. (b) Western blot of lysates from cells analyzed in Fig.7a showing

knockdown of BLM in RNF111 KO cells. CHK1 was used as a loading control. (c) Overexpression of GFP-BLM reduces G4 levels and the reduction is abolished by BLM helicase inhibitor ML216 (12.5µM, 48h). Expression of GFP-BLM in U2OS cells is detected by western blot with BLM antibody (left). IF was carried out with BG4 antibody (middle). Quantifications (right) are shown for cells expressing GFP treated with DMSO (n=42), GFP -BLM treated with DMSO (n=47), or ML216 (n=32). (d) Loss of ARKL1 reduces G4 levels in the nucleus and the reduction is abolished by BLM knockdown in U2OS cells. Western blots for Fig. 7d are shown. CHK1 was used as a loading control. (e) The G4 level is restored in ARKL1 KO cells treated with BLM helicase inhibitor ML216 (12.5µM, 72h). Quantifications are shown for the control U2OS WT cells treated with DMSO (n=101) or ARKL1 KO treated with DMSO (n=110) or ML216 (n=74) from two biological replicates. (f) Depletion of ARKL1 or RNF111 does not lead to elevated vH2AX detected by western blot. CPT (1 uM, 1 h) treatment of cells was used for a control. (g) G4 intensity in the nucleus is decreased in RNF111 or ARKL1 depleted BJ fibroblast cells. Quantifications of two biological replicates are shown with mean \pm 95% CI for cells treated with Ctrl siRNA (n=147), SiARKL1#1 (n=118), SiARKL1#4 (n=123), SiRNF111#1 (n=112), SiRNF111#3 (n=177). (h) G4 intensity detected by G4 1H6 antibody in ARKL1 or RNF111-deficient U2OS cells. Quantifications of two biological replicates are shown for cells treated with Ctrl siRNA (n=112), SiARKL1 (n=94) and SiRNF111 (n=149). (i) G4 intensity detected by G4 1H6 antibody in ARKL1 or RNF111deficient BJ cells. Quantifications of two biological replicates are shown for cells treated with siCtrl (n=64), SiARKL1 (n=79) and SiRNF111 (n=67).

Quantifications are shown with mean \pm 95% CI for **a**, **c**, **e**, **g**, **h**, **i**. Statistics: two-tailed unpaired t-test for **a**, one-way ANOVA with Sidak's correction for **c**, **e**, **g**, **h**, **i**. Scare bar, 10 μ m for **a**, **c**, **e**, **g**, **h**, **i**. Source data are provided as a Source Data file.

Supplementary Table 1. List of siRNAs used

Name	Cat# or sequence
ON-TARGET plus Non-targeting siRNAs	Horizon, D-001810-0X
ON-TARGET plus Human C18orf25 (147339)	Horizon, L-015948-02-0005
siRNA-SMARTpool	
ON-TARGET plus Human RNF111 (54778)	Horizon, L-007002-00-0005
siRNA-SMARTpool	
siARKL1#1	GUGAAGUAAUAUUGGCUUA
siARKL1#4	AGGCAGAAACGGCGGUAGA
siRNF111#1	GUACAUACUUGCAGAUUUA
siRNF111#3	CCAAAGAUGGCAUGACUUA
siBLM	AUCAGCUAGAGGCGAUCAA
siPML	GGCUUCGACGAGUUCAA
SiCK2β #1	AGAAGAAUUCAUUGCCACGGAGCCC
SiCK2β #2	GGACAAAUUUAAUCUUACU

Supplementary Table 2. List of plasmids used

Name	Source	
pcDNA3.1-ARKL1WT-3xFLAG	This paper	
pcDNA3.1-ARKL1 ^{SIM*} -3xFLAG	This paper	
pcDNA3.1-ARKL1 ^{∆S} -3xFLAG	This paper	
pcDNA3.1-ARKL1 ^{S328A} -3xFLAG	This paper	
pcDNA3.1-ARKL1 ^{S327/328/330/385A} -3xFLAG	This paper	
pcDNA3.1-ARKL1 ^{S327/328/330/385D} -3xFLAG	This paper	
MSCV-3HA-ARKL1 ^{WT}	This paper	
MSCV-3HA-ARKL1 ^{SIM*}	This paper	
MSCV-GFP-ARKL1 ^{WT}	This paper	
MSCV-HA-Flag-ARKL1WT	This paper	
pAID5.3-RNF111 ^{WT} -miniAID	This paper	
pAID5.3-RNF111 ^{SIM*} -miniAID	This paper	
pAID5.3-RNF111 ^{CS} -miniAID	This paper	
pcDNA3.1-RNF111 ^{WT} -3xFLAG	This paper	
pcDNA3.1-RNF111 ^{SIM*} -3xFLAG	This paper	
pcDNA3.1-RNF111 ^{CS} -3xFLAG	This paper	
MSCV-HA-Flag-RNF111 ^{WT}	This paper	
MSCV-HA-Flag-RNF111 ^{K218/237R}	This paper	
MSCV-HA-Flag-RNF111 ^{K237/238R}	This paper	
MSCV-3HA-RNF111 ^{WT}	This paper	
MSCV-3HA-RNF111 ^{Δ15-59}	This paper	
MSCV-3HA-RNF111 ^{Δ73-110}	This paper	
MSCV-3HA-RNF111 ^{Δ159-198}	This paper	
MSCV-3HA-RNF111 ^{Δ214-246}	This paper	
MSCV-3HA-RNF111 ^{Δ910-978}	This paper	
MSCV-3HA-RNF111 ^{SIM*}	This paper	
GFP-BLM ^{SIM*}	This paper	
MSCV-GFP-PML (PML isoform II)	This paper	
MSCV-mcherry-PML (isoform II)	This paper	
pcDNA3.1-ARKL1WT-3xFLAG	This paper	
GFP-BLM	A gift from Nathan Ellis	
	(Addgene plasmid #80070)	
pAID5.3-C	A gift from Masato Kanemaki	
	(Addgene plasmid #145813)	
pCMV-Tol2	A gift from Stephen Ekker	
	(Addgene plasmid#31823)	

Supplementary Table 3. List of primers used

Name	Sequence
BLM SIM1 fw	GTCATCCTTCTGTTCCTCAGTCGCATCTGCTTGCTCGC
	TTTCAGAGGAGGGTG
BLM SIM1 rev	CACCCTCCTCTGAAAGCGAGCAAGCAGATGCGACTGA
	GGAACAGAAGGATGAC
BLM SIM2 fw	GGGGCCATCATCGATGCAAGCCGCATCGCTGCTTAAC
	CATTC
BLM SIM2 rev	GAATGGTTAAGCAGCGATGCGGCTTGCATCGATGATG
	GCCCC
ARKL1 SIM1 fw	CCTTGCATGTTCCTGAACTCCCGCAGCCTCTGCTTCAC
	TATCTGAAGACGCAAT
ARKL1 SIM1 rev	ATTGCGTCTTCAGATAGTGAAGCAGAGGCTGCGGGAG
	TTCAGGAACATGCAAGG
ARKL1 SIM2 fw	TGGGCTTCACCAGCAGAAGCTGCTGACGCTACCTTGG
	ATGAGGATAGC
ARKL1 SIM2 rev	GCTATCCTCATCCAAGGTAGCGTCAGCAGCTTCTGCTG
	GTGAAGCCCA
ARKL1 S385A fw	CAACTTCTGCTGGTGCAGCCCAAGTCTGCTG
ARKL1 S385A rev	CAGCAGACTTGGGCTGCACCAGCAGAAGTTG
ARKL1 S327/328/330A fw	ACTCAATGAAGAAATTAACATTGCGGCTGCAGATGCT
	GAAGTAGAGATTGTGGGAGTTCAG
ARKL1 S327/328/330A rev	CTGAACTCCCACAATCTCTACTTCAGCATCTGCAGCCG
	CAATGTTAATTTCTTCATTGAGT
ARKL1 S385D fw	GTCAACAACTTCTGCTGGATCAGCCCAAGTCTGCTGG
	GGAG
ARKL1 S385D rev	CTCCCCAGCAGACTTGGGCTGATCCAGCAGAAGTTGT
	TGAC
ARKL1 S327/328/330D fw	AATGCGCCACTCAATGAAGAAATTAACATTGCGGATG
	ATGATGATGAAGTAGAGATTGTGGGAGTTCAGGAACA
	TGC
ARKL1 S327/328/330D rev	GCATGTTCCTGAACTCCCACAATCTCTACTTCATCATC
	ATCATCCGCAATGTTAATTTCTTCATTGAGTGGCGCAT
	T
ARKL1 S328A fw	CACAATCTCTACTTCACTATCTGCAGACGCAATGTTAA
1 D 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	TTTCTTCAT
ARKL1 S328A rev	ATGAAGAATTAACATTGCGTCTGCAGATAGTGAAGT
1 DYK 1 1 G C	AGAGATTGTG
ARKL1 Δ S fw	AAGGAAGAATATAACCTGCTGGATGATGAAGA
A DATE A A C	GGTTTCAG
ARKL1 ΔS rev	CTGAAACCTCTTCATCATCATCCAGCAGGTTATATTTC
D) F111 G7 (1 2	TTCCTT
RNF111 SIM1 fw	TGGGGAGTGGAGGAAGCTTCTGCCGCCACAGCATCTT
	CATCAATACTTCCTG

RNF111 SIM2 fw CCGATAGCTTTCTCCAACTGTTGCAGCCTCCGCTTCAC TGTCAGTTGAGGTAAC RNF111 SIM2 rev GTTACCTCAACTGACAGTGAAGCGGAGGCTGCAACAG TTGGAGAAAGCTATCGG RNF111 SIM3 fw GTTCATCTTCATCAACGGTAGCGTCGCAGCTTCTGCT GCATTCTGCCTC GCATTCTGCCTC RNF111 SIM3 rev GAGGCAGAATGCAGCAGAAGCTGCGGACGCTACCGTT GATGAAGATGAAC RNF111 C943/946S fw CTTCCTCTAAAATAGACAAACTGATAGTACTTTTTCC TCTGTGTCTTCCTCA RNF111 Δ 15-59 fw CCTGAATATAACGAGCAGAAAACTGATAGTACTATCAGTTT GTCTATTTTAGAGGAAG RNF111 Δ 1-59 rev GAATTCCTCACACTAAGGTGTAGAGCTCGTAATATT CAGG RNF111 Δ 73-110 fw TCCTAATATTCCCCACTAAGGTGTAGAGCTCGTTATATT CAGG RNF111 Δ 73-110 rev CACCTGTGTGATGATGATTCTCTAAGAAACCAGGGAATAT TAGGA RNF111 Δ 159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ 159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ 1214-246 fw GGAGACTTCCATGCAGATATCCCTAGTGAAGTCACCTAG RNF111 Δ 214-246 fw GGACAATTGAAAGAGGCATATCTGCATGAAGTCTCC RNF111 Δ 910-978 fw GGACAATTGAAAGAGGCATATCCCCATTGCACCTTGCCCCAT	RNF111 SIM1 rev	CAGGAAGTATTGATGAAGATGCTGTGGCGGCAGAAGC
RNF111 SIM2 rev GTTACCTCAACTGACAGTGAAGCGGAGGCTGCAACAG TTGGAGAAAGCTATCGG RNF111 SIM3 fw GTTCATCTTCATCAACGGTAGCGTCCGCAGCTTCTGCT GCATTCTGCCTC RNF111 SIM3 rev GAGGCAGAATGCAGCAGAAGCTGCGGACGCTACCGTT GATGAAGATGAAC RNF111 C943/946S fw CTTCCTCTAAAATAGACAAACTGATAGTACTTTTTTCC TCTGTGTCTTCCTCA RNF111 C943/946S rev TGAGGAAGACACAGAGGAAAAAAGTACTATCAGTTT GTCTATTTTAGAGGAAG RNF111 Δ15-59 fw CCTGAATATAACGAGCTCTACACCTTAGTGGGGAATG AATTC RNF111 Δ1-59 rev GAATTCATTCCCCACTAAGGTGTAGAGCTCGTTATATT CAGG RNF111 Δ73-110 fw TCCTAATATTCCCTGGTTTTCTTGAGAATCACACA GGTG RNF111 Δ73-110 rev CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATCCCCACTAGG RNF111 Δ214-246 fw GGACAATTGAAAGAGCATATCTCCCACTTGCACCTAG RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTCCCATTTCCCCACTTGCCCCAT		TTCCTCCACTCCCCA
RNF111 SIM2 rev GTTACCTCAACTGACAGTGAAGCGGAGGCTGCAACAG TTGGAGAAAGCTATCGG RNF111 SIM3 fw GTTCATCTTCATCAACGGTAGCGTCCGCAGCTTCTGCT GCATTCTGCCTC RNF111 SIM3 rev GAGGCAGAATGCAGCAGAAGCTGCGGACGCTACCGTT GATGAAGATGAAC RNF111 C943/946S fw CTTCCTCTAAAATAGACAAACTGATAGTACTTTTTCC TCTGTGTCTTCCTCA RNF111 Δ15-59 fw CCTGAATATAACGAGGTCTACACCTTAGTGGGGAATG AATTC RNF111 Δ1-59 rev GAATTCATTCCCCACTAAGGTGTAGAGCTCGTTATATT CAGG RNF111 Δ73-110 fw TCCTAATATCCCCACTAAGGTGTAGAACCACACA GGTG RNF111 Δ73-110 rev CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATCCCCACT RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTCCCACT RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTCCCACT RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTGCACTAGGAAGTCTCC RNF111 Δ910-978 fw GGACAATTGAAAGAGTTACCACATTGCCCCAT	RNF111 SIM2 fw	
RNF111 SIM3 fw GTTCATCTCATCAACGGTAGCGTCCGCAGCTTCTGCT GCATTCTGCCTC RNF111 SIM3 rev GAGGCAGAATGCAGCAGAAGCTGCGGACGCTACCGTT GATGAAGATGAAC RNF111 C943/946S fw CTTCCTCTAAAATAGACAAACTGATAGTACTTTTTCC TCTGTGTCTTCCTCA RNF111 Δ15-59 fw CCTGAATATAACGAGCAGAAAACTTAGTGGGGAATG AATTC RNF111 Δ1-59 rev GAATTCATTCCCCACTAAGGTTAGAGCTCGTTATATT CAGG RNF111 Δ73-110 fw TCTAATATTCCCTGGTTTTCTTGAGAATCACCACAGGTG RNF111 Δ73-110 rev CACCTGTGTGATGATCTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ159-198 fw CATGTAACAGGGTCTATCCTCATCTGAAGTCACACT ATCAG RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ214-246 fw GGAGACATTCCATGCAGATATGCCTTGCTACCTAG RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTCCATTGCATGGAAGTCTCC RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTCCATTGCATGGAAGTCTCC RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTCCATTGCATGCACTTCC RNF111 Δ214-246 rev GGACAATTGAAAGATGTACATATCCACATTGCCCCAT		TGTCAGTTGAGGTAAC
RNF111 SIM3 fw GTTCATCTCATCAACGGTAGCGTCCGCAGCTTCTGCT GCATTCTGCTC RNF111 SIM3 rev GAGGCAGAATGCAGCAGAAGCTGCGGACGCTACCGTT GATGAAGATGAAC RNF111 C943/946S fw CTTCCTCTAAAATAGACAAACTGATAGTACTTTTTTCC TCTGTGTCTTCCTCA RNF111 C943/946S rev TGAGGAAGACACAGAGGAAAAAAAGTACTATCAGTTT GTCTATTTTAGAGGAAG RNF111 Δ 15-59 fw CCTGAATATAACGAGCTCTACACCTTAGTGGGGAATG AATTC RNF111 Δ 1-59 rev GAATTCATTCCCCACTAAGGTGTAGAGCTCGTTATATT CAGG RNF111 Δ 73-110 fw TCCTAATATTCCCTGGTTTTCTTGAGAATCACACA GGTG RNF111 Δ 73-110 rev CACCTGTGTGATGATCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ 159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ 159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ 214-246 fw GGAGACTTCCATGCAGATATCCCCATTGCAGAGTCTCC RNF111 Δ 214-246 rev CTAGGTAGCAAGGCATATCTCCCATTGCACCATTGCCCCAT	RNF111 SIM2 rev	GTTACCTCAACTGACAGTGAAGCGGAGGCTGCAACAG
RNF111 SIM3 rev GAGGCAGAATGCAGCAGAAGCTGCGGACGCTACCGTT GATGAAGATGAAC RNF111 C943/946S fw CTTCCTCTAAAATAGACAAACTGATAGTACTTTTTCC TCTGTGTCTTCCTCA RNF111 C943/946S rev TGAGGAAGACACAGAGGAAAAAAAGTACTATCAGTTT GTCTATTTTAGAGGAAG RNF111 \Delta15-59 fw CCTGAATATAACGAGCTCTACACCTTAGTGGGGAATG AATTC RNF111 \Delta1-59 rev GAATTCATTCCCCACTAAGGTGTAGAGCTCGTTATATT CAGG RNF111 \Delta73-110 fw TCCTAATATTCCCCACTAAGGTGTAGAGCTCGTTATATT CAGGA RNF111 \Delta73-110 rev CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 \Delta159-198 fw CATGTAAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 \Delta159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 \Delta214-246 fw GGAGACTTCCATGCAGATATGCCTTGCTACCTAG RNF111 \Delta214-246 fev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 \Delta910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT		TTGGAGAAAGCTATCGG
RNF111 SIM3 rev GAGGCAGAATGCAGCAGAAGCTGCGGACGCTACCGTT GATGAAGATGAAC RNF111 C943/946S fw CTTCCTCTAAAATAGACAAACTGATAGTACTTTTTCC TCTGTGTCTTCCTCA RNF111 C943/946S rev TGAGGAAGACACAGAGGAAAAAAAGTACTATCAGTTT GTCTATTTTAGAGGAAG RNF111 Δ15-59 fw CCTGAATATAACGAGCTCTACACCTTAGTGGGGAATG AATTC RNF111 Δ73-110 fw TCCTAATATTCCCCACTAAGGTGTAGAGCTCGTTATATT CAGG RNF111 Δ73-110 rev CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATGCCTTGCTACCTAG RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTCCACTTGCAAGTCACCTC RNF111 Δ210-978 fw GGACAATTGAAAGAGGCATATCTCCACATTGCCCCAT	RNF111 SIM3 fw	GTTCATCTTCATCAACGGTAGCGTCCGCAGCTTCTGCT
RNF111 C943/946S fw CTTCCTCTAAAATAGACAAACTGATAGTACTTTTTCC TCTGTGTCTTCCTCA RNF111 C943/946S rev TGAGGAAGACACAGAGGAAAAAAAGTACTATCAGTTT GTCTATTTTAGAGGAAG RNF111 Δ15-59 fw CCTGAATATAACGAGCTCTACACCTTAGTGGGGAATG AATTC RNF111 Δ1-59 rev GAATTCATTCCCCACTAAGGTGTAGAGCTCGTTATATT CAGG RNF111 Δ73-110 fw TCCTAATATTCCCTGGTTTTCTTGAGAATCATCACACA GGTG RNF111 Δ73-110 rev CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATCCCCATGRNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ910-978 fw GGACAATTGAAAGATGTACATATCCCCAT		GCATTCTGCCTC
RNF111 C943/946S fw CTTCCTCTAAAATAGACAAACTGATAGTACTTTTTCC TCTGTGTCTTCCTCA RNF111 C943/946S rev TGAGGAAGACACAGAGGAAAAAAAGTACTATCAGTTT GTCTATTTTAGAGGAAG RNF111 Δ15-59 fw CCTGAATATAACGAGCTCTACACCTTAGTGGGGAATG AATTC RNF111 Δ1-59 rev GAATTCATTCCCCACTAAGGTGTAGAGCTCGTTATATT CAGG RNF111 Δ73-110 fw TCCTAATATTCCCTGGTTTTCTTGAGAATCATCACACA GGTG RNF111 Δ73-110 rev CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATGCCTTGCTACCTAG RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT	RNF111 SIM3 rev	GAGGCAGAATGCAGCAGAAGCTGCGGACGCTACCGTT
TCTGTGTCTTCCTCA RNF111 C943/946S rev TGAGGAAGACACAGAGGAAAAAAGTACTATCAGTTT GTCTATTTTAGAGGAAG RNF111 Δ15-59 fw CCTGAATATAACGAGCTCTACACCTTAGTGGGGAATG AATTC RNF111 Δ73-110 fw TCCTAATATCCCCACTAAGGTGTAGAGCTCGTTATATT CAGG RNF111 Δ73-110 rev CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATCCTCATGGAAGTCTCC RNF111 Δ214-246 rev CTGAGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ210-978 fw GGACAATTGAAAGAGGCATATCTCACATTGCACCTAG GGACAATTGAAAGAGTATATCCCCATTGCACTTCC RNF111 Δ910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT		GATGAAGATGAAC
RNF111 C943/946S rev TGAGGAAGACACAGAGGAAAAAAGTACTATCAGTTT GTCTATTTTAGAGGAAG RNF111 Δ 15-59 fw CCTGAATATAACGAGCTCTACACCTTAGTGGGGAATG AATTC RNF111 Δ 1-59 rev GAATTCATTCCCCACTAAGGTGTAGAGCTCGTTATATT CAGG RNF111 Δ 73-110 fw TCCTAATATTCCCTGGTTTTCTTGAGAATCACACA GGTG RNF111 Δ 73-110 rev CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ 159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ 159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ 214-246 fw GGAGACTTCCATGCAGATATCCTCATCTAGAGTCTCC RNF111 Δ 910-978 fw GGACAATTGAAAGATGTACATATCCCCAT	RNF111 C943/946S fw	CTTCCTCTAAAATAGACAAACTGATAGTACTTTTTCC
$ \begin{array}{c} \text{GTCTATTTTAGAGGAAG} \\ \text{RNF111} \Delta 15\text{-}59 \text{fw} & \text{CCTGAATATAACGAGCTCTACACCTTAGTGGGGAATG} \\ \text{AATTC} \\ \text{RNF111} \Delta 1\text{-}59 \text{rev} & \text{GAATTCATTCCCCACTAAGGTGTAGAGCTCGTTATATT} \\ \text{CAGG} \\ \text{RNF111} \Delta 73\text{-}110 \text{fw} & \text{TCCTAATATTCCCTGGTTTCTTGAGAATCACACA} \\ \text{GGTG} \\ \text{RNF111} \Delta 73\text{-}110 \text{rev} & \text{CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT} \\ \text{TAGGA} \\ \text{RNF111} \Delta 159\text{-}198 \text{fw} & \text{CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT} \\ \text{ATCAG} \\ \text{RNF111} \Delta 159\text{-}198 \text{rev} & \text{CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT} \\ \text{ACATG} \\ \text{RNF111} \Delta 214\text{-}246 \text{fw} & \text{GGAGACTTCCATGCAGATATGCCTTACCTAG} \\ \text{RNF111} \Delta 214\text{-}246 \text{rev} & \text{CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC} \\ \text{RNF111} \Delta 910\text{-}978 \text{fw} & \text{GGACAATTGAAAGATGTACATATCCACATTGCCCCAT} \\ \end{array}$		TCTGTGTCTTCCTCA
RNF111 Δ 15-59 fw CCTGAATATAACGAGCTCTACACCTTAGTGGGGAATG AATTC RNF111 Δ 1-59 rev GAATTCATTCCCCACTAAGGTGTAGAGCTCGTTATATT CAGG RNF111 Δ 73-110 fw TCCTAATATTCCCTGGTTTTCTTGAGAATCATCACACA GGTG RNF111 Δ 73-110 rev CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ 159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ 159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ 214-246 fw GGAGACTTCCATGCAGATATCCTCATCTAGCTACCTAG RNF111 Δ 214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ 910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT	RNF111 C943/946S rev	TGAGGAAGACACAGAGGAAAAAAGTACTATCAGTTT
RNF111 Δ 1-59 rev GAATTCATTCCCCACTAAGGTGTAGAGCTCGTTATATT CAGG RNF111 Δ 73-110 fw TCCTAATATTCCCTGGTTTTCTTGAGAATCATCACACA GGTG RNF111 Δ 73-110 rev CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ 159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ 159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ 214-246 fw GGAGACTTCCATGCAGATATCCTCATCTAGAGTCACCTAG RNF111 Δ 214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ 910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT		GTCTATTTTAGAGGAAG
RNF111 Δ1-59 rev GAATTCATTCCCCACTAAGGTGTAGAGCTCGTTATATT CAGG RNF111 Δ73-110 fw CACCTGTGTGATGATTCTCTGAGAATCATCACACA GGTG RNF111 Δ73-110 rev CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATCCTCATCTAGCTACCTAG RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT	RNF111 Δ15-59 fw	CCTGAATATAACGAGCTCTACACCTTAGTGGGGAATG
CAGG RNF111 Δ73-110 fw TCCTAATATTCCCTGGTTTTCTTGAGAATCATCACACA GGTG RNF111 Δ73-110 rev CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATCCTTGCTACCTAG RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT		AATTC
RNF111 Δ73-110 fw CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGAAGACCCTGTTT ACATG RNF111 Δ214-246 fw RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ910-978 fw CGACAATTGAAAGATGTACATATCCACATTGCCCCAT	RNF111 Δ1-59 rev	GAATTCATTCCCCACTAAGGTGTAGAGCTCGTTATATT
RNF111 Δ73-110 rev CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATGCCTTGCTACCTAG RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT		CAGG
RNF111 Δ73-110 rev CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT TAGGA RNF111 Δ159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATGCCTTGCTACCTAG RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT	RNF111 Δ73-110 fw	TCCTAATATTCCCTGGTTTTCTTGAGAATCATCACACA
TAGGA RNF111 Δ159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATGCCTTGCTACCTAG RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT		GGTG
RNF111 Δ159-198 fw CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT ATCAG RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATGCCTTGCTACCTAG RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT	RNF111 Δ73-110 rev	CACCTGTGTGATGATTCTCAAGAAAACCAGGGAATAT
ATCAG RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATGCCTTGCTACCTAG RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT		TAGGA
RNF111 Δ159-198 rev CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT ACATG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATGCCTTGCTACCTAG RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT	RNF111 Δ159-198 fw	CATGTAAACAGGGTCTATCCTCATCTGAAGTCACAGT
ACATG RNF111 Δ214-246 fw GGAGACTTCCATGCAGATATGCCTTGCTACCTAG RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT		ATCAG
RNF111 Δ214-246 fwGGAGACTTCCATGCAGATATGCCTTGCTACCTAGRNF111 Δ214-246 revCTAGGTAGCAAGGCATATCTGCATGGAAGTCTCCRNF111 Δ910-978 fwGGACAATTGAAAGATGTACATATCCACATTGCCCCAT	RNF111 Δ159-198 rev	CTGATACTGTGACTTCAGATGAGGATAGACCCTGTTT
RNF111 Δ214-246 rev CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC RNF111 Δ910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT		ACATG
RNF111 Δ910-978 fw GGACAATTGAAAGATGTACATATCCACATTGCCCCAT	RNF111 Δ214-246 fw	GGAGACTTCCATGCAGATATGCCTTGCTACCTAG
	RNF111 Δ214-246 rev	CTAGGTAGCAAGGCATATCTGCATGGAAGTCTCC
ATGCAGA	RNF111 Δ910-978 fw	GGACAATTGAAAGATGTACATATCCACATTGCCCCAT
1110011011		ATGCAGA
RNF111 Δ910-978 rev TCTGCATATGGGGCAATGTGGATATGTACATCTTTCAA	RNF111 Δ910-978 rev	TCTGCATATGGGGCAATGTGGATATGTACATCTTTCAA
TTGTCC		TTGTCC

Supplementary Table 4. List of antibodies used

Name	Cat #	Dilution
BLM Antibody (C-1)	Santa Cruz, sc-376237	1:200 for IF or PLA
	,	1:200 for WB
BLM Antibody (C-18)	Santa Cruz, sc-7790	1:200 for IF or PLA
HA-Tag Antibody (C29F4)	Cell Signaling, 3724S	1:800 for IF or PLA
	S 5	1:2000 for WB
HA-Tag (6E2)	Cell Signaling, 2367S	1:800 for IF or PLA
		1:2000 for WB
PML Antibody (PG-M3)	Santa Cruz, sc-966	1:200 for IF or PLA
GFP Antibody (1A5)	Santa Cruz, sc-101536	1:200 for IF
DNA G-quadruplex structures Antibody (BG4)	Sigma-Aldrich, MABE917	1:200 for IF
DNA G-quadruplex (G4)	Sigma-Aldrich, ZMS1070	1:600 for IF
Antibody (1H6) ZooMAb®	Signia-Address, ZiviS1070	1.000 101 11
Mouse Monoclonal		
FLAG antibody	Millipore, F7425	1:600 for IF
1 Li 10 unitioody	171111111111111111111111111111111111111	1:1000 for WB
ARKL1 antibody	Home-made	1:1000 for IF or PLA
ThatE1 uniteday	Trome made	1:10000 for WB
RNF111 antibody	Sigma-Aldrich, HPA038576	1:600 for IF or PLA
11.1111	218 1 21.02.00 / 0	1:2000 for WB
BLM Antibody	Bethyl Laboratories, A300-110A	1:2000 for WB
PML Antibody (E-11)	Santa Cruz, sc-377390	1:100 for WB
RNF111 antibody (M05)	Abnova, H00054778-M05	1:500 for WB
GAPDH Antibody (GA1R)	Thermo Fisher Scientific, MA5-	1:10000 for WB
	15738	
Chk1 Antibody (G-4)	Santa Cruz, sc-8408	1:200 for WB
SUMO-2/3 antibody (18H8)	Cell Signaling, 4971S	1:2000 for WB
Ubiquitin Antibody (P4D1)	Santa Cruz, sc-8017	1:200 for WB
Phospho-CK2 Substrate	Cell Signaling, 8738	1:1000 for WB
[(pS/pT)DXE] antibody		
Casein kinase IIβ (6D5) antibody	Santa Cruz, sc-12739	1:200 for WB
γH2AX antibody	Millipore, 05-636	1:1000 for WB
Duolink™ In Situ PLA Probe	Sigma-Aldrich, DUO92005	1:5 for PLA
Anti-Rabbit MINUS		
Duolink™ In Situ PLA Probe	Sigma-Aldrich, DUO92001	1:5 for PLA
Anti-Mouse PLUS		
Goat anti-Mouse IgG (H+L)	Thermo Fisher Scientific, A-	1:1000 for IF
Highly Cross-Adsorbed Secondary	21236	
Antibody, Alexa Fluor 647		
Goat anti-Rabbit IgG (H+L)	Thermo Fisher Scientific, A-	1:1000 for IF
Highly Cross-Adsorbed Secondary	21245	
Antibody, Alexa Fluor 647		

Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488	Thermo Fisher Scientific, A-21202	1:1000 for IF
Goat anti-Rabbit IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 488	Thermo Fisher Scientific, A-11008	1:1000 for IF
Goat anti-Rat IgG (H+L) Cross- Adsorbed Secondary Antibody, Alexa Fluor 488	Thermo Fisher Scientific, A-11006	1:1000 for IF
Donkey anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 555	Thermo Fisher Scientific, A-31572	1:1000 for IF
Donkey anti-Goat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor 555	Thermo Fisher Scientific, A-21432	1:1000 for IF
Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 555	Thermo Fisher Scientific, A-31570	1:1000 for IF