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ABSTRACT

Riboswitches are shape-changing regulatory RNAs
that bind chemicals and regulate gene expres-
sion, directly coupling sensing to cellular actua-
tion. However, it remains unclear how their se-
quence controls the physics of riboswitch switch-
ing and activation, particularly when changing the
ligand-binding aptamer domain. We report the devel-
opment of a statistical thermodynamic model that
predicts the sequence-structure-function relation-
ship for translation-regulating riboswitches that ac-
tivate gene expression, characterized inside cells
and within cell-free transcription–translation assays.
Using the model, we carried out automated com-
putational design of 62 synthetic riboswitches that
used six different RNA aptamers to sense diverse
chemicals (theophylline, tetramethylrosamine, fluo-
ride, dopamine, thyroxine, 2,4-dinitrotoluene) and ac-
tivated gene expression by up to 383-fold. The model
explains how aptamer structure, ligand affinity,
switching free energy and macromolecular crowding
collectively control riboswitch activation. Our model-
based approach for engineering riboswitches quanti-
tatively confirms several physical mechanisms gov-
erning ligand-induced RNA shape-change and en-
ables the development of cell-free and bacterial sen-
sors for diverse applications.

INTRODUCTION

Riboswitches are RNA-based sensors that use an aptamer
domain to bind a chemical ligand, change shape and al-
ter gene expression level; typically, by modulating trans-
lation initiation or transcriptional termination of mRNAs
(1–3). While natural riboswitches have evolved as exquisite
sensors, it remains difficult to engineer non-natural ri-
boswitches that utilize different aptamers to detect and re-
spond to ligands of interest, even though their application
as biosensors or medical diagnostics would be transforma-
tive (4,5). To date, hundreds of aptamers have been dis-
covered, or generated by SELEX, to bind specifically to
cellular metabolites (cofactors, nucleotides, amino acids),
chemicals of interest (antibiotics, explosives, pesticides, tox-
ins) and proteins indicative of infection or disease (HIV
envelope protein, human RUNX1 tumor suppressor) (6–
11). However, most aptamers have not been converted into
functional riboswitches as existing approaches have relied
on qualitative design by experts, combinatorial library gen-
eration and high-throughput screening, which have lim-
ited the breadth of riboswitch-based applications (12–20).
In particular, high-throughput screening for functional ri-
boswitches cannot be carried out when using ligands that
are cytotoxic, insoluble, highly reactive or impermeable to
cell membranes. Successfully implementing these ‘second
and third steps’ in a reliable riboswitch engineering pipeline
have stymied the community for a decade (5).

Computational RNA design offers a scalable and re-
peatable approach to solve these challenges. For exam-
ple, small RNAs have been rationally engineered to con-
trol gene expression through quantification of their RNA-
RNA interactions and activation barriers (21–24). Com-
putational design approaches have been developed for un-
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derstanding the function of ligand-binding ribozymes (25),
translation-regulating riboswitches (26) and termination-
regulating riboswitches (27). Using computational design,
specific theophylline-binding riboswitches have been en-
gineered to regulate transcriptional termination (28) and
translation initiation (26). Such RNA devices, including ri-
boswitches, ribozymes and aptazymes, can be modeled and
readily combined to tune protein expression levels, engineer
signal-responsive genetic circuits and dynamically control
metabolic pathways (29). However, a model has yet to be
developed that can predict a riboswitch’s function from its
sequence, using in principle any RNA aptamer. Creating
such a model from thermodynamic first principles would
critically test our understanding of the physics of ligand-
induced RNA conformational changes, while enabling the
design and optimization of a toolbox of riboswitch-based
RNA devices that can sense different ligands.

We therefore created a sequence-to-function physics-
based model and automated optimization algorithm
that converts RNA aptamers into synthetic translation-
regulating riboswitches. To do this, we leveraged a
recently developed statistical thermodynamic model of
ribosome–RNA interactions that can accurately predict
the translation initiation rates of mono-cistronic and
multi-cistronic bacterial mRNAs (30–34). We validated
our computational approach by characterizing 77 synthetic
riboswitches with highly diverse RNA aptamers, sequences
and structures, performing both in vivo and in vitro cell-free
measurements to quantify their function. To illustrate the
versatility of our approach, we selected RNA aptamers that
bind specifically to both ideal and non-ideal ligands, includ-
ing theophylline, tetramethylrosamine (TMR), fluoride,
dopamine, thyroxine and 2,4-dinitrotoluene (DNT). Our
automated approach generated functional riboswitches
with high activation ratios (ARs), up to 383-fold. The
validated model provides a comprehensive, quantitative
and falsifiable physical mechanism for riboswitch function,
including how changing the aptamer’s structure and affin-
ity, surrounding mRNA sequence, switching free energy,
ligand and mRNA concentrations, and macromolecular
crowding collectively control riboswitch activation.

MATERIALS AND METHODS

Strains and plasmids

All riboswitch and promoter sequences are listed in Sup-
plementary Data. Theophylline, fluoride and DNT ri-
boswitches were constructed and inserted into an mRFP1
fluorescent protein expression vector, derived from plasmid
pFTV1 (ColE1 origin, CmR) (31). Three theophylline ri-
boswitches (Theo-40, Theo-41 and Theo-45) also controlled
the translation of a fusion mRFP1 protein. To create the fu-
sion protein, four or five non-rare codons were introduced
between the start codon and SacI restriction site within
mRFP1 coding section. All the riboswitches were con-
structed using standard molecular cloning. Briefly, DNA
fragments were computationally designed, synthesized and
assembled using either annealing of oligonucleotides, poly-
merase chain reaction (PCR) assembly of oligonucleotides,
or PCR amplification of gBLOCK DNA fragments (In-
tegrated DNA Technologies). DNA fragments were then

digested by XbaI and SacI restriction enzymes, followed
by ligation with digested plasmid, transformation, plat-
ing on selective media and verification of purified plasmid
by sequencing. Similarly, promoter replacements were per-
formed by annealing designed pairs of oligonucleotides, fol-
lowed by digestion with BamHI/XbaI restriction enzymes,
ligation, transformation, selective plating and verification
by sequencing.

The promoters AEB-3, J23100 and LmrA were selected
or designed to significantly vary riboswitch transcription
rates (Supplementary Figure S17). The promoter AEB-3 is
a result of mutating the −10 and −35 hexamers of promoter
J23100, resulting in 10-fold lower transcription rate. The
promoter LmrA is a near-consensus promoter with a 5-fold
higher transcription rate. Unless noted otherwise in the text,
all theophylline and fluoride riboswitches use the J23100
promoter, while all DNT riboswitches used the AEB-3 pro-
moter.

Theophylline and TMR riboswitches were then con-
structed in plasmids expressing the luciferase reporter pro-
tein using standard molecular cloning. The plasmid is de-
rived from the pBESTluc vector (Promega) initially using
a pUC19 origin, where the riboswitch-reporter mRNA is
transcribed by a Ptac promoter. As described in the text,
plasmid origins were replaced with either pBAC, p15A or
pFTV1 by PCR amplifying the expression cassette (pro-
moter to transcriptional terminator) and digesting it with
BamHI and SpeI, followed by ligation to the correspond-
ing digested vectors, transformation, selective plating and
verification by sequencing.

Dopamine and thyroxine riboswitches were constructed
in pFTV1-derived plasmids containing the luciferase ex-
pression cassette, where pFTV1 was previously modified to
insert AatII and HindIII restriction sites after the Ptac pro-
moter and after the start codon, respectively. Riboswitch-
encoding DNA fragments were PCR-amplified from de-
signed gBLOCKs, followed by digestion with AatII and
HindIII, ligation to digested plasmids, transformation, se-
lective plating and verification by sequencing.

Ligand, media and buffer conditions

Theophylline, TMR, sodium fluoride, dopamine, thyroxine,
2,4-DNT, DMSO, ascorbic acid and sodium chloride were
purchased from Sigma-Aldrich. Luria broth Miller (LB)
media was purchased from VWR. All ligand conditions are
provided in the Supplementary Data.

DNT has a solubility of 1.48 mM (270 �g/ml) in water.
To increase DNT solubility, 1% (v/v) DMSO was added
to the media when characterizing DNT riboswitches and
no-aptamer controls using the 0 and 1 mM DNT condi-
tions. Dopamine is enzymatically oxidized by Escherichia
coli DH10B cells, and spontaneously oxidized by molecu-
lar oxygen. To minimize dopamine oxidation, 5 mM ascor-
bic acid was added to cell-free transcription–translation as-
says to characterize dopamine riboswitches and no-aptamer
controls using the 0 and 1 mM dopamine conditions. Thy-
roxine has a solubility of 135 nM (0.105 �g/ml) in neu-
tral water. To increase thyroxine solubility, 10 mM NaOH
was added to create a 1 mM thyroxine working stock so-
lution, followed by adding 2 �l of stock solution to 11 �l
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cell-free transcription–translation assays (154 �M thyrox-
ine). A total of 100 mM NaCl was then added to cell-free
transcription–translation assays to maintain physiological
RNA folding. Characterization of thyroxine riboswitches
and no-aptamer controls took place in the same salt and
pH conditions, using either 0 and 154 �M thyroxine.

Growth, fluorescence and luminescence measurements

All in vivo fluorescence measurements were carried out us-
ing the strain E. coli DH10B during long-time cultures
that maintain cells in the exponential growth phase. Cells
harboring cloned plasmids expressing the mRFP1 reporter
were grown overnight in 700 �l LB media and 50 �g/ml
Cm antibiotic in a 96 deep-well plate at 37◦C and 200 rpm
orbital shaking. Cultures were then diluted to an OD600 of
0.01 into 200 �l LB media, 50 ug/ml Cm and pre-defined
concentrations of ligand and buffer solution (see Supple-
mentary Data for all ligand concentrations). OD600 and flu-
orescence values were recorded by a M1000 spectropho-
tometer (TECAN) every 10 min until the OD600 reached
about 0.15. Cells were then diluted to 0.01 into fresh me-
dia with the same composition, and grown until reaching
mid-exponential phase. A third dilution was carried out in
the same way. Time course fluorescence measurements per
cell (FLPC) were analyzed by evaluating the equation:

FLPC = F − FM

OD600 − OD600, M
− FNC − FM

OD600, NC − OD600, M
(1)

where F is the fluorescence of cells, FM is the fluorescence
of media, FNC is the auto-fluorescence of non-transformed
cells, OD600 is the optical density of cells and OD600,M is the
optimal density of media. Supplementary Figure S8 shows
examples of FLPC time series data.

Single-cell fluorescence levels were recorded by a Fortessa
flow cytometer (BD Biosciences) and used to calculate
ARs. During growth, and before each dilution, 10 �l sam-
ples were taken and added to 200 �l phosphate buffered
saline with 2 mM kanamycin antibiotic for measurement.
All distributions were unimodal. Auto-fluorescences of
non-transformed cells were subtracted. Averages and stan-
dard deviations calculated from at least two independent
measurements. The number of measurements for each ri-
boswitch are listed in Supplementary Data.

The in vivo luminescence measurements for theophylline
and TMR riboswitches were conducted by transforming
E. coli DH10B using plasmids expressing the luciferase re-
porter and measuring luminescence in a Biotek Synergy HT
plate reader, as described in Ref 14. Briefly, cells were di-
luted 1:500 in fresh LB/AMP from an overnight culture
and grown to mid-exponential phase. Cultures were then
prepared for measurement using dry ice and 1× CCLR
(Promega) following the manufacturer’s procedure. The lu-
minescence data are normalized relative to OD600 values at
the time of harvesting.

Cell-free transcription–translation assays and luminescence
measurements

Cell-free transcription–translation assays were conducted
using the S30 E. coli extract (Promega, L1020). TMR ri-

boswitches were characterized by adding 20 ng/�l plasmid
DNA to cell-free transcription–translation assays and in-
cubating at 37◦C for 30 min. Quenching was carried out
by placing the reaction on ice and adding dilution buffer.
To measure luciferase activity, equal volumes of cell-free
product and luciferase reagent (Promega) were combined in
black, opaque 96-well plates. Luminescence was recorded
using a Biotek Synergy HT plate reader with a sensitivity
of 150, and divided by amount of added plasmid. The same
procedure was applied when adding increasing plasmid con-
centrations for the three TMR riboswitches. Dopamine and
thyroxine riboswitches were characterized similarly, except
using white, opaque 96-well plates, a 60-min incubation pe-
riod and a SpectraMax M5 plate reader with an integration
time of 1500 ms.

Transcription–translation decoupling experiment for TMR
riboswitches

Decoupling experiments were conducted as previously de-
scribed (14). Briefly, 40 ng/�l of DNA template was used,
as for a normal cell-free reaction. Amino acids were omit-
ted during the initial 5 min incubation. Rifampicin was then
added at 250 �g/ml final concentration in the reaction to
stop transcription. After a 1 min incubation, amino acids
were added to start translation. A total of 40 �M TMR was
added at time 0 or 6 min. The mixtures were incubated for
up to 10 min after translation has started before quenching
and measuring luminescence.

RESULTS

A biophysical model of translation-regulating riboswitches

The biophysical model considers a riboswitch as a long
mRNA whose RNA–RNA, RNA–ribosome and RNA–
ligand interactions control its translation initiation rate, and
thereby the output protein’s expression level (Figure 1A).
As a single mRNA is transcribed, its folding trajectory is
dictated by contact with ligand (Figure 1B). In the absence
of ligand, the mRNA freely folds toward its minimum free
energy structure (state 1) and binds to the ribosome with
free energy �Gtotal,OFF. We calculate the ribosome’s bind-
ing free energy to the mRNA in state 1 (�Gtotal,OFF) using
the RBS Calculator v2.0 model (31,32) (Figure 2A), which
includes the energy needed to unfold inhibitory mRNA
structures (�GmRNA); the energy released when a canoni-
cal or non-canonical Shine-Dalgarno (SD) sequence binds
to the last 9 nt of the 16S rRNA (�GmRNA-rRNA); an ener-
getic penalty when the ribosome is stretched or compressed,
due to a non-optimal distance between the SD and start
codon (�Gspacing); the energy released when the tRNAfMet

binds to the start codon (�Gstart); and an energetic penalty
controlled by the single-stranded surface area of upstream
standby sites (�Gstandby) (32). RNA–RNA interactions are
calculated using established RNA free energy models that
account for both secondary structures (35) and pseudo-
knots (36,37).

In the absence of ligand, the mRNA’s transla-
tion initiation rate is predicted according to rOFF =
exp(−β�Gtotal,OFF) on a 100 000-fold proportional scale.
When the ligand is available, a newly transcribed mRNA
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Figure 1. A biophysical model of riboswitch regulation. (A) A biophysical model was developed to predict the function of translation-regulating ri-
boswitches. The model uses the riboswitch’s mRNA sequence, the aptamer’s ligand-bound structure, the concentrations of the mRNA and ligand, and
their molar volumes to calculate the riboswitch’s translation initiation rates in the ON and OFF states (rON, rOFF) as well as its maximum, concentration-
limited and actual activation ratios (ARmax, ARconc, ARactual). (B) A reaction coordinate diagram showing the states, energies, and transition paths during
mRNA co-transcriptional folding, ligand-binding and translation initiation. Without ligand, the ribosome binds to a folded mRNA (state 1) with free
energy �Gtotal,OFF. When excess ligand is present, the co-transcriptional folding of mRNA and ligand through paths a and b ends with a mRNA–ligand
complex (state 3) that binds the ribosome with free energy �Gtotal,ON. The stability of the mRNA–ligand complex is controlled by the switching free energy
(��GmRNA + �Gligand).

can rapidly bind to it via co-transcriptional folding (path
a), reaching an intermediate structure that contains the
ligand-bound aptamer (state 2), and continuing to fold
(path b) toward an alternate minimum free energy structure
(state 3) that now can bind more tightly to the ribosome
with free energy �Gtotal,ON (Figure 1B). In the mRNA’s
state 3, the RNA aptamer’s structure is now locked into a
ligand-bound state, while the remaining portions of mRNA
are allowed to freely fold toward their minimum free energy
structure (Figure 2B).

We then use the same free energy model to calculate the ri-
bosome’s binding free energy to mRNA’s state 3, �Gtotal,ON
and its translation initiation rate rON = exp(−β�Gtotal,ON),
where the differences between �Gtotal,ON and �Gtotal,OFF
arise from ligand-induced changes in �GmRNA–rRNA,
�GmRNA and �Gstandby. As the model’s first generalized
sequence-to-function prediction, the maximum increase in
a riboswitch’s translation initiation rate (maximum acti-
vation ratio, ARmax) is determined by the difference in
the ribosome’s binding free energy, according to ARmax
= rON/rOFF = exp(−β [�Gtotal,ON − �Gtotal,OFF]). The
maximum possible activation is only obtained when co-
transcriptional folding is present, when excess amounts of
ligand are added and when the mRNA–ligand complex
(state 3) is stable.

Initial validation of the biophysical model

The theophylline RNA aptamer has been frequently uti-
lized to engineer riboswitches, as theophylline binds tightly
to its aptamer and can be added to excess without toxicity
(3,26,29). We therefore initially tested the model’s predic-
tions for ARmax by characterizing 15 previously designed

theophylline-binding riboswitch variants that regulate lu-
ciferase expression (14) (Figure 2C), measuring their steady-
state in vivo luminescences after adding either 0 or 2 mM
theophylline. The calculated ribosome binding free energies,
�Gtotal,OFF and �Gtotal,ON, correctly predicted the changes
in translation rate and luminescence (R2 = 0.68, P = 2 ×
10−8), according to the expected Boltzmann log-linear rela-
tionship (Figure 2D). The apparent slope (β = 0.42 ± 0.03
mol/kcal) is similar to our previous translation rate mea-
surements (31,32). The riboswitches’ ARs varied from 1.9
to 326.6-fold and were well-predicted by the model’s calcu-
lated ARmax (R2 = 0.68, P = 1.5 × 10−4) (Figure 2E). These
results suggested that the model’s thermodynamic calcula-
tions can adequately predict riboswitch activation when a
mRNA stably binds to a ligand, changes its structure and
thereby alters the strengths of the ribosome–mRNA inter-
actions controlling translation rate. We then expanded the
biophysical model to predict riboswitch activation when the
ligand concentration is limiting, when the mRNA–ligand
complex is not stable, and when macromolecular crowding
causes the amount of free volume to be limiting.

Riboswitch stability and concentration-dependence

We determine how changing ligand and mRNA concen-
trations affect riboswitch activation by calculating the en-
semble partitioning of riboswitch mRNA into states 1 and
3 (shown in Figure 1B), within a water-filled, constant-
volume system where the total amount of available vol-
ume is low to mimic the crowded environment found in-
side cells. The concentrations of mRNA in states 1 and 3
(CmRNA,1 and CmRNA,3) are solved by minimizing the sys-
tem’s total free energy, constrained by the energies of forma-
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Figure 2. Biophysical model calculations. (A) Without ligand, when a ribosome binds to a folded mRNA, it undergoes several structural changes with
corresponding free energy changes in the mRNA–ribosome interactions. Here, the ribosome binds poorly to the mRNA’s initial state because it has an
inaccessible standby site and sequestered (brown) Shine-Dalgarno (SD) sequence. In the final mRNA state, the ribosome’s 16S rRNA and tRNAfMet

hybridize to the SD sequence and start codon, respectively, with significant refolding of the mRNA. The model uses the mRNA sequence to calculate the
total free energy change. (B) When the ligand is present, the same free energy calculation is performed, while constraining the (blue) aptamer sequence
to its ligand-bound structure. (C) Fifteen synthetic theophylline riboswitches from Ref. (14) were characterized to test the model’s ARmax prediction. (D)
Predicted �Gtotal values in the (white circles) OFF and (orange circles) ON states are well-correlated to the measured luminescences according to the
expected log-linear relationship (R2 = 0.68, P = 2 × 10−8). (E) The calculated free energy differences ��Gtotal are well-correlated to the measured ARs
according to the expected log-linear relationship (R2 = 0.68, P = 1.5 × 10−4). Each data point and bar represents the mean and s.d. of three measurements.

tion for states 1 and 3, the total mRNA (CmRNA,total), and
the total ligand concentration (Cligand,total) as well as their
molar volumes (VmRNA and Vligand) (Supplementary Figure
S1 and Supplementary Information). At a specified total
mRNA and ligand concentration, the riboswitch’s AR will
be ARconc = (CmRNA,1/CmRNA,total) + (CmRNA,3/CmRNA,total)
ARmax.

By converting concentrations to volume fractions and
equivalently substituting (Cligand,total − Cligand,free) for
CmRNA,3, we rearranged this equation to explicitly show
how the volume fractions and molar volumes of the mRNA
and ligand control riboswitch activation (Supplementary
Information):

ARconc= vmRNA, 1

vmRNA, total
+ VmRNA

Vligand

[
vligand, total−vligand, free

vmRNA, total

]
ARmax (2)
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We next quantify the switching free energy to calculate a
riboswitch’s AR when its mRNA–ligand complex is not sta-
ble. We first consider an alternative structure (state 4) that
is not bound by ligand, but is otherwise structurally iden-
tical to state 3 (Figure 1B). The mRNA in state 4 is not
stable because it has a higher free energy than the mRNA
in state 1. The difference in free energy between states 1
and 4 is always positive (��GmRNA > 0). Therefore, for
the mRNA’s ligand-bound state 3 to become thermodynam-
ically favorable, the ligand must bind sufficiently tight to
stabilize the mRNA–ligand complex; the switching free en-
ergy must be negative (��GmRNA + �Gligand < 0). How-
ever, if the switching free energy is positive, then the ligand
could disassociate from the mRNA–ligand complex prior
to its degradation (path c), leading to state 1, and it will be
unfavorable for the ligand to bind again without the pres-
ence of co-transcriptional folding (paths d and e). We re-
fer to riboswitches with positive (negative) switching free
energies as metastable (stable). Assuming equilibrium be-
tween mRNA states 1 and 3, the fraction of mRNA that
remains stably bound to the ligand can be readily derived
(Supplementary Information), leading us to the following
sequence-to-function expression for the riboswitch’s actual
activation ratio, ARactual, whenever the switching free en-
ergy (��GmRNA + �Gligand) is positive:

ARactual =1 + exp (−β (��GmRNA+�G ligand))
1+exp (−β (��GmRNA+�G ligand)) (ARconc − 1) (3)

Altogether, the inputs into the biophysical model are the
riboswitch’s mRNA sequence, the structure of the RNA
aptamer’s ligand-bound state, the protein coding sequence,
and the concentrations of the mRNA and ligand. There are
no additional free or fit parameters. The model first calcu-
lates the translation initiation rates of a riboswitch in its ON
and OFF states, rON and rOFF, according to the ribosome’s
binding free energies in the ligand-bound (�Gtotal,ON) and
ligand-free state (�Gtotal,OFF). The model then uses Equa-
tion (2) to decrease rON according to the specified mRNA
and ligand concentrations. The riboswitches’ switching free
energy is then calculated and, if it’s positive, Equation (3)
is applied to further reduce rON to account for metastabil-
ity of the mRNA–ligand complex. The predicted AR is the
ratio between rON and rOFF. The model assumes that the
mRNA, ribosome and ligand reach chemical equilibrium
faster than the mRNA’s half-life, which requires two key
conditions: first, the ligand must rapidly bind to the mRNA,
for example, via co-transcriptional folding; and second, the
mRNA must rapidly, but reversibly, change shape from its
OFF to ON state after the ligand has bound. The model’s
accuracy also depends on the accuracy of the inputs; for ex-
ample, the RNA aptamer’s ligand-bound structure must be
correctly specified. In addition, the model does not account
for potential changes in mRNA stability, for example, when
the translation rate of the mRNA is so low that it becomes
a target for RNase activity.

Automated design of synthetic riboswitches

Using the complete model, we developed an automated
optimization algorithm to computationally convert any
RNA aptamer into a synthetic riboswitch. The inputs are

the RNA aptamer’s sequence, its ligand-bound structure
and the output protein’s coding sequence. The algorithm
then identifies an optimal pre-aptamer sequence and post-
aptamer sequence to create a non-natural riboswitch se-
quence (Figure 3A). Starting with a population of random-
ized pre- and post-aptamer sequences, the genetic algorithm
performs rounds of in silico random mutation, prediction,
selection and recombination to efficiently search for pre-
and post-aptamer sequences that maximize a selected objec-
tive function, such as maximizing ARactual, minimizing the
switching free energy or selecting specific translation rates
in the OFF and ON states (Supplementary Figure S2). The
computational search space contains about 1036 sequences,
which greatly surpasses the library generation and mea-
surement capacities of high-throughput approaches (Sup-
plementary Figure S3).

We then employed automated computational optimiza-
tion to design 52 synthetic riboswitches using three RNA
aptamers with the objective of testing the model’s ability
to correctly predict how different pre- and post-aptamer se-
quences controlled riboswitch function. Specifically, we se-
lected the theophylline TCT8–4 (38), TMR (39) and fluo-
ride 78-Psy(6) aptamers (Figure 3B), because their experi-
mentally measured ligand binding energies, ligand sizes and
ligand toxicities vary considerably (�Gligand = -9, −10.2
and -6 kcal/mol; Vligand/Vwater = 10, 20 and 1; Ctoxicity =
5 mM, 20 �M and 150 mM for theophylline, TMR and flu-
oride, respectively). Our choice of RNA aptamers provided
appropriate test cases for sensing ligands at low concentra-
tions (TMR) and sensing ligands that bind weakly to their
RNA aptamer (fluoride) together with a commonly engi-
neered RNA aptamer that serves as a baseline for compar-
isons (theophylline). The fluoride RNA aptamer also has
a highly pseudoknotted tertiary structure (40), creating a
more complex structural constraint. Initially, our optimiza-
tion algorithm’s objective function was tailored to design
both stable and metastable riboswitches by varying the tar-
geted switching free energies from −8.4 to 11.52 kcal/mol.
As a result, 37 of the designed riboswitches have positive
switching free energies (Supplementary Figure S4). The de-
signed riboswitches have dissimilar pre-aptamer and post-
aptamer sequences, which do not resemble any natural se-
quences or structures (sequence entropy 63%, Supplemen-
tary Figure S5). All riboswitch structures were also pre-
dicted to change significantly when the ligand is bound (ex-
amples shown in Supplementary Figures S6 and S7). Three
of the previously designed theophylline riboswitches also
have positive switching free energies.

Validating model-predicted requirements for riboswitch acti-
vation

To test the model’s predictions, we measured reporter ex-
pression levels in the riboswitches’ ON and OFF states
by using spectrophotometry and flow cytometry to record
mRFP1 fluorescence and luciferase luminescence levels,
with and without added ligand, inside E. coli DH10B
cells maintained in exponential growth for 12 h (‘Mate-
rials and Methods’ section and Supplementary Figure S8
for time series data). Either 2 mM theophylline, 20 �M
TMR or 150 mM fluoride were added throughout the long-
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Figure 3. Automated design of synthetic riboswitches. (A) An optimization algorithm converts RNA aptamers into synthetic riboswitch sequences through
rounds of mutation, prediction, selection and recombination. (B) The ligand-bound structures of the theophylline, TMR, fluoride, dopamine (dopa1.3/c.3),
thyroxine (ApT4-J-min) and 2,4-dinitrotoluene aptamers are shown (see also Supplementary Figure S16). Pseudoknotted base pairs are indicated by dotted
lines. Pre- and post-aptamer sequences varied after optimization. (C) The error in the model’s calculated ARconc is compared to the calculated switching free
energy, showing that the result of Equation 2 loses accuracy as the switching free energy grows. Riboswitches are colored according to their aptamer: (dark
blue) 12 designed theophylline riboswitches; (red) 12 theophylline riboswitches with mutated aptamer; (brown) 6 theophylline riboswitches with different
mRFP1 coding sequences; (green) 15 previously engineered theophylline riboswitches (14); (yellow) 12 designed fluoride riboswitches; (light blue) 10 TMR
riboswitches. The boxed outliers are riboswitches Theo-42 and Theo-44, suggesting a systematic malfunction in their function. (D) Model predictions using
Equation 3 (ARactual) are in good agreement with the measured ARs for 59–67 riboswitches (Spearman R = 0.69, P = 1.2 × 10−10, N = 67; Pearson R2 =
0.61, P = 2.6 × 10−13, N = 59). (Shaded blue) The model predicted the ARs of 37 riboswitches to within 2-fold. (E) The predicted translation initiation rates
in the riboswitches’ (white circles) OFF and (orange circle) ON states are compared to their measured fluorescence or luminescence levels (Spearman R =
0.68, P = 3.7 × 10−19, N = 134; Pearson R2 = 0.44, P = 4.3 × 10−18, N = 134). Each data point and bar represents the mean and s.d. of 2–4 measurements.

time cultures to measure the riboswitches’ ON state ex-
pression levels. We performed the same measurements on
a set of no-aptamer controls to measure the ligands’ non-
specific effects on reporter expression levels under identical
E. coli growth conditions. For example, 2 mM theophylline
and 150 mM fluoride both increased the no-aptamer con-
trol’s reporter expression by 1.4- and 1.3-fold, while 20
�M TMR decreased it by 2.6-fold. We removed these
non-specific effects by dividing the riboswitch’s measured
ON/OFF expression ratio by the no-aptamer control’s mea-
sured ON/OFF expression ratio, measured under identical
growth and ligand conditions. The resulting measurement
is the riboswitch’s specific AR. Altogether, we validated the
model’s predictions by performing these measurements on
67 riboswitches, including the 15 previously designed theo-
phylline riboswitches. All sequences, model calculations, ri-

boswitch measurements and no-aptamer control measure-
ments are provided in Supplementary Data.

We first evaluated the original biophysical model that
only accounts for the ligand-induced changes in mRNA–
ribosome interactions, using our formula for ARmax. We
found that a riboswitch must have a high model-calculated
ARmax for it to successfully activate translation in response
to ligand binding. For example, five of our characterized ri-
boswitches have ARmax <3.0; when they bind theophylline,
all five activate translation by 3-fold or less. However, by
itself, the model-calculated ARmax is not a quantitative pre-
dictor of a riboswitch’s AR as quantified by a log–log com-
parison across the 67 riboswitches (Pearson R2 = 0.002, P
= 0.71, N = 67) (Supplementary Figure S9). Designing a ri-
boswitch with a high model-calculated ARmax is necessary,
but not sufficient, for achieving high activation.
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Instead, we found that incorporating concentration-
dependence into the biophysical model enabled it to ac-
curately predict riboswitch activation, but only for stable
riboswitches (Figure 3C). Using the formula for ARconc
(Equation 2), 25 out of the 27 total riboswitches with nega-
tive switching free energies had well-predicted ARs with two
outliers (Supplementary Figure S10A) (Spearman R = 0.72,
P = 2.5 × 10−5, N = 27; Pearson R2 = 0.62, P = 3.5 × 10−6,
N = 25). The ARs of all 10 TMR riboswitches were well-
predicted, due to their high-affinity RNA aptamers and
modestly high structural free energy changes (��GmRNA
<8.4 kcal/mol) (Supplementary Figure S10A). In contrast,
without accounting for the instability of the mRNA–ligand
complex, the model-calculated ARconc could not predict the
ARs of the remaining 40 metastable riboswitches, which in-
cluded 28 theophylline riboswitches that undergo energeti-
cally costly switching (��GmRNA > 9 kcal/mol) and all 12
low-affinity fluoride-binding riboswitches (Spearman R =
0.27, P = 0.09, N = 40; Pearson R2 = 0.04, P = 0.22, N =
40) (Supplementary Figure S10B).

Finally, when we account for the instability of the
mRNA–ligand complex, the biophysical model could pre-
dict the ARs of both stable and metastable riboswitches
(Figure 3D). Using the formula for ARactual (Equation 3),
the calculated ARs for 59 out of the 67 riboswitches agreed
with their measured ARs across a 105-fold range (Spear-
man R = 0.69, P = 1.2 × 10−10, N = 67; Pearson R2 = 0.61,
P = 2.6 × 10−13, N = 59). The eight outliers were theo-
phylline riboswitches, and five of them had higher-than-
predicted ARs. The model errors in ARactual, rON and rOFF
were log-normally distributed and 55% of all riboswitches
had their ARs correctly predicted to within 2-fold (Supple-
mentary Figure S11). Moreover, the model’s accuracy did
not depend on the RNA aptamer employed to engineer the
riboswitch; the apparent error in the model’s free energy cal-
culations, quantified by the metric |log(AR/ARactual)|, was
0.64, 0.41 and 0.59 for the theophylline, TMR and fluoride
riboswitches, respectively.

Interestingly, the riboswitches’ ARs were more accurately
calculated than their translation rates in their ON and OFF
states (Spearman R = 0.68, 3.7 × 10−19, N = 134; Pearson
R2 = 0.44, P = 4.3 × 10−18, N = 134) (Figure 3E and Sup-
plementary Figure S12) as the error in predicting rON and
rOFF for the same riboswitch had a high degree of correla-
tion (Spearman R = 0.78, P < 10−30, N = 67; Pearson R2 =
0.87, P = 3.6 × 10−27, N = 59). This shared uncertainty
factor was eliminated when calculating the rON/rOFF ra-
tio (Supplementary Figure S13). This source of error could
arise from any interaction, not included within our model,
that affects riboswitch expression similarly in both ON and
OFF states. By analyzing the physical interactions distin-
guishing the riboswitch inliers from outliers, we also found
that riboswitches with lower-than-predicted ARs bound
much more tightly to the ribosome’s 16S rRNA (highly neg-
ative �GSD-antiSD) and had a high energetic cost to switch-
ing (high ��GmRNA) (Supplementary Figure S14), which
could be responsible for their higher-than-predicted rOFF
and lower-than-predicted rON, respectively.

Overall, by developing a sequence-to-function biophysi-
cal model for riboswitches and coupling it to an automated
optimization algorithm, we successfully converted the theo-

phylline, TMR and fluoride aptamers into highly active ri-
boswitches, while performing a small number of measure-
ments (Figure 4A, Supplementary Figure S15). The model
explains why some RNA aptamers are more conducive to ri-
boswitch engineering, compared to others; for example, the
highest possible ARactual for a fluoride riboswitch is 22-fold
lower than for a theophylline riboswitch, due to their differ-
ences in ligand affinity and ligand-bound structure. Further,
because TMR is toxic and limits its maximum concentra-
tion, the highest possible ARactual for a TMR riboswitch is
62-fold lower than for a theophylline riboswitch.

Design of dopamine, thyroxine and DNT-binding ri-
boswitches

We next tested whether our computational design ap-
proach could convert uncharacterized RNA aptamers that
bind non-ideal ligands into functional riboswitches. As a
demonstration, we selected the dopamine (dopa2/C.1 and
dopa1.3/C.3) (41), thyroxine (ApT4-J-min) (42) and 2,4-
DNT (17,43) aptamers and ligand targets (Figure 3B and
Supplementary Figure S16) for their potential to diag-
nose disease and detect explosives. Dopamine is rapidly
oxidized by bacterial membrane-bound monoamide oxi-
dases (44) and thyroxine is highly insoluble in water, mo-
tivating the characterization of such riboswitches in cell-
free transcription–translation assays. A DNT-binding ri-
boswitch with 10-fold apparent activation was found by el-
egantly screening a 1018 sequence library (17). However,
there are no published reports of the dopamine-binding or
thyroxine-binding RNA aptamers being utilized in any ap-
tazyme or riboswitch.

Accordingly, we applied our biophysical model and auto-
mated optimization algorithm to design five dopamine, two
thyroxine and three DNT riboswitches. We measured the
ARs of the dopamine and thyroxine riboswitches using cell-
free transcription–translation assays and characterized the
activation of the DNT riboswitches inside E. coli DH10B
cells (‘Materials and Methods’ section). We also measured
the non-specific effects of these ligands by recording the no-
aptamer control’s reporter expression levels under identical
conditions; 1 mM DNT increased the no-aptamer control’s
expression by 4.8-fold, while 1 mM dopamine and 150 �M
thyroxine decreased it by 1.67- and 2.5-fold, respectively.
As before, the ligands’ non-specific effects on gene expres-
sion were removed from our definition of the riboswitches’
measured ARs. The best DNT-binding riboswitch achieved
an AR of 11.1-fold. However, if the non-specific effects of
DNT on gene expression were not removed from the ap-
parent AR, then the DNT-binding riboswitch’s apparent
AR would be 53.3-fold. The best thyroxine- and dopamine-
binding riboswitches achieved ARs of 2.4- and 2.0-fold, re-
spectively, making these the first riboswitches that can reg-
ulate gene expression using these RNA aptamers (Figure
4A and Supplementary Figure S15). In contrast to high-
throughput screening, these prototypical examples demon-
strate how physics-based design can engineer functional ri-
boswitches even when the ligand is reactive, insoluble or im-
permeable to cell membranes.

Notably, the ligands’ pleiotropic effects on in vitro and
in vivo gene expression are particularly important because,



Nucleic Acids Research, 2016, Vol. 44, No. 1 9

Figure 4. In vivo and cell-free characterization of designed riboswitches. (A) For each aptamer, the (circles) measured expression levels in the ON and
OFF states and (bars) the ARs for the two best riboswitch variants are shown. To characterize their ON states, added ligand concentrations were 2 mM
theophylline, 30 �M TMR, 150 mM fluoride, 1 mM DNT, 1 mM dopamine supplemented with 5 mM ascorbic acid and 150 �M thyroxine supplemented
with 100 mM NaCl and 1.5 mM NaOH (see Supplementary Figure S15). Each data point and bar represents the mean and standard deviation of 2–
4 measurements. (B) Cell-free transcription–translation assays are used to characterize riboswitch function during (yellow) the absence of ligand, (blue)
post-transcriptional ligand binding and (red) co-transcriptional ligand binding. (C) Using cell-free transcription–translation assays, the expression levels of
three TMR riboswitches and a no-aptamer control were measured to determine the role of co-transcriptional folding. As described in Ref. (14), expression
levels are normalized to the highest luminescence level during the 10 min assay for each individual construct. Each data point and bar represents the mean
and s.d. of 3–4 measurements.

depending on the sensing application, they will increase or
decrease the apparent dynamic range of regulation inde-
pendent of riboswitch function. These pleiotropic effects do
depend on the environmental factors beyond the ligand it-
self, including additives to the buffer, temperature and pH
changes, and salt concentration. Here, to validate the bio-
physical model’s predictions and to elucidate riboswitch-
specific mechanisms, we focused on measuring riboswitch-
specific ARs. However, when incorporating riboswitch as-
says into sensing devices to measure the concentration of a
ligand-of-interest, it will be equally important to carry out
the same measurements using no-aptamer controls and to
use those measurements for calibration.

Co-transcriptional folding is required for riboswitch activa-
tion

With additional use of cell-free transcription–translation
assays, we next applied our model to evaluate how co-
transcriptional folding and macromolecular crowding af-
fects riboswitch function inside cells. First, we character-
ized the activation of three TMR riboswitches in cell-free
assays either without ligand, without co-transcriptional lig-
and binding or with co-transcriptional ligand binding (Fig-
ure 4B and ‘Materials and Methods’ section). When lig-
and was added after transcription had been stopped, the
riboswitches were inactive and behave similarly as the no-
aptamer control (Figure 4C). The riboswitches only acti-
vated reporter expression when ligand was added during
transcription. With co-transcriptional ligand-binding, all
10 TMR riboswitches activated similarly in both cell-free
and in vivo environments (Supplementary Figure S15EF).
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These results show that co-transcriptional folding is re-
quired for reaching a fast mRNA–ligand equilibrium, a
key model assumption, which occurs either inside cells or
within cell-free transcription–translation assays. Our re-
sults are consistent with our earlier work showing that
co-transcriptional folding is essential even when ligand is
present in excess (14).

Macromolecular crowding controls riboswitch activation

An intriguing and counter-intuitive model prediction is that
higher riboswitch mRNA levels will actually decrease ri-
boswitch ARs inside cells, but not within a relatively di-
lute cell-free assay. Inside cells, high concentrations of native
RNA and protein occupy a significant portion of the intra-
cellular volume, called macromolecular crowding (45,46).
As a result of volume exclusion, there is significantly less
free volume available to a bulky mRNA. According to the
model, when more mRNA is expressed inside the cell, the
amount of free volume will further decrease and could
eventually lead to the exclusion of the ligand from the
same volumetric space as the mRNA with a correspond-
ingly lower amount of mRNA–ligand complex. We calcu-
late the free mRNA, free ligand and ligand-bound mRNA
volume fractions by minimizing the thermodynamic free en-
ergy of the constant volume system, constrained by the to-
tal mRNA and ligand concentrations and their molar vol-
umes (Supplementary Information). In Figure 5A, we show
how these volume fractions vary as more riboswitch mRNA
is expressed. Using these volume fractions and Equation
2, the model qualitatively predicts that expressing more ri-
boswitch mRNA will lead to higher translation rates in both
the ON and OFF states (higher rON and rOFF), however
the riboswitch’s AR will actually decrease because rON in-
creases less than rOFF. In contrast, in a dilute system, there
is enough free volume that adding more riboswitch mRNA
should not exclude ligand from the system. Riboswitch ac-
tivation will increase if ligand-binding follows second order
kinetics.

We tested these predictions by adding increasing amounts
of riboswitch DNA template to cell-free transcription–
translation assay, and by increasing riboswitch mRNA lev-
els inside E. coli cells using modified promoters and plas-
mid copy numbers (Supplementary Figure S17). We found
that increasing the mRNA levels of the TMR-10 riboswitch
by about 1000-fold in cell-free assays increased its reporter
expression levels, while also enhancing its AR from 3.9- to
14.8-fold (Figure 5B). However, when we increased the in
vivo mRNA levels for the same TMR riboswitch, by re-
placing the single-copy BAC origin with either low-copy or
high-copy origins of replication (p15A, ColE1 or pUC19),
the measured AR substantially dropped from 12.3- to 5.7-
fold (Figure 5C and Supplementary Figure S17A). The
same differences in cell-free versus in vivo activation were
observed for three different TMR riboswitches. We then
verified that changing mRNA levels, and not plasmid bur-
den, were responsible for modulating riboswitch activation
by introducing three different promoters to vary the tran-
scription rates of three fluoride and two theophylline ri-
boswitches. A 50-fold increase in promoter transcription
rate (Supplementary Figure S17B) dropped the F-11 ri-

boswitch’s AR from 4.0- to 1.6-fold and the Theo-44 ri-
boswitch’s AR from 12.6- to 6.3-fold (Figure 5E). The same
trend was observed for all five riboswitches without finding
a reduction in the hosts’ growth rates, compared to wild-
type or no-aptamer controls (Supplementary Figure S18A).
We also found that the reporter expression levels from the
no-aptamer controls always exceeded the riboswitches’ ex-
pression levels, indicating that the host’s maximum transla-
tional capacity had not been reached even as mRNA lev-
els were increased (Supplementary Figure S18B). These re-
sults are qualitatively consistent with our model-calculated
ARs (Figure 5D) and the expectation that volume exclu-
sion will have a more pronounced effect on larger ligands
(theophylline, TMR), compared to tiny fluoride. Additional
experiments will be needed to confirm how macromolec-
ular crowding affects riboswitch function and to quantify
the factors that control its extent. Regardless of the mecha-
nism, as a general engineering design principle, lowering a
riboswitch’s mRNA level will increase its AR inside cells.

Model-predicted limits of riboswitch-based sensors

Finally, we illustrate the potential limits of riboswitch-
based sensors by designing an idealized ‘perfect’ riboswitch
that uses a hypothetical aptamer and highly optimized pre,
post and coding sequences for maximum possible detection
(ARmax = 16 000, ��GmRNA = 15.2 kcal/mol) (Figure 6A,
see Supplementary Information for more details). When a
very high-affinity aptamer is available (KD ∼ 10 pM) and its
ligand is plentiful, such a riboswitch could activate with a
high dynamic range (ARactual > 1000-fold). However, when
faced with the most stringent sensing application, for ex-
ample, sensing nanomolar ligand levels, even the most ideal
riboswitch will only activate expression by 20-fold using a
high-affinity aptamer and 3-fold using a low-affinity ap-
tamer (Figure 6B). These limits provide an approximate
best-case for engineering novel riboswitches, regardless of
aptamer sequence and structure, and help determine when
downstream signal amplification will be necessary.

DISCUSSION

We have developed a parsimonious statistical thermody-
namic model that predicts the sequence-structure-function
relationship for translation-regulating riboswitches, ac-
counting for the interactions between the ribosome, mRNA
and ligand. We experimentally validated the model by de-
signing and characterizing 62 synthetic riboswitches, using
six different RNA aptamers, that bind to their respective lig-
ands (theophylline, TMR, fluoride, dopamine, thyroxine or
2,4-DNT) and activated translation rate by up to 383-fold.
We used both cell-free in vitro transcription–translation as-
says as well as in vivo bacterial expression assays to mea-
sure riboswitch function. Importantly, we also performed
extensive measurements of no-aptamer controls to ensure
that the non-specific effects of the ligands on gene expres-
sion levels are correctly subtracted. For 55% of these ri-
boswitches, the model was able to correctly calculate the
ligand-induced changes in the ribosome-mRNA binding
free energy to within 1.5 kcal/mol.
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Figure 5. Macromolecular crowding controls riboswitch activation inside cells. (A) The relationship between riboswitch mRNA level and the volume
fractions (�) of free mRNA, free ligand, mRNA–ligand complex and free volume in either dilute or crowded systems were calculated according to Equation
(2) for the TMR-10 riboswitch. (B) Cell-free transcription–translation assays were performed for three TMR riboswitches using increasing DNA template
concentrations (0.1, 1, 10 and 100 ng/�l). Colors, symbols and ligand concentrations are the same as Figure 4. (C) The TMR riboswitches’ in vivo expression
levels were measured at zero and 20 �M TMR after increasing the plasmid copy numbers, using the pBAC, p15A, pColE1 and pUC19 replication origins.
(D) Model-predicted ARactual for the TMR-10 riboswitch when varying the total concentrations of mRNA and ligand. The effect of changing the plasmid’s
copy number on mRNA level is shown. (E) The in vivo expression levels and ARs for theophylline and fluoride riboswitches were measured after increasing
riboswitch mRNA levels, using three promoters with steadily increasing transcription rates. Colors, symbols and ligand concentrations are the same as
Figure 4. Each data point and bar represents the mean and s.d. of 2–4 measurements.

Using our thermodynamic model, we experimentally
confirmed several mechanisms that control riboswitch func-
tion. First, some RNA aptamers are more conducive to
riboswitch engineering than others, though for previously
unknown reasons. We demonstrated that an aptamer’s lig-
and binding free energy places an upper limit on the possi-
ble RNA conformational changes that may occur, accord-
ing to its switching free energy, which then places a max-
imum limit on the riboswitch’s AR. The same thermody-

namic limit will govern the ligand-induced conformational
changes of all RNA regulators. Second, the effect of vol-
ume exclusion on biomolecular interactions inside crowded
cells has remained poorly understood, though it is partic-
ularly important when expressing bulky mRNAs. A key
model prediction is that higher mRNA concentrations will
lower riboswitch ARs by reducing the amount of free vol-
ume. We systematically increased intracellular mRNA con-
centrations to show that, indeed, riboswitch ARs drop by
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Figure 6. A ‘perfect’ riboswitch tests the limits of sensing. (A) Optimiza-
tion was used to design a ‘perfect’ riboswitch using a hypothetical aptamer,
which is shown in its ligand-free and ligand-bound states. (B) Model calcu-
lations show the effects of the aptamer’s binding free energy (affinity) and
maximum ligand concentration on the ‘perfect’ riboswitch’s actual AR to
illustrate the best possible expression changes under potential sensing sce-
narios.

considerable amounts. This effect was not observed in sev-
eral in vivo no-aptamer controls and was found to depend on
the ligand’s molar volume, as expected according to the the-
ory. Importantly, we repeated these measurements in the 20-
fold more dilute cell-free assay and expectedly found the op-
posite behavior. The principles that we experimentally vali-
dated to develop this model are not specific to riboswitches
and encompass RNA molecules whose ligand-induced con-
formational changes affect their interactions with proteins,
other RNAs, or supramolecular complexes (e.g. the ribo-
some).

While all models are imperfect, here we systematically
quantified the thermodynamic model’s predictive accuracy
across a large and diverse dataset, enabling us to distinguish
the differences between stable and meta-stable riboswitches
and further improve our understanding of the physics of
RNA shape-change. Importantly, throughout this study,
our model assumes thermodynamic equilibrium between

the ribosome, mRNA, and ligand, and does not attempt to
predict changes in mRNA stability. We envision that elim-
inating these assumptions will further improve the model’s
ability to predict riboswitch function from sequence.

Finally, by automating our physical chemistry calcula-
tions, both experts and non-experts alike can perform iden-
tical calculations to convert a wide array of RNA aptamers
into engineered riboswitches, broadly enabling the rapid
prototyping of new biomolecular sensors for use in medi-
cal diagnostics, environmental remediation, metabolic en-
gineering and future fields (29). A web-interface to the au-
tomated design method, called the Riboswitch Calculator,
is accessible at http://salislab.net/software.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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