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A B S T R A C T

Thailanstatin A (TST-A) is a potent antiproliferative natural product discovered by our group from
Burkholderia thailandensisMSMB43 through a genome-guided approach. The limited supply of TST-A, due
to its low titer in bacterial fermentation, modest stability and very low recovery rate during purifica-
tion, has hindered the investigations of TST-A as an anticancer drug candidate. Here we report the significant
yield improvement of TST-A and its direct precursor, thailanstatin D (TST-D), through metabolic engi-
neering of the thailanstatin biosynthetic pathway inMSMB43. Deletion of tstP, which encodes a dioxygenase
involved in converting TST-A to downstream products including FR901464 (FR), resulted in 58% in-
crease of the TST-A titer to 144.7 ± 2.3 mg/L and 132% increase of the TST-D titer to 14.6 ± 0.5 mg/L in
the fermentation broth, respectively. Deletion of tstR, which encodes a cytochrome P450 involved in con-
verting TST-D to TST-A, resulted in more than 7-fold increase of the TST-D titer to 53.2 ± 12.1 mg/L in
the fermentation broth. An execution of 90 L pilot-scale fed-batch fermentation of the tstP deletion mutant
in a 120-L fermentor led to the preparation of 714 mg of TST-A with greater than 98.5% purity. The half-
life of TST-D in a phosphate buffer was found to be at least 202 h, significantly longer than that of TST-A
or FR, suggesting superior stability. However, the IC50 values of TST-D against representative human cancer
cell lines were determined to be greater than those of TST-A, indicating weaker antiproliferative activ-
ity. This work enabled us to prepare sufficient quantities of TST-A and TST-D for our ongoing translational
research.

© 2016 Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).

1. Introduction

Cancer has the second highest mortality rate only next to car-
diovascular diseases and is usually associated with specific genetic
and epigenetic changes in cellular processes.1–3 Pre-mRNA splic-
ing inhibitors, including FR901464 (FR; Fig. 1),4–6 spliceostatins,7,8

thailanstatins,9 pladienolides,10 FD-895,11 and herboxidiene
(GEX1),12–14 are a promising class of bacterial natural products or
their derivatives for cancer drug discovery and development. FR dem-
onstrated not only potent antiproliferative activity against an array
of human cancer cell lines with IC50 values in the low nanomolar
(nM) range but also the ability to prolong the life of tumor-bearing

mice.5 However, due to its instability as well as unacceptable levels
of toxicity, FR has been abandoned from a drug development
program.15 Mechanistically FR and spliceostatin A (SSA) inhibit pre-
mRNA splicing by binding to SF3b, a subcomplex of the U2 small
nuclear ribonucleoprotein in the spliceosome.16

FR was discovered by Nakajima et al. from Pseudomonas sp. No.
2663 (recently re-classified as Burkholderia sp. FERM BP-342117)
through cell-based screenings;4 thailanstatin A (TST-A; Fig. 1) was dis-
covered by us from Burkholderia thailandensis MSMB43 through
genome mining.9 TST-A biosynthesis in MSMB43 and FR biosynthe-
sis in FERM BP-3421 appear to use the same biosynthetic logic,9,17,18

raising the possibility that these two strains are either identical or
very closely related. Three oxygenase activities, including a flavin-
dependent monooxygenase (FMO) domain encoded by fr9H/tstGH,
a cytochrome P450 encoded by fr9R/tstR and a Fe(II)/α-ketoglutarate-
dependent dioxygenase encoded by fr9P/tstP, were proposed in the
formation of a heavily decorated tetrahydropyran ring (Fig. 1). Spe-
cifically, the Fr9P/TstP dioxygenase was shown to convert a C1 acetic
acid group in TST-A into a hemiketal group in FR through oxidative
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decarboxylation. As such, TST-A is a precursor of FR. The carboxylic
acid moiety in TST-A is beneficial for drug development for the fol-
lowing reasons. First, this carboxylic acid moiety enables TST-A to be
more stable than the hemiketal-containing FR.9 Second, when the car-
boxylic acid group of TST-A is modified to an ester linkage, which is
more lipophilic and enhances the cell membrane permeability of the
derived compound, the cytotoxicity of the compound is signifi-
cantly increased.8

Our investigation of TST-A as an anticancer drug candidate en-
countered a shortage of compound supply, primarily due to its low
titer in bacterial fermentation, modest stability and a very low re-
covery rate during purification.9 Here we report the significant yield
improvement of TST-A through metabolic engineering of the
thailanstatin biosynthetic pathway in MSMB43 and pilot scale fer-
mentation. During the course of this research, a direct TST-A
precursor was isolated and named as thailanstatin D in 2013 (TST-
D; Fig. 1), which turned out to be identical to the recently reported
spliceostatin C (SSC).17 The antiproliferative activity and stability of
TST-D were assessed and reported as well.

2. Materials and methods

2.1. Strain, plasmid and media

All strains and plasmids used in this study are listed in Table 1.
Luria-Bertani (LB) agar or medium was used with appropriate con-
centration of antibiotics for routine cultivation of B. thailandensis
MSMB43 strains or Escherichia coli strains. A 2S4G medium17 was
used for bacterial fermentation in flasks; a slightly modified 2S4G
medium composed of 40 g/L glycerol, 12.5 g/L HySoy soypeptone,
2 g/L (NH4)2SO4, 0.1 g/L MgSO4·7H2O and 2 g/L CaCO3 (pH 7.0) was
used for fed-batch bacterial fermentation in a fermentor. The con-
centrated feed medium contained 400 g/L glycerol, 20 g/L (NH4)2SO4

and 1 g/L MgSO4·7H2O (pH 7.0).

2.2. Construction of gene deletion mutants of B. thailandensis
MSMB43

A multiplex PCR method20 was used to create gene deletion
mutant strains of MSMB43 (Fig. S1), as we routinely did in previ-
ous works.19,22 PCR primers used for mutagenesis and for verification
of mutant genotypes are listed in Table S1.

2.3. Bacterial fermentation, extraction and chromatographic
purification of TST-A and TST-D

Bacterial fermentation, extraction, isolation and purification were
performed according to schemes and associated description given
in the Supplementarymaterial (Figs. S2 and S3). TST-Dwas identified

to be identical to spliceostatin C (SSC)17 with extensive UV, IR, HR-
MS and NMR analyses (Figs. S4–S15).

2.4. Titer determination by LC–MS analysis

The titers of TST-A and TST-D in fermentation broth were quan-
tified with an Agilent 6400 Series Triple Quadrupole LC–MS system
equipped with an Agilent Eclipse Plus C18 column (φ 4.6 × 100mm,
3.5 μm) and a UV detector. Briefly, each 0.5mL of fermentation broth
was sampled at various time points and was extracted twice with
equal volume of ethyl acetate. Two extracts were combined, dried
in a refrigerated CentriVap centrifugal vacuum concentrator
(Labconco) and subsequently re-suspended in 0.5 mL of acetoni-
trile and filtered through a 0.22 μm filter. Two microliters of such
acetonitrile solution was injected into the LC–MS system. The LC
solvents included buffer A (water with 0.1% formic acid, FA) and
buffer B (acetonitrile with 0.1% FA). The column was eluted with a
linear gradient from 15% to 55% buffer B in 35 min, monitored at
235 nm and with a flow rate of 0.5 mL/min. MS signals were col-
lected in positive mode under the following conditions: N2 gas
temperature, 325 °C; gas flow, 10 L/min; nebulizer pressure, 20 psi;

Fig. 1. Structures and biosynthetic relationship of TST-D, TST-A and FR901464.

Table 1
Strains and plasmids used in this study.

Strains and
plasmids

Relevant genotype or description Source or
reference

Strains
E. coli DH5α General Escherichia coli host strain for DNA

cloning
Lab stock

E. coli S17-1 E. coli donor strain for interspecies
conjugation

Lab stock

BthWT Burkholderia thailandensisMSMB43
wild-type strain

CDC

BthΔtstP::FRT B. thailandensis ΔtstP::FRT intermediate
insertion mutant

This study

BthΔtstP B. thailandensis ΔtstP final marker-free
deletion mutant

This study

BthΔtstR::FRT B. thailandensis ΔtstR::FRT intermediate
insertion mutant

This study

BthΔtstR B. thailandensis ΔtstR final marker-free
deletion mutant

This study

Plasmids
pBS854-Tp Tpr; donor of a trimethoprim-resistance

cassette

19

pEX18Tc Tcr oriT+ sacB+; gene replacement vector
with MCS

20

pBMTL3-Flp2 Flp endonuclease expression vector 21

pEX18Tc-ΔtstP::Tp Tcr Tpr oriT+ sacB+; tstP gene replacement
construct

This study

pEX18Tc-ΔtstR::Tp Tcr Tpr oriT+ sacB+; tstR gene replacement
construct

This study

CDC, US Centers for Disease Control and Prevention; Tpr, trimethoprim resistant; Tcr,
tetracycline resistant.
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sheath gas temperature, 400 °C; sheath N2 gas flow, 12 L/min; cap-
illary voltage, 4000 V; nozzle voltage, 500 V. TST-A and TST-D were
eluted at 24min and 31min, respectively. The extracted ion species
[M + H]+ for TST-A and TST-D were 536m/z and 520m/z, respec-
tively. For the generation of standard curves, TST-A and TST-D were
separately dissolved in phosphate buffer saline (PBS, pH 7.4) at a con-
centration series of 0.02, 0.01, 0.005, 0.0025, 0.00125, 0.000625 and
0.0003125 mg/mL. Then 0.5 mL of each sample of TST-A or TST-D
was extracted twice with equal volume of ethyl acetate. The ex-
tracts were combined, tried under vacuum and re-suspended in
0.5 mL of acetonitrile, and 2 μL of which was applied into the LC–
MS system. A standard curve was created by plotting the compound
concentrations against the extracted ion peak areas and showed lin-
earity within the range of concentrations tested (Figs. S16 and S17).
The concentration of a sample was calculated using the equation
generated from the standard curve.

For simple identification of TST-A and TST-D, the analysis was
performed under the same LC–MS condition but with a different
elution procedure: 0–9 min, from 15% to 100% buffer B; 9–12 min,
in 100% buffer B; 12–13 min, from 100% to 15% buffer B; 13–
18 min, in 15% buffer B. TST-A and TST-D were eluted at 8.2 and
9.2 min, respectively.

2.5. Stability and cytotoxicity assays

The stability and cytotoxicity of TST-D were assayed according
to our previously described methods9 to determine the IC50 value
and half-life (t1/2), using FR901464 as a reference.

3. Results

3.1. Targeted gene deletion

Marker exchange via double crossover of a 717-bp internal region
of tstP in MSMB43 with the FRT-Tp-FRT cassette from pEX18Tc-
ΔtstP::Tp resulted in an intermediate mutant strain BthΔtstP::FRT;
subsequent marker removal by a site-specific Flp endonuclease
overexpressed from pBMTL3-Flp2 resulted in the final marker-free
BthΔtstPmutant strain. Similarly, a 933-bp internal region of tstRwas
deleted to generate BthΔtstR::FRT and BthΔtstRmutant strains (Table 1).
Those genetic events were all verified by PCR diagnosis (Fig. S1).

3.2. Significant improvement of the production of TST-A and TST-D

Quantitative LC–MS analysis of samples from a 4-day flask fer-
mentation showed that the titers of TST-A and TST-D produced by
BthΔtstP strain increased 58% to 144.7 ± 2.3 mg/L and 132.0% to
14.6 ± 0.5 mg/L, respectively, and the titer of TST-D produced by
BthΔtstR strain increased more than 7-fold to 53.2 ± 12.1 mg/L, all
compared to the titers produced by BthWT strain. Meanwhile, de-
letion of tstP abolished the production of FR and deletion of tstR
abolished the production of both TST-A and FR (Fig. 2).

Time-course monitoring of the production of TST-A and TST-D
by BthΔtstP strain during pilot scale fed-batch fermentation dem-
onstrated that both compounds reached their highest titers
(181.9 mg/L for TST-A and 19.3 mg/L for TST-D) at 96 h, after which
the titers declined (Fig. 3).

3.3. Recovery, isolation and purification of TST-A and TST-D

Totally, 236 g of crude extract containing an estimated 11.7 g of
TST-A and 1.0 g of TST-D was obtained from about 90 L of fed-
batch fermentation broth of BthΔtstP. A quantitative comparison

between the compound titers in the fermentation broth har-
vested at 120 h (titers 129.6 mg/L for TST-A and 11.4 mg/L for TST-
D) and after one round of 2% HP-20 resin absorption in the spent
broth indicated that at least 96% of TST-A and 98% of TST-D
were recovered by HP-20 absorption (Fig. S18). After one round of
low pressure silica gel column separation, two rounds of flash

Fig. 2. Detection (A) and quantification of the titers (B) of TST-A, TST-D and FR in
the fermentation broths of BthWT, BthΔtstP and BthΔtstR strains with LC–MS.

Fig. 3. Time-course monitoring of the production titers of TST-A and TST-D during
pilot scale fed-batch fermentation.
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chromatography separation and one round of preparative HPLC,
714 mg of TST-A with greater than 98.5% purity was obtained
(Figs. S19–S22), reflecting an overall 6% recovery rate for TST-A from
the fermentation broth. By using a similar purification protocol,
61.5 mg of TST-D was purified from 54 L of BthΔtstR fermentation
in flasks, reflection a very low recovery rate of 2% (Figs. S23 and S24),
mainly due to the interference of FK228, a known compound co-
produced by the MSMB43 strains23 and having a similar retention
time with that of TST-D.

3.4. TST-D is less cytotoxic but more stable than FR or TST-A

In vitro assay showed that TST-D possesses potent antiproliferative
activities with IC50 values in the single nM range, yet it is a weaker
compound compared to FR or TST-A (Table 2; Fig. S25). Interest-
ingly, TST-D demonstrated a half-life in phosphate buffer (pH 7.4)
at 37 °C greater than 202 h, significantly longer than that of FR
(~7.8 h) (Fig. 4) or TST-A (~78 h).9

4. Discussion

Pre-mRNA splicing inhibitors have emerged as a promising class
of anticancer drug candidates.24 However, the development of FR,
a prototypic compound of splicing inhibitors, has suffered a setback
due to its instability as well as toxicity.15 TST-A, a natural analog of

FR discovered by our group, exhibited comparable activity as FR but
much greater stability than FR.9 Therefore, we have been engaging
TST-A in translational research as a cancer drug candidate. This
current work was designed to solve the supply issue of TST-A.

During the course of this research, TST-D was discovered as the
direct precursor of TST-A and was shown to have even greater sta-
bility than TST-A. We also observed several physicochemical factors
that affect the production and/or purification of TST-A and/or TST-
D, and learned valuable lessons. First, in the presence of high
concentrations of sodium chloride in a fermentation medium (such
as M8medium used previously9), significant portion of the epoxide-
containing TST-A is spontaneously converted to the chlorohydrin-
containing TST-B at ambient temperature, confirming an independent
assessment.8 We learned to omit sodium chloride in the fermen-
tation medium (i.e. 2S4G medium17) and from reagents or solvents
used the downstream purification steps for TST-A. Second, TST-A
appeared unstable in the crude extract if let unprocessed at room
temperature for a period of days. Empirically we found that TST-A
can be stabilized in the crude extract by mixing with silica gel im-
mediately after having been concentrated with a rotary evaporator.
Third, formic acid (0.1%, v/v) in chromatographic solvents is nec-
essary for effective separation of TST-A in ODS columns. Fourth, as
noted above, MSMB43 strains also produce high levels of FK228,23

and TST-D and FK228 showed similar retention times and overlap-
ping peaks in ODS chromatography, which hampered the separation
of TST-D from FK228 and results in a very low recovery rate of TST-
D. Fortunately, FK228 can be crystallized from the semi-purified FPLC
fractions. We learned to insert a crystallization step to effectively
remove the majority of FK228 from the semi-purified TST-D frac-
tions prior to ODS column HPLC separation (Fig. S3). Lastly, final
concentrating of large volume of preparative HPLC fractions con-
taining purified TST-A or TST-D in acetonitrile–water should be
achieved through a short period of rotary evaporation at 35 °C to
remove acetonitrile followed by lyophilization to remove water
completely.

Considering that both TST-A and TST-D contain a stabilizing C17-
carboxylic acid group, that a C4-hydroxyl group is the only difference
between TST-A and TST-D, and that a C3-epoxide group is known
to be critical for bioactivity9 and is present in all three compounds
FR, TST-A and TST-D (Fig. 1), the observed results suggest a bipolar
contribution of the C4-hydroxyl group to the structure–activity re-
lationship of those compounds. On the one hand, this C4-hydroxyl
group appeared to synergize with the C3-epoxide group in FR and
TST-A for their superb antiproliferative activities; on the other hand,
this C4-hydroxyl group is also a labile factor for FR and TST-A.

In conclusion, we provided a successful scale-up production
method for the preparation of adequate quantity of TST-A and TST-D
for translational studies, employing engineered strains of
B. thailandensis MSMB43 and a pilot-scale fed-batch fermentation
system. We also observed that TST-D is more stable than TST-A in
a physiologically relevant phosphate buffer but is less potent than
TST-A against several cancer cell lines tested.
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Table 2
A comparison of antiproliferative activities of TST-D, FR and TST-A.

Compound IC50* (nM)

DU-145 NCI-H232A MDA-MB-231 SKOV-3

Thailanstatin D 6.35 ± 1.10 7.56 ± 0.57 9.93 ± 0.99 7.43 ± 0.99
FR901464 0.68 ± 0.10 0.61 ± 0.07 0.84 ± 0.07 0.83 ± 0.09
Thailanstatin A** 1.11 ± 0.02 2.26 ± 0.17 2.58 ± 0.11 2.69 ± 0.37

* IC50, half-maximal growth inhibition concentration provided as the average of
triplicate well results with standard deviation.
** Historical data from our previous publication.9

Fig. 4. Stability of TST-D and FR in a phosphate buffer.
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