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Epidemiologists and public health practitioners are some-

what wary of genetics, and for good reason. The historical

catch phrases ‘nature versus nurture’, or ‘genes versus en-

vironment’, have created a culture clash. These simplistic

views are built around an inherent assumption of genetic

determinism, and the belief that the causes of diseases can

be partitioned into two or three groups: genetic, environ-

mental and perhaps ‘stochastic’1 (which, to my mind, can’t

be genetic and just represents lack of knowledge about the

environment). When it comes to public or population

health, this thinking hasn’t translated into anything useful

except fuel for debates.

Heritability

For a continuous trait, the concept of ‘heritability’—or

more specifically ‘genetic variance’—was, in effect, defined

by Ronald Aylmer Fisher while in his 20s in a seminal

paper published nearly a century ago.2 As well as reconcil-

ing Mendelian inheritance for categorical traits with causes

of variation across a fixed population for continuous traits,

Fisher made several novel statistical advances in regression

and analysis of variance. He also provided an elegant dem-

onstration that height is highly heritable, in that it had a

very large component of additive genetic variance in pro-

portion to total cross-sectional variance for a given

population.

But cause of variation is not the same as cause per se.

For example, there have been clear increases in average

height across recent generations around the world, espe-

cially in rapidly developing countries, which reflect

changes in (early life) environment, not genes. Fisher3 was

dismissive of heritability, because the information about

genetic variance was ‘largely jettisoned’ when ‘only

reported as a ratio to this hotch-potch of a denominator’

(the total variance), which depends on the population in

question, let alone how one models the mean.4

So, whereas knowing which animal and plant character-

istics have high heritability informs breeding within a fixed

environment, it doesn’t necessarily have utility for public

health. On the other hand, finding that a trait has little or

no (genetic) heritability, despite being correlated in rela-

tives, does direct public health thinking to focus on envir-

onmental factors shared by relatives (see Hopper and

Mathews5).

When it comes to heritability of disease (a binary trait),

the concept is flawed.6 It is not the ‘proportion of disease

caused by genetic factors’, as even prominent geneticists as-

sume.7 Instead, it involves an imaginary concept (liability),

and the estimate of heritability depends on a specific model

of risk (normal distribution; all-or-nothing risk about a

threshold) for which distributional and risk assumptions

can never be tested, and different assumptions lead to dif-

ferent estimates6—hardly a solid basis for a scientific

paradigm.

Heritability estimates tell us nothing about the limita-

tions of the environment on influencing a trait, as exempli-

fied in the height example above. Heritability estimates

also do not tell us the limitation of genetics in influencing a

trait, which is naturally given by the disease distribution

for monozygotic (genetically identical) twin pairs: see

below.

As for ‘missing heritability’,8 it is not clear from the lit-

erature whether the denominator is based on the familial

aggregation for genetically identical pairs or on some other

estimate of what can be achieved by genetics. And the role

of non-genetic factors in explaining familial aggregation9

is a topic rarely broached in the genetics literature. Perhaps
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the quest to discover ‘missing heritability’ would be more

fruitful if it was broadened to finding ‘missing familiality’.

Effects of the environment and genetic
risk gradient

On the other hand, I argue that genetics provides a tremen-

dously important source of information that can be used

by epidemiologists and others to improve the health of the

population. Phenylketonuria is a poster-book example; a

heel prick taken at birth can be used to detect a genetic dis-

order that can be readily treated by diet.10

From the epidemiological and public health perspective,

a key issue is how well a risk factor differentiates cases

from controls within a given population. This can be deter-

mined from the risk gradient, expressed for example in

terms of the change in odds per standard deviation of the

risk factor, adjusted for age and other risk factors, in the

population about which inference is being made

(OPERA).11

The maximum risk gradient that can be caused by gen-

etic factors can be inferred from the disease distribution of

genetically identical twin pairs. Importantly, and not ne-

cessarily well recognized, this underlying risk gradient

must be substantial even for diseases for which the familial

risk (increased risk of having the disease if you have an af-

fected relative) would naively be interpreted as modest.9,12

For example, a 4-fold increased risk for the co-twin of an

affected genetically identical twin, or a 2-fold familial risk

ratio for having disease in a first-degree relative (typical of

many common diseases), imply that the interquartile risk

ratio for the underlying familial causes must be 20-fold or

more (equivalent to an odds ratio per standard deviation

of> 3 and an area under the receiver operator curve of

� 0.8). Finding all the familial causes, therefore, would

have a profound influence on risk prediction.

The inference above is based on the multiplicative

model that has been the basis of most epidemiological risk

analyses, and this model now appears to give a good ap-

proximation to the way known independent genetic

markers across the genome are associated with disease (see

e.g. Mavaddat et al.13).

One consequence of the multiplicative model is that the

risk distribution is log normal and therefore has a long tail.

The risk for the vast majority of people is well below the

population ‘average’. The risk distribution for a group of

people selected for being at increased risk based on one or

more risk factors is not the same as the risk for the popula-

tion shifted to the right, let alone (log) normally distrib-

uted. Instead, it is more like a uniform distribution with

wide variance, as illustrated in Figure 1 for breast cancer.

Therefore, a factor that changes risk by a few-fold has

little relevance for the vast majority of people. But if its

risk gradient is independent of genetic/familial risk, that

factor could be associated with a substantial change in ab-

solute risk for a non-trivial proportion.

Suppose a risk factor has a risk gradient of OPERA ¼
1.5, as in breast cancer is the case for: (i) the latest single

nucleotide polymorphism (SNP)-based genetic risk scores;

(ii) mammographic density measures of risk;14 and (iii) risk

scores based on multigenerational family history;15 see

Figure 2. As a group, women in the top 25% of the risk

distribution for these factors have about twice the average

incidence for the population. Their risk distribution is

shown in Figure 1 for a hazard ratio (HR) of 2. These risk

factors are at most weakly correlated with one another.16

Therefore, women in the top 25% of the risk distribution

for two of these factors could have about four times aver-

age incidence (see Figure 1 for HR¼ 4). Those in the top

25% of all three risk factor distributions could have about

eight times average incidence, similar to carriers of BRCA1

and BRCA2 mutations (see Figure 1 for HR¼ 8). About

1.5% of the population will be in the top 25% of all three

factors, whereas only 0.7% of the population are thought

to be mutation carriers.17

Therefore, judicious use of mammographic images and

multigenerational family history data followed by rela-

tively cheap targeted testing for a SNP-based risk score

could identify a larger group of women at the same high

risk as carriers much more readily than would gene panel

Figure 1. Distribution of lifetime risk of breast cancer for women with

different hazard ratios (HRs) compared with the population, derived

under a mixed major polygenic risk model, as described in Dowty

et al.18 for breast cancer with a familial relative risk (for first-degree rela-

tives) of 2.
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testing even if extended to the population. Just as import-

antly for screening, about 40% of women who are not in

the top 25% for any of these factors might be at half the

population risk, and most will be at very small risk (see

Figure 1 for HR¼ 0.5)

But here’s the rub. Knowing that you are at high risk

for a disease is not necessarily helpful unless there are

known, proven and acceptable ways of mitigating that

risk. People at different levels of genetic risk might differ in

susceptibility to a given risk factor, or even be susceptible

to different risk factors. For example, a rising incidence

and younger age at diagnosis of type 1 diabetes in recent

decades has been observed for people with lower risk HLA

class II genotypes, but not for those with the highest risk

genotype for whom the incidence and age at diagnosis has

been constant.18 There is indirect evidence that, for carriers

of mutations in the DNA mismatch repair genes (Lynch

syndrome), the effect of familial modifiers on their risk of

colorectal cancer is more important than it is for the gen-

eral population18 and could involve different genes.

Therefore, considering gene–gene and gene–environ-

ment interactions is important. If gene–environment inter-

actions on the multiplicative scale do not exist, they will

exist on the additive scale and vice versa, and these two

scenarios have different implications. Epidemiological

studies need also to be conducted on people at high or

increased genetic risk, as well as for people across the full

spectrum of genetic risk.19,20 Genetics could play a

substantive role in precision prevention and screening if it

is incorporated with other risk factors. In this and many

other ways, epidemiologists should own genetics and use it

to serve public health.
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