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ABSTRACT Methylomicrobium album BG8 is an aerobic methanotrophic bacterium
with promising features as a microbial cell factory for the conversion of methane to
value-added chemicals. However, the lack of a genome-scale metabolic model (GEM) of
M. album BG8 has hindered the development of systems biology and metabolic engi-
neering of this methanotroph. To fill this gap, a high-quality GEM was constructed to
facilitate a system-level understanding of the biochemistry of M. album BG8. Flux bal-
ance analysis, constrained with time-series data derived from experiments with various
levels of methane, oxygen, and biomass, was used to investigate the metabolic states
that promote the production of biomass and the excretion of carbon dioxide, formate,
and acetate. The experimental and modeling results indicated that M. album BG8
requires a ratio of ;1.5:1 between the oxygen- and methane-specific uptake rates for
optimal growth. Integrative modeling revealed that at ratios of .2:1 oxygen-to-meth-
ane uptake flux, carbon dioxide and formate were the preferred excreted compounds,
while at ratios of ,1.5:1 acetate accounted for a larger fraction of the total excreted
flux. Our results showed a coupling between biomass production and the excretion of
carbon dioxide that was linked to the ratio between the oxygen- and methane-specific
uptake rates. In contrast, acetate excretion was experimentally detected during expo-
nential growth only when the initial biomass concentration was increased. A relatively
lower growth rate was also observed when acetate was produced in the exponential
phase, suggesting a trade-off between biomass and acetate production.

IMPORTANCE A genome-scale metabolic model (GEM) is an integrative platform that
enables the incorporation of a wide range of experimental data. It is used to reveal
system-level metabolism and, thus, clarify the link between the genotype and phe-
notype. The lack of a GEM for Methylomicrobium album BG8, an aerobic methane-
oxidizing bacterium, has hindered its use in environmental and industrial biotechnol-
ogy applications. The diverse metabolic states indicated by the GEM developed in
this study demonstrate the versatility in the methane metabolic processes used by
this strain. The integrative GEM presented here will aid the implementation of the
design-build-test-learn paradigm in the metabolic engineering of M. album BG8. This
advance will facilitate the development of a robust methane bioconversion platform
and help to mitigate methane emissions from environmental systems.

KEYWORDS methanotroph, methane oxidation, systems biology, integrative
modeling, flux balance analysis, fermentation, biotechnology

Anthropogenic activities have led to significant increases in atmospheric methane
(1), which contributes to climate change and perturbs the global carbon cycle (2).

Nevertheless, methane derived from renewable sources is an attractive substrate in the
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production of value-added products (3–5), and methane conversion processes repre-
sent a promising trend in bioindustry (6, 7). Methanotrophic bacteria utilize methane
as their source of carbon and energy, and these microorganisms have become increas-
ingly important in the biomanufacturing of valuable chemical compounds (4, 8–10).
Although methanotrophic species are metabolically active under both aerobic and an-
aerobic conditions (11–14), considerations of cost, sustainability, and environmental
impact have led to a preference for aerobic methane-oxidizing bacteria in large-scale
biorefining applications (15, 16).

Methylomicrobium album BG8 (formerly known as Methylobacter albus, Methylomonas
albus, or Methylomonas alba) is an obligate aerobic, Gram-negative, gammaproteobacte-
rial methanotroph that uses methane or methanol as its sole source of carbon and energy
(17). A DNA-DNA hybridization study revealed high levels of similarity between its ge-
nome and those of Methylomicrobium agile ATCC 35068 (99.16%), Methylotuvimicrobium
alcaliphilum 20Z (75.69%), and Methylotuvimicrobium buryatense 5G (76.64%) (18). Recent
phylogenomic analyses based on the average amino acid identity and average nucleotide
identity have shown that M. album BG8 is also closely related to Methylomicrobium (for-
merlyMethylosarcina) lacus LW14 (19).M. album BG8 has been isolated from swampy soils
and freshwater sediments (18, 20) and has been widely studied due to its importance in
environmental microbiology for bioremediation of different environmental pollutants
(21–23). Through recent physiological and omics analyses, M. album BG8 has also been
identified as a promising microbial cell factory (24, 25) for applications in the methane-
based biotechnology industry (26).

The current metabolic characterization of methanotrophic bacteria suggests there
are three main groups (27). Methanotrophs in group I (Gammaproteobacteria) utilize
the ribulose monophosphate (RuMP) cycle to metabolize formaldehyde derived from
methane oxidation, group II (Alphaproteobacteria) members direct the carbon flux
resulting from the oxidation of methane to formate to a complete serine cycle, and
group III (Verrucomicrobia) members possess a complete Calvin-Benson-Bassham
cycle for carbon dioxide utilization. The metabolic engineering of methanotrophs has
enabled advances in the biotechnology of methane conversion to produce succinate
(28), 3-hydroxypropionic acid (29), 2,3-butanediol (30), putrescine (9), a-humulene
(31), cadaverine (32), lysine (32), shinorine (33), and acetoin (33). These laboratory
achievements have been aided by the results of genome-scale metabolic model
(GEM)-based simulations, which are used to enhance the system-level understanding
of methanotrophy. Thus far, GEMs of nine methanotrophic species have been con-
structed, including three group I species [Methylotuvimicrobium buryatense 5G(B1)
(34), Methylotuvimicrobium alcaliphilum 20Z (35), and Methylococcus capsulatus Bath
(36, 37)] and six group II species (Methylocystis hirsuta [38], Methylocystis sp. strain
SC2 [38], Methylocystis sp. strain SB2 [38], Methylocystis parvus OBBP [39], Methylocella
silvestris [40], and Methylosinus trichosporium OB3b [41]). Although some of these
GEMs have been validated using growth yields, methane- and oxygen-specific uptake
rates (38), transcriptomics data (34), or enzyme kinetics (35), most do not contain
other integrated experimental data.

Despite the potential of M. album BG8 as a tool in environmental and industrial bio-
technology, no GEM of this methanotroph has been developed; therefore, an integrative
system-level understanding of methanotrophy in this strain remains lacking. In this study,
a high-quality GEM of M. album BG8 was constructed by stringently following well-estab-
lished systems biology protocols (42, 43). Furthermore, an integrative modeling frame-
work was applied, wherein experimental time-series growth and compound uptake and
excretion data collected under different initial methane and oxygen headspace percen-
tages and biomass concentrations were integrated with the initial GEM to construct para-
metrized GEMs. Subsequently, the metabolic states that promote biomass production
and carbon dioxide, formate, and acetate excretion were identified through a flux balance
analysis (FBA). The study findings provide novel insight into the metabolic versatility

Integrative Modeling ofM. album BG8 Metabolism mSystems

March/April 2022 Volume 7 Issue 2 10.1128/msystems.00073-22 2

https://journals.asm.org/journal/msystems
https://doi.org/10.1128/msystems.00073-22


of M. album BG8 and highlight the associations between biomass production and or-
ganic compound excretion.

RESULTS
Conversion between the OD and DCW. A linear regression model was established

between gram of dry cell weight (gDCW) liter21 and optical density at 600 nm (OD600)
to calculate the DCW from a measured OD600 value. The model with a y intercept at
the origin produced the best fit (see Fig. S1 in the supplemental material), yielding the
equation gDCW liter21 = 0.26 � OD600.

Excess methane did not favor metabolite production. Aerobic methane oxidation,
which is catalyzed by the particulate methane monooxygenase in M. album BG8,
requires an equimolar ratio of oxygen to methane. We first hypothesized that excess
methane in a batch culture of M. album BG8 favors growth. To test this hypothesis, we
characterized the effects of two initial methane (20% [0.41 mmol] or 45% [1.0 mmol])
and oxygen (20% [0.43 mmol]) headspace ratios on metabolite excretion and biomass
production. The time-series profiles in Fig. 1A demonstrate that a notable amount of
methane remained in the culture with 45% initial methane, and that the final concen-
trations of biomass and excreted products were not significantly different between the
cultures grown under different headspace ratios (t test, 5% threshold for P value)
(Fig. 1A). Contrary to our hypothesis, excess methane significantly reduced (t test,
P , 0.05) not only the biomass yield but also the oxygen uptake and carbon dioxide
and acetate excretion yields (Fig. 1B). Although the formate yield was also reduced,
this difference was not statistically significant.

Oxygen availability strongly influenced biomass production and organic
compound excretion. After determining that excess methane did not favor metabolite
excretion, we tested the effects of oxygen availability (range, 5% to 25%) on the metabo-
lism and growth of M. album BG8 under 20% methane. The time-series profile in Fig. 2A
shows that the initial oxygen headspace percentage significantly affected the dynamics
of biomass production and organic compound excretion. The highest concentration of
oxygen led to an increased consumption of methane and the highest concentration of
excreted organic compounds in culture (Fig. 2A). Interestingly, acetate was only detected
after approximately 50 h in cultures subjected to all conditions except 5% oxygen (;36

FIG 1 Effects of different initial methane headspace percentages on Methylomicrobium album BG8 in culture. (A) Time-series concentration profiles of
biomass production, compound consumption, and compound excretion. The gray-shaded region indicates the estimated exponential phase (;16 h to 40
h). (B) Biomass yields, oxygen uptake, and metabolite excretion throughout the culture period. P values were determined using the two-sided t test. In all
panels, the data are shown as the mean values from biological triplicates, and the error bars represent the standard errors. The initial conditions with 20%
methane and 20% oxygen (C20_O20) or 45% methane and 20% oxygen (C45_O20) are indicated in blue and red, respectively. In all panels, the same
labeling notation is used to denote the experimental conditions, with C representing methane, O representing oxygen, and the following number
indicating the initial percentage (vol/vol) in the headspace.
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h; Fig. 2A). The final biomass, carbon dioxide, formate, and acetate concentrations were
significantly affected by the initial oxygen headspace percentage (analysis of variance
[ANOVA], P , 0.05; Fig. 2B). In terms of yields, all were significantly affected (ANOVA,
P , 0.05) except biomass concentration (Fig. S2). Oxygen was practically depleted from
all of the cultures at the end of the experiment (120 h; Fig. 2B).

The growth kinetics of the cultures, assuming oxygen was the only limiting substrate,
were determined by fitting a Monod kinetic model, resulting in a maximum growth rate
(mmax) of 0.11 h21 (95% confidence interval [CI95] = 0.09 to 0.12) and a half-saturation con-
stant (Km) of 1.69 mM (CI95 = 0.78 to 2.60) (Fig. 2C). The change in oxygen concentration
as a function of the initial ratio of oxygen to methane in the culture headspace (i.e., oxy-
gen-to-methane headspace ratio; slope of the oxygen curve) was greater than the change
in the methane concentration (i.e., slope of the methane curve) (Fig. 2D), suggesting that
the effects of the initial availability of oxygen and methane on the respective proportions

FIG 2 Effects of different initial oxygen headspace percentages on Methylomicrobium album BG8 in culture. (A) Time-series concentration profiles of
biomass production, compound consumption, and compound excretion. The gray-shaded region indicates the estimated exponential phase (;16 h to 40
h). (B) The concentrations of biomass, consumed compounds, and excreted compounds at the final time point. (C) Growth kinetics with respect to the
initial oxygen concentration. The fitted line represents the Monod kinetic model. (D) Changes in methane and oxygen concentrations throughout the
culture period. (E) Specific methane and oxygen uptake rates in each culture. Error bars represent the upper and lower bounds of the estimate (99%
confidence interval). (F) Comparison of the ratio between the changes in the concentrations of oxygen and methane with the ratio of oxygen-to-methane
specific uptake rates. For panels A, B, and D, the data are shown as the mean values from biological triplicates, and the error bars represent the standard
errors. In all panels, the color gradient represents the different initial percentages of oxygen (5% to 25%) in 5% increments with 20% methane.
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of both substrates were mainly mediated by higher oxygen consumption (Fig. 2D). The
specific uptake rate of oxygen tended to be higher than that of methane under all experi-
mental conditions except the culture containing the lowest initial oxygen headspace per-
centage (Fig. 2E). In the cultures with initial oxygen headspace percentages ranging from
10% to 25%, the ratio between the specific uptake rates of oxygen and methane
remained similar (1.2:1 to 1.4:1), while the ratios between the changes in the concentra-
tions of oxygen and methane varied from 0.75:1 to 1.3:1 (Fig. 2F). Interestingly, only the
culture with the lowest initial oxygen headspace percentage had a low ratio (;0.5:1)
between the specific uptake rates of oxygen and methane (Fig. 2F) and a noticeably
lower rate of specific growth (Fig. 2C).

Features of the GEM ofM. album BG8. Given the strong effect of the initial oxygen
headspace percentage on the growth rate and metabolic yields, we next aimed to elu-
cidate the metabolic states induced by different levels of oxygen availability in M.
album BG8. To achieve a system-level understanding of M. album BG8 metabolism, we
constructed a high-quality GEM that incorporated all of the central metabolic pathways
contributing to methane oxidation (Fig. 3) and many other pathways that provide
energy (ATP is produced by aerobic respiration through oxidative phosphorylation)
and precursors for biomass production in M. album BG8 (Fig. 4). The final GEM was
established after manually curating the gene-protein-reaction (GPR) associations and
biomass compositions in the draft model generated by KBase (43), which led to the addi-
tion of 16 genes, 33 metabolites, and 181 reactions. The final curated GEM comprises
803 genes, 1,367 metabolites, and 1,358 reactions (Fig. 4A), uses the nutrient parameters
described in Materials and Methods, and constrains only methane and oxygen uptake
fluxes by default (Fig. 4B). The differences in metabolic reactions between the draft and
curated versions of the model are detailed in Table S2. Although the final model does
not seem underdetermined at steady state (more metabolites than reactions), many
metabolites in the model are not directly involved in FBA solutions to maximize the bio-
mass production reaction (e.g., only ;550 metabolites were involved at an oxygen flux
of 15 mmol/gDCW/h and a variable methane uptake flux). Furthermore, the final model
purposely includes five blocked reactions (i.e., flux is not allowed) (Fig. 4C), of which four
are involved in alternative biomass production (containing different growth-associated
ATP maintenance assumptions) and one involves an alternative methanol dehydrogen-
ase, and 171 orphan reactions (i.e., with no GPR associations) that were added through
the automatic gap-filling of the draft GEM. Among the orphan reactions, 72 are
exchange reactions required to interact with the external compartment of the model,
and the rest are required to sustain biomass production in the model. However, homo-
logs for their GPR associations could not be detected through genome (re)annotation.

By applying the FBA (44) and minimization of metabolic adjustment (MOMA; linear-
ized version) (45) approaches to the model simulations, 281 essential genes were iden-
tified in which a single in silico gene knockout resulted in growth inhibition (Fig. 4D).
Consequently, the high-quality final version of the iJV803 GEM included 45 metabolic
pathways containing more than five reactions (Fig. 4E). In descending order, (i) the
glycerophospholipid metabolism, (ii) fatty acid metabolism, (iii) exchange/demand and
transport reactions, (iv) nucleotide interconversion, and (v) cell wall biosynthesis path-
ways contained the largest numbers of reactions (Fig. 4E). However, reactions that can-
not be assigned to specific metabolic pathways accounted for a large proportion of
the total reactions, and these remain to be classified in future studies (Fig. 4E).

Metabolic modeling capabilities of the GEM of M. album BG8. We next tested the
modeling capabilities of the GEM for M. album BG8 using FBA. We first evaluated the
growth rate obtained in the FBA based solely on the experimentally derived methane
specific uptake rates. The lower and upper 99% CIs of the methane specific uptake
rates derived from cultures with different initial oxygen-to-methane headspace ratios
(Fig. 2E) were used as the uptake flux constraint. As shown in Fig. 5A, the growth rates
in the FBA were similar to the experimental results, demonstrating the accuracy of the
GEM. We also evaluated the ratio obtained in the FBA between the oxygen and meth-
ane specific uptake rates that would maximize the growth rate and found that the flux
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ratio of ;1.5:1 matched the specific uptake rate ratios observed in the cultures with a
higher initial oxygen headspace percentage (Fig. 5B).

In the same experiment (Fig. 2), the initial oxygen-to-methane headspace ratio and
the specific oxygen and methane uptake rates strongly influenced the growth rates and
the final excreted metabolite yields and concentrations. To investigate the variations in
growth rate under different oxygen-to-methane uptake flux ratios, a phenotype phase
plane analysis was performed while controlling the oxygen and methane uptake flux
reactions and maximizing the biomass production reaction (Fig. 5C). Consistent with the
experimental results (Fig. 2), the GEM showed a range of ratios of oxygen-to-methane
uptake flux within which growth was feasible (above the line showing slope of 1 in
Fig. 5C). The highest growth rate was obtained in the FBA at a slope of ;1.5 (Fig. 5C),
indicating that although biomass production is possible at an oxygen-to-methane uptake
flux ratio slightly greater than 1:1, the ideal oxygen uptake flux is ;1.5 times that of

FIG 3 Central methanotrophic metabolic pathways in Methylomicrobium album BG8. Metabolites that are taken up are highlighted in yellow, and those
excreted are labeled in blue. Metabolite names are shown in black, reaction identification numbers are in green, and the genes associated with each reaction
are in brown. The pathway names are boldfaced. The chemical formula describing the key metabolites involved in the initial methane oxidation and the
consumed and excreted metabolites is shown. Nonreversible and reversible reactions, determined according to the thermodynamics constraints of every
reaction, are indicated by single-headed and double-headed arrows, respectively. Abbreviation of the pathway names: H4MPT, tetrahydromethanopterin; EDD
(KDPG), Entner-Doudoroff Pathway (2-keto-3-deoxy-6-phosphogluconate aldolase); EMP (FBP), Embden-Meyerhof-Parnas (fructose 1,6-bisphosphatase); BS,
Bifidobacterium shunt; TCA, tricarboxylic acid.
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methane (Fig. 5C). Interestingly, most of the experimentally determined specific uptake
rate ratios (Fig. 2F) were within the range of feasible growth obtained in the FBA; the
experiment with the lowest initial oxygen headspace percentage (5%) was the only
exception (Fig. 5C). This result suggests that the specific oxygen and methane uptake
rates are not optimal forM. album BG8 growth when oxygen availability is very low.

GEM revealed the role of oxygen availability in balancing formaldehyde
oxidization and assimilation. Given the apparent effect of oxygen on methane oxi-
dation and subsequent biomass production and metabolite excretion (Fig. 2), the GEM
was used to further investigate the effects of oxygen on system-level metabolism in M.
album BG8. Using time-series data from the experiments conducted under various ini-
tial oxygen headspace percentages (Fig. 2), the growth rates, methane and oxygen
uptake fluxes, and carbon dioxide, formate, and acetate excretion fluxes in the expo-
nential phase were computed (Fig. 5D). The mean growth rate increased with the initial
oxygen headspace percentage (Fig. 5D). The methane and oxygen uptake fluxes and
carbon dioxide excretion flux were significantly different in the culture with the lowest
oxygen-to-methane headspace ratio compared to the rest (Fig. 5D). Similar to the ex-
perimental results obtained for yields (Fig. S2), no clear positive associations were
observed between the formate excretion fluxes and the initial oxygen headspace per-
centage in the model (Fig. 5D). Nevertheless, the experiment with the highest initial
oxygen-to-methane headspace ratio exhibited the highest formate excretion flux
(Fig. 5D). Acetate flux was only detected in the culture with the lowest initial oxygen-
to-methane headspace ratio (although the concentration was low and the uncertainty
was high; Fig. 5D).

The use of the upper and lower bounds of the measured fluxes as constraints on the
respective reactions in the GEM enabled the construction of a parametrized GEM for each
experimental condition. Subsequently, the distribution of flux in the key central metabolic
pathways was analyzed in detail (Fig. 5E to G). The parametrized GEM revealed significant

FIG 4 Features of the genome-scale metabolic model (GEM) of Methylomicrobium album BG8. (A) Comparison of the key features between the draft and
curated models. (B) The default in silico medium composition used in the GEM. Only the methane and oxygen uptake fluxes were constrained by default.
(C) Numbers of blocked and orphan reactions included in the curated model. (D) Effects of in silico single-gene knockouts on the growth rate. (E) Numbers
of reactions in each pathway. Pathways with fewer than five reactions have been omitted to enhance visualization.
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differences in mean flux between the five oxygen conditions (t test, P , 0.05) (Fig. 5E),
with the highest values obtained in the cultures with initial oxygen headspace percen-
tages of 25% and 10% (Fig. 5E). Significant differences (t test, P , 0.05) were observed in
the methane oxidation pathway, the H4MPT pathway, the folate metabolism, the partial
serine cycle, the RuMP cycle, the RuMP EDD variant, and the RuMP EMP variant (Fig. 5F).
Notable formaldehyde dehydrogenase (FDH, rxn00371_c) (Fig. 3) activity was detected in

FIG 5 Metabolic modeling capabilities of the genome-scale metabolic model (GEM) of Methylomicrobium album BG8 and construction of parametrized
GEMs under different initial percentages of oxygen (5% to 25%) in 5% increments with 20% methane. (A) Comparison of the experimental and FBA growth
rates. Error bars on the experimental data represent the 99% confidence intervals. (B) Comparison of the experimental specific uptake rate ratios with the
FBA optimal oxygen-to-methane uptake flux ratios. (C) Phenotype phase plane analysis of the growth rates at different oxygen-to-methane uptake flux
ratios. The white circles denote the experimentally determined specific uptake rates, and the error bars represent the 99% confidence intervals. The
number inside each circle indicates the initial oxygen headspace percentage in each experiment. (D) Experimentally determined growth rate and fluxes; the
error bars represent the 99% confidence intervals, indicating accuracy of the sample mean estimator. (E) Mean absolute flux throughout the metabolic
network in the parametrized GEM of each experiment. (F) Mean absolute flux of each central metabolic pathway indicated in Fig. 3. For panels E and F, the
mean values of the fluxes are shown, the error bars represent the standard errors, and the P values were calculated using the Kruskal-Wallis test. (G)
Heatmap of the flux through each reaction in the central metabolic pathways. The plus and minus symbols denote the directions of the reactions in the
biochemical network. For each reaction mix, 5 � 1024 mmol h21 gDCW21 was added to the absolute flux value to avoid zero flux and enable visualization
of the flux values on a log2 scale.
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the experiments initially provided with 15% and 25% oxygen (Fig. 5G), while the NADH-
consuming glycerate production reaction (rxn01280_c) (Fig. 3) was only highly active in
the culture initially provided with 10% oxygen (Fig. 5G).

Overall, the results of the parametrized GEM-based system-level analysis of M. album
BG8 cultures provided with different initial oxygen headspace percentages reveal that
these cultures differ mainly in the regulation of formaldehyde oxidization and assimila-
tion. At an initial oxygen-to-methane headspace ratio of 1.25:1, formaldehyde can be effi-
ciently oxidized through the H4MPT pathway and assimilated mainly through the RuMP
cycle and its EMP variant (Fig. 3 and 5F and G). However, at an initial oxygen-to-methane
headspace ratio of ,0.75:1, the folate metabolism pathway contributes to the oxidation
of formaldehyde, which is then assimilated through the EDD variant of the RuMP cycle
(Fig. 3 and 5F and G). Interestingly, the FBA showed that some methanol must be
excreted to perform efficient methane oxidation under the condition of low initial oxygen
availability (5%) (Fig. 5G). Furthermore, the FBA showed that the culture with the highest
biomass yield (20% methane and 20% oxygen) carried a relatively lower mean absolute
flux through its metabolic network (Fig. 5E) and high activity throughout the tricarboxylic
acid (TCA) cycle (Fig. 3 and 5G).

Regulation of organic compound excretion by the oxygen-to-methane uptake
flux ratio. Because the initial oxygen headspace percentage had a system-level effect
on the metabolic state of M. album BG8, a potential mechanistic link to organic com-
pound excretion and biomass production was further investigated. Because the GEM
cannot account for absolute concentrations, we focused our analysis on the oxygen-
to-methane uptake flux ratio. The GEM was used to perform over 700 simulations in
which the lower and upper bounds of the methane uptake flux were set to an arbitrary
value of 10 mmol h21 gDCW21 and the lower and upper bounds of the oxygen uptake
flux were set to be the same and allowed to vary from 0 to 30 mmol h21 gDCW21. The
large volume of simulation results provided insight into the effects of different combi-
nations of methane and oxygen uptake fluxes on the production of biomass and ATP
and the excretion of organic compounds, including carbon dioxide, formate, acetate,
lactate, and succinate.

The FBA showed that oxygen-to-methane uptake flux ratios in the range of .0:1
to ,2.5:1 were feasible to support biomass and ATP production (Fig. 6A) and organic
compound excretion (Fig. 6B). The optimal ratio for biomass and ATP production was
;1.5:1 (Fig. 6A). At high (.2:1) oxygen-to-methane uptake flux ratios, carbon dioxide
and formate were preferentially excreted (Fig. 6B), consistent with the experimental
results measured in the exponential growth phase (Fig. 1A and 2A). By limiting the
analysis to excreted metabolites that could be experimentally detected (i.e., carbon
dioxide, formate, and acetate), the simulation demonstrated that when the oxygen
uptake flux decreased (i.e., a lower oxygen-to-methane uptake flux ratio), formate and
(eventually) acetate accounted for a larger fraction of the total excreted flux, whereas
the carbon dioxide excretion flux was reduced (Fig. 6C). These results are consistent
with the experimental phenotypes measured during the late-exponential and station-
ary phases (Fig. 1A and 2A).

Metabolic modeling of a high-acetate-excreting phenotype identified a mixed
mode involving both respiration and fermentation. Studies (46–50) have deter-
mined that the initial biomass concentration can affect microbial growth and meta-
bolic capabilities. Here, we further investigated the effects of two relatively different
initial biomass concentrations (low and high) on system-level metabolism in M. album
BG8. Both biomass concentrations were tested under the initial oxygen-to-methane
headspace ratios that promoted the highest biomass and organic compound excretion
yields (1:1 [20% methane and 20% oxygen] and 1.25:1 [20% methane and 25% oxy-
gen]). Under both ratios, the initial biomass concentration had a significant (P , 0.05)
and specific effect on the formate and acetate yields (Fig. 7A). In the cultures with a
lower initial biomass concentration, a higher formate yield was achieved under the 1:1
oxygen-to-methane headspace ratio compared with the 1.25:1 ratio (Fig. 7A). However,
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the acetate yield was higher in the cultures with a relatively higher initial biomass con-
centration under both oxygen-to-methane headspace ratios (Fig. 7A).

No consistent trends in the methane and oxygen uptake fluxes were observed
between the cultures with high and low initial biomass concentrations grown under
different initial oxygen-to-methane headspace ratios (Fig. 7B). Furthermore, the bio-
mass concentration had a significant effect on formate and acetate excretion (Fig. 7B,
the accuracy of the sample mean estimator was determined by the 99% confidence
intervals represented by the error bars) but not on carbon dioxide excretion. Acetate
excretion flux was observed during the exponential phase under a relatively higher ini-
tial biomass concentration and an initial oxygen-to-methane headspace ratio of 1:1
(Fig. 7B). However, these conditions led to a significantly lower growth rate than those
of the other three cultures (Fig. 7B).

Although the effects of changing the initial biomass concentration in the experiments
cannot be directly simulated using FBA, we approached the metabolic effects of different
initial biomass concentrations by constraining the GEM with the experimentally measured
growth rates, uptakes of methane and oxygen, and excretion of carbon dioxide, formate,
and acetate of the different cultures. The parametrized GEMs were then used to model
the metabolism of M. album BG8, revealing that only the culture with a relatively higher
initial biomass concentration and an initial oxygen-to-methane headspace ratio of 1:1
exhibited significantly higher (t test, P , 0.05) mean absolute fluxes in the overall meta-
bolic network (Fig. 7C) and in several metabolic pathways, including H4MPT, folate me-
tabolism, the partial serine cycle, RuMP cycle, the EMP variant of the RuMP cycle, and the
tricarboxylic acid (TCA) cycle (Fig. 7D). In the cultures grown under an initial oxygen-to-
methane headspace ratio of 1.25:1, we identified significant effects of the initial biomass
concentration (P , 0.05) on the mean absolute fluxes in the metabolic pathways of
H4MPT and the EMP and EDD variants of the RuMP cycle (Fig. 7D).

A detailed analysis of affected pathways and reactions in the acetate-excreting phe-
notype indicated that the BS variant of the RuMP cycle, the reactions of which are
linked to fermentation-like reactions, exhibited a high level of flux (Fig. 7E). In fact,
high levels of flux (Fig. 7E) were observed in the reaction that converts fructose-6P plus
glyceraldehyde-3P to xylulose-5P and erythrose-4P (rxn00785_c) and the subsequent
reaction that converts xylulose-5P to acetyl-P (rxn01187_c) (Fig. 3). Acetyl-P and ace-
tate can be interconverted through the reactions rxn00230_c and rxn00225_c (with
ATP generation), both of which exhibited high levels of flux in this phenotype (Fig. 7E).

FIG 6 Modeled effects of the oxygen-to-methane uptake flux ratio on metabolism in Methylomicrobium album BG8. Effects of variations in the oxygen
uptake flux on the growth rate, ATP generation (A), and organic compound excretion(B). Each metabolite was analyzed separately, and the excretion
reaction of each was set as the objective function in the FBA. For panel B, the carbon dioxide and formate lines partially overlap. (C) Analysis of the
maximum fractions of excreted flux for the three metabolites detected experimentally at different oxygen-to-methane uptake flux ratios. A constant
methane uptake flux of 10 mmol h21 gDCW21 was used in all of the analyses.
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Furthermore, the parametrized GEM of this acetate-excreting phenotype indicated a
second pathway leading to acetate excretion. Specifically, high flux was observed in
the pathway that converts pyruvate to acetyl-coenzyme A (CoA) (rxn05938_c) and ace-
tyl-CoA to acetate (rxn00175_c) (Fig. 3 and 7E) and also generates ATP (Fig. 3).
Intriguingly, the reactions that convert malate to malyl-CoA (rxn00934, Fig. 3) and
malyl-CoA to acetyl-CoA plus glyoxalate (rxn00331_c) (Fig. 3) both exhibited high lev-
els of flux, suggesting that this pathway replenishes acetyl-CoA at the expense of ATP

FIG 7 Effects of the initial biomass concentration on metabolism in Methylomicrobium album BG8 under two initial oxygen-to-methane headspace ratios
(20% methane and 20% oxygen; 20% methane and 25% oxygen). (A) Biomass, oxygen uptake, and excreted metabolite yields. The data are shown as
mean values of biological triplicates, and the error bars represent the standard errors. (B) Experimentally determined flux values; the error bars represent
the 99% confidence intervals. (C) The mean absolute flux throughout the metabolic network in the parametrized genome-scale metabolic model of each
experiment. (D) The mean absolute flux in each central metabolic pathway indicated in Fig. 3. For panels C and D, the mean values of the fluxes are
shown, the error bars represent the standard errors, and the P values were calculated using the two-sided t test. (E) Heatmap of the flux through each
reaction in the central metabolic pathways. ODL and ODH represent low and high relative initial biomass concentrations, respectively. The plus and minus
symbols denote the directions of the reactions in the biochemical network. In each reaction mixture, a value of 5 � 1024 mmol h21 gDCW21 was added to
the absolute flux value to avoid a zero flux and facilitate visualization of the flux values on a log2 scale.
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and connects the TCA cycle with the partial serine cycle. In turn, the active production
of malate and subsequent generation of acetyl-CoA would explain the high flux in the
TCA cycle in this phenotype (Fig. 7E). Interestingly, the flux analysis of this acetate-
excreting phenotype also revealed that the entire TCA cycle was used to produce one
molecule of ATP, three molecules of NADH, and one molecule of ubiquinol and to
excrete carbon dioxide (Fig. 3 and 7E). Taken together, the results of integrative model-
ing in this study suggest that the high acetate-excreting phenotype uses a mixed met-
abolic mode in which the pathways required for respiration and fermentation are
simultaneously active.

Metabolic versatility ofM. album BG8 and coupling between biomass production
and organic compound excretion. After separately analyzing and describing the effects
of the initial methane (Fig. 1), oxygen (Fig. 2), and biomass (Fig. 7) concentrations on the
metabolism of M. album BG8, we quantitatively investigated the associations of these fac-
tors with the oxygen-to-methane uptake flux ratio, an important parameter used to
define phenotypes (Fig. 6). In all of the experiments, the relationship between the initial
oxygen-to-methane headspace ratio and the calculated oxygen-to-methane uptake flux
ratio could be described using a bounded exponential model (Fig. 8A). At an initial oxy-
gen-to-methane headspace ratio of .0.5:1, the maximum oxygen-to-methane uptake

FIG 8 Metabolic versatility of and metabolic couplings in Methylomicrobium album BG8. (A) The oxygen-to-methane uptake flux ratio as a function of the
initial oxygen-to-methane headspace ratio under all of the experimental conditions. A bounded exponential model was fitted to the data; the gray-shaded
region represents the 95% confidence interval. (B) Results of a principal-component analysis (PCA) of the overall metabolic flux in each experimental
culture. Five simulated constrained models were included in the PCA to represent phenotypes optimized for growth, ATP generation, carbon dioxide
production, formate excretion, or acetate excretion. The top 5 reactions that contributed the most to the ordination of the phenotypes based on the
loadings in dimension 1 of the PCA are shown in the inset. (C) Multiple FBA wherein the acetate, carbon dioxide, or formate excretion reaction was
controlled and the biomass production reaction was maximized. The lines indicate the coupling between the rate of growth and the excretion flux of a
metabolite. Five hundred simulations were performed for each metabolite.
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flux ratio was 1.3:1 to 1.4:1 (Fig. 8A), consistent with the FBA result of an optimal oxygen-
to-methane uptake flux ratio of;1.5:1 for growth and ATP generation (Fig. 6A).

A PCA was applied to the results of the parametrized GEM to compare the meta-
bolic flux between different cultures (Fig. 8B). Based on the results, most of the experi-
mental phenotypes were clustered together, except the phenotype grown under 20%
methane, 25% oxygen, and a relatively high biomass (C20_O25_ODH) (Fig. 8B).
Interestingly, this phenotype also yielded an oxygen-to-methane uptake flux ratio of
1.4:1 (the highest observed in all our cultures), which deviated from the confidence
interval of the bounded exponential model (Fig. 8A). Cultures with different methane
and oxygen headspace percentages but similar initial oxygen-to-methane headspace
ratios also had similar oxygen-to-methane uptake flux ratios (Fig. 8A) but slightly differ-
ent metabolic fluxes, as indicated by their separation on the PCA plot (Fig. 8B).

The results of GEM simulations of phenotypes optimized for growth, ATP genera-
tion, or carbon dioxide, formate, and acetate excretion were also included in the PCA
as reference values (Fig. 8B). Although the metabolic fluxes resulting from the FBA
tended to differ between the experimental cultures, these values were relatively closer
to the reference phenotypes optimized for growth, acetate excretion, and ATP genera-
tion and clearly distant from the phenotypes optimized for carbon dioxide and formate
excretion (Fig. 8B). This metabolic versatility may have enabled M. album BG8 to opti-
mize for growth and ATP generation under different conditions by using different
pathways. A closer examination of the top five reactions that contributed the most to
the ordination of the phenotypes, based on the loadings in dimension 1 of the PCA
(inset in Fig. 8B), revealed that reactions involved in energy generation (rxn10042_c,
ATP synthase; rxn05468_c, oxygen transport via diffusion; rxn00519_c, oxaloacetate
carboxy-lyase; rxn10122_c, NADH dehydrogenase; and EX_H2O_e, water exchange)
were most relevant to define the phenotypes.

An analysis of the metabolic fluxes in the optimal phenotype for acetate production
revealed a cluster that included the phenotypes optimized for growth and ATP genera-
tion and the phenotypes indicated by the FBA of the experimental cultures. Acetate
may be a highly relevant metabolite that balances the pathways contributing to
energy and biomass production in M. album BG8. In fact, we hypothesized that a
trade-off existed between biomass production and acetate excretion in this strain. This
hypothesis was partially supported by the observation of a reduction in the growth
rate when acetate was excreted during the exponential phase (Fig. 7B).

To test our hypothesis, we applied multiple FBA in which the acetate excretion reac-
tion was controlled and the biomass production reaction was maximized. The lower
and upper bounds of both the methane and oxygen uptake fluxes were set to
210 mmol h21 gDCW21 and 0 mmol h21 gDCW21, respectively. This enabled the GEM
to automatically adjust the oxygen-to-methane uptake flux ratio to maximize the
growth rate under every acetate excretion condition. Consistent with the hypothesis,
the multiple FBA revealed a trade-off between the biomass production and acetate
and formate excretion (Fig. 8C) and a coupling between biomass production and car-
bon dioxide excretion (Fig. 8C). In fact, a carbon dioxide excretion flux between 0 and
2 mmol h21 gDCW21 (Fig. 8C), which matched the experimentally measured range,
favored the growth rate (Fig. 5D and 7B).

DISCUSSION

The aim of this study was to elucidate the system-level metabolism of M. album
BG8 using an integrative systems biology framework. The integration of time-series
growth and compound uptake and excretion data into a newly developed, high-qual-
ity GEM yielded novel insights into the metabolic mechanisms of this methanotrophic
bacterial strain. Furthermore, the experimental data collected in this study enabled the
construction of parametrized GEMs, and the application of an FBA enabled the system-
level understanding of the metabolism of M. album BG8 under different initial concen-
trations of oxygen, methane, and biomass.
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The conversion factor of 0.26 gDCW liter21 derived between the OD600 and DCW of
M. album BG8 in our study differs from a previously reported conversion factor of 0.33
gDCW liter21 (51). Although a linear regression of our data with a y intercept of 20.044
yielded a conversion factor of 0.32 gDCW liter21 (see Fig. S1 in the supplemental mate-
rial), this model was not used due to a lower adjusted R2 and a less significant P value
than those of our selected model. These results highlight the need for caution regard-
ing potential variability in the conversion factor between OD600 and DCW when study-
ing M. album BG8. However, the Monod model was used to estimate growth kinetics
as a function of the initial oxygen headspace percentage, and the calculatedmmax value
(0.11 h21) is similar to other reported growth rates for M. album BG8 (e.g., 0.10 h21 to
0.18 h21 with different concentrations of methane [24, 51], 0.09 h21 to 0.13 h21 with
different concentrations of chloromethane [52], and 0.11 h21 with methanol [53]).
However, the Monod model assumed that oxygen was the only limiting substrate,
which may not be true in a real-life scenario.

We identified oxygen as the key driver of methane oxidation by M. album BG8, as it
exerted strong effects on both biomass production and organic compound excretion.
In our analysis, optimal growth could be sustained at a ratio of ;1.5:1 between the
specific uptake rates of oxygen and methane. In agreement with our results, a ratio of
;1.5:1 between oxygen and methane uptake rates has also been found by FBA to be
optimal for growth for the methanotroph Methylomicrobium buryatense 5GB1 after
careful correction of pathways in the GEM (54). Biomass production was maximized
under culture conditions of 20% methane and 20% oxygen, with a yield of 0.021
gDCW mmol-CH4

21. This was the only culture indicated by the parametrized GEM to
have a completely active TCA cycle and to exhibit a low mean level of absolute flux
throughout its metabolic network. We speculate that these results of integrative M.
album BG8 modeling indicate an optimal methanotrophic state for the allocation of
molecular and metabolic resources in which optimal biomass production is preserved
and enzyme use is minimized. Future work is required to further explore this notion.
These results also complement the findings of recent work in which M. album BG8 was
identified as the bacterium with the highest biomass yield (nearly double that of the
others tested) among a group of industrially relevant methanotrophs (25).

Intriguingly, the GEM showed the excretion of methanol as a by-product of growth
under the condition with the lowest initial oxygen availability (5%). The GEM was para-
metrized (based on the experimental data) with an uptake rate bounded at 1.52 to
3.16 mmol h21 gDCW21 for methane and an uptake rate bounded at 0.05 to
2.24 mmol h21 gDCW21 for oxygen. A possible explanation for this methanol-excreting
phenotype from the FBA is that methanol works as an additional control for the meta-
bolic branching at low oxygen concentrations, leading to tetrahydrofuran-based oxida-
tion of formaldehyde in addition to metabolic flux through the EDD variant of the
RuMP cycle and partial serine pathways. Hence, instead of actual methanol release to
the extracellular environment (which was not detected in the medium), M. album BG8
could be using the mentioned pathways to more efficiently oxidize methanol to gain
biomass. A recent transcriptomics and metabolomics study of M. album BG8 grown on
methanol (55) yielded a phenotype that is similar to the condition with low availability
of oxygen. Increased transcription of genes related to carbon metabolism through the
RuMP EDD variant and pentose phosphate pathways as well as formaldehyde detoxifi-
cation through the glutathione dependent pathway, of which formate is the product,
were observed (55). Taking the reported transcriptomics and metabolomics data (55)
together with the GEM and FBA results presented here, they suggest that M. album
BG8 favors methanol oxidation over methane as oxygen availability diminishes.

Although carbon dioxide and formate are usually excreted during aerobic methano-
trophy (27), these metabolites have recently become valuable by-products (56, 57) and
are used as carbon sources in synthetically constructed methanotrophic modular mi-
crobial consortia to produce value-added compounds (58). In our study, the highest
carbon dioxide yield (0.39 mmol mmol-CH4

21) was achieved under culture conditions of
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20% methane and 20% oxygen, and the highest formate yield (0.025 mmol mmol-CH4
21)

was obtained under conditions of 20% methane and 25% oxygen. In contrast to a recent
report (25), formate excretion was detected in all of the cultures in this study. The pheno-
type with the highest formate yield exhibited the highest mean absolute flux through its
metabolic network and the second highest flux through the H4MPT formaldehyde oxida-
tion pathway. In other words, by actively using the complete H4MPT pathway, this pheno-
type can generate two reducing equivalents [NAD(P)H]. Based on these results, develop-
ers of metabolic engineering strategies that aim to optimize carbon dioxide and/or
formate excretion by M. album BG8 during methane metabolism may consider directing
carbon flux toward the H4MPT pathway. Nevertheless, future attempts to optimize for-
mate production byM. album BG8 should consider the achievement of significantly larger
formate yields by other methanotrophs grown on methanol instead of methane (59–61).
Although a previous study investigated the effects of methane and methanol on formate
excretion by M. album BG8, the authors did not detect formate under the tested condi-
tions (25), likely because the samples collected in the reported experiments corresponded
to the early stages of M. album BG8 growth in our experimental setup.

Acetate is a key precursor in high-value chemical production (62). Therefore, the
biotechnological potential of M. album BG8 in the conversion of methane to valuable
compounds depends on the ability to produce a high acetate yield. Among the differ-
ent culture conditions in this study, the highest acetate yield (0.072 mmol mmol-
CH4

21) was unexpectedly obtained under the conditions of 20% methane, 20% oxy-
gen, and a relatively high initial biomass concentration (Fig. 7A). This culture of M.
album BG8 excreted acetate during the exponential phase (Fig. S3) but resulted in a
relatively lower growth rate at this phase (Fig. 7B), indicating a trade-off between bio-
mass production and acetate excretion (Fig. 7) that was further supported by the
model FBA (Fig. 8C). However, the molecular and metabolic mechanisms behind this
trade-off remain unclear and need to be further investigated. Previous reports have
described acetate excretion by other gammaproteobacterial methanotrophs under
prolonged oxygen starvation (63) and oxygen-limited growth (64). Our experimental
results agree with those findings, as acetate excretion was detected in all cultures in
which oxygen was present at a very low concentration or completely depleted.
Similarly, the FBA showed a high acetate excretion flux in M. album BG8 at a low
(,1.5:1) oxygen-to-methane uptake flux ratio (Fig. 6C). Overall, we expect that the
metabolic characterization of acetate excretion presented here will support future
attempts to increase acetate yields and achieve the metabolic reprogramming of ace-
tyl-CoA conversion in M. album BG8.

Both the oxygen-to-methane headspace ratio and specific uptake ratio have been
explored intensively in methanotrophy studies (59, 63, 65–68), as these variables are
thought to control the differential activation of pathways required for the production of
biomass, generation of energy, and induction of fermentation-like metabolism (63, 64).
The M. album BG8 genome encodes homologs of enzymes found in the EDD and EMP
RuMP cycle variants in M. alcaliphilum 20Z and M. buryatense 5G(B1) (64). However, M.
album BG8 lacks 3 of the 18 key enzymes [i.e., phosphate acetyltransferase, D-fructose 6-
phosphate phosphoketolase, and NAD(P)-dependent malic enzyme] required for fermen-
tation-like metabolism in M. alcaliphilum 20Z (64) and M. buryatense 5G(B1) (63) at low
oxygen-to-methane concentration ratios. Nevertheless, the M. album BG8 cultures exhib-
ited a fermentation-like metabolism with high acetate excretion and low carbon dioxide
and formate excretion mainly during the stationary phase when the oxygen-to-methane
concentration ratio was very low. However, in terms of energetic investigations with the
current version of the GEM, it is important to note that the growth-associated and non-
growth-associated ATP maintenance have not been specifically determined for M. album
BG8. Thus, future work is required to experimentally determine these parameters for M.
album BG8, as has been described elsewhere (69, 70). Finally, we identified a nonlinear
relationship between the initial oxygen-to-methane headspace ratio and the oxygen-to-
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methane uptake flux ratio in batch cultures of M. album BG8, which will facilitate control
of the oxygen-to-methane uptake flux ratio in batch systems.

In summary, the experimental results and the FBA presented in this study elucidate
some of the characteristics of M. album BG8. However, many other aspects of metabolism
in this strain remain to be explored in detail. The newly developed GEM of M. album BG8
is a valuable tool that will aid future investigations of this important methanotroph in the
context of methane conversion applications in biomanufacturing or methane emission
mitigation in environments that experience dynamic fluxes of methane and oxygen.

MATERIALS ANDMETHODS
Strain. M. album BG8 was purchased from the American Type Culture Collection (catalog number

33003D). The genome of this strain has been sequenced (71) and is publicly available in the National
Center for Biotechnology Information (NCBI) repository (assembly ASM21427v3), the Integrated Microbial
Genomes (IMG) system (IMG genome ID 2508501010), and the KBase Central Store (source ID 686340.3).

Experimental procedures. For all of the experiments, M. album BG8 was cultured in 20 mL of nitrate
mineral salts (NMS) medium (72) in a 160-mL serum bottle capped with a butyl rubber stopper. The ini-
tial bacterial cell concentration was adjusted according to the experimental specifications. For experi-
ments with a relatively higher and lower initial biomass concentration (Fig. 7), the initial bacterial cell
concentration was increased by 1.6-fold and decreased by 3.8-fold compared to all other experiments.
The culture bottles were incubated at 30°C with agitation at 200 rpm, and CuCl2 (5 mM) was used as the
copper source (73). The headspace was filled with high-purity (99.995%) nitrogen, and the desired initial
mixing ratio between oxygen and methane in the headspace was obtained by injecting appropriate vol-
umes of the respective high-purity (99.7%) gases with a syringe. Here, the initial headspace volume-per-
volume percentage refers to the reported percentages of oxygen and methane. All the experiments
were performed with three biological replicates. Uninoculated controls were set up in parallel to assess
abiotic losses (which were insignificant). For downstream analyses, the cells were collected on 0.22-mm
filters (47 mm, MF-Millipore; MilliporeSigma, USA) and washed twice with sterile NMS medium.

Analytical analysis. To determine the headspace concentrations (mM) of hydrogen, oxygen, meth-
ane, and carbon dioxide, samples were collected using a gas-tight syringe (Hamilton, USA) and analyzed
on a gas chromatograph (GC-2010; Shimadzu, Japan) as described previously (74). After withdrawing a
gas sample, an equal volume of nitrogen gas was inserted into the headspace to make up the volume to
avoid a vacuum effect (75). Excreted metabolites in the aqueous phase were measured using a high-per-
formance liquid chromatography (HPLC) system (Waters Corporation, USA) equipped with an Aminex
ion exclusion HPX-87H column (Bio-Rad, USA) as described previously (74).

Experimental measurement of biomass composition. The concentrations of cellular amino acids
and total lipid fatty acids in bacterial cells were analyzed during the exponential growth phase.
Seventeen amino acids were measured quantitatively using HPLC at the Proteomics and Metabolomics
Facility, Center for Biotechnology, University of Nebraska-Lincoln (USA) by following standard protocols.
The total levels of 15 lipid fatty acids were measured quantitatively using thin-layer chromatography,
which was performed by a commercial laboratory (AminoAcids.com) by following standard protocols.

Conversion between the optical density and dry cell weight. To determine the conversion factor
between the observed optical density at 600 nm (OD600) and the dry cell weight (DCW), 13 cultures of M.
album BG8 were grown under 20% methane and 20% oxygen to various cell densities (OD600 of 0.2 to
1.0), and the corresponding lyophilized cell masses were weighed. OD was measured using a UV-visible
spectrophotometer (UV-1800, Shimadzu, Japan), and DCW was determined using an MS-TS analytical
balance (MS204; Mettler, Toledo, OH).

Calculations of yield, rate, and flux. The yields of total biomass (gDCW mmol-CH4
21) and of specific

metabolites (mmol mmol-CH4
21) were calculated by considering the changes in concentration per total

methane consumed throughout the experiment. The growth rate (per hour) was calculated over the expo-
nential phase as the log-linear regression between the biomass concentration and time. The specific uptake
rate and excretion rate were considered equivalent to the uptake flux and excretion flux, respectively, when
integrated as constraints into the GEM. To meet the steady-state assumption of the FBA, both rates or fluxes
were calculated for each metabolite (in mmol h21 gDCW21) in each experiment by linear regression of only
those data points that were collected during the exponential phase, as described in a previously published
protocol (76). Briefly, the growth rates were calculated using a linear regression between the log-biomass
concentration and time, with the growth rate being the regression coefficient. The uptake/excretion of
metabolites was calculated by using a linear regression between the metabolite concentration and the bio-
mass concentration that was divided by the growth rate. The resulting regression coefficient was the flux,
with a positive value indicating excretion and a negative value indicating uptake (76). The computed confi-
dence intervals of the slopes in the linear regression model informed the uncertainty of the measured data
and were applied as upper and lower constraints to the reactions in the GEM.

Reconstruction of a draft GEM. The GEM for M. album BG8 was reconstructed based on its genome
sequence (71). A draft version of the model was reconstructed using KBase (43) and converted into
Systems Biology Markup Language (SBML) for further curation and processing using the Sybil package
in R (77), the COBRApy library in Python (78), and the COBRA Toolbox 3.0 in MATLAB (42).

In silico growth medium. An in silico recipe of the chemical compounds required to produce bio-
mass (i.e., growth medium) must be inputted into a GEM. All of the components in the experimental
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NMS medium (72) were mapped to the KBase compounds database using the tools in the Known Media
Database (KOMODO) (79). In the GEM, methane and nitrate were set as the sole carbon and nitrogen
sources, respectively. The oxygen exchange reaction was set at a lower limit of 210 mmol h21 gDCW21

to ensure an aerobic growth condition.
Integration of experimentally determined biomass compositions into the GEM. In a GEM, an

accurate representation of the biomass composition enables better representations of the associated
cellular biology and biochemistry. The biomass composition is specified using a metabolic reaction that
accounts for the mass fraction of the different macromolecules that constitute 1 g of DCW. However, the
automatically reconstructed GEM in KBase only generated a draft biomass production reaction in which
the default biomass composition was generated according to the Gram classification of the bacterium
of interest. To account for the experimentally determined biomass composition, the M. album BG8 biomass
production reaction was manually edited using Python on the Jupyter Notebooks (80) interface of KBase.
Briefly, the reaction was updated by adding the experimentally measured concentrations of amino acids
and fatty acids and the intracellular organic metabolite, trace element, and cofactor concentrations used in
the GEM of M. buryatense 5G(B1) (34). Pyrroloquinoline quinone (PQQ), a cofactor specific for methanol de-
hydrogenase, was added manually to the biomass production reaction. Other biomass components were
obtained from the automatic KBase GEM reconstruction. The biomass production reaction in the GEM was
then formulated using the stoichiometric coefficients of all of the metabolites required to generate 1 g of
DCW. The following assumptions were made: growth-associated ATP maintenance of 59.8 mmol gDCW21,
which is used in the GEMs of Escherichia coli (81) and other methanotrophs (34, 37), and non-growth-associ-
ated ATP maintenance of 3.5 mmol gDCW21 h21, as reported elsewhere for the methanotroph M. parvus
OBBP (39). These ATP maintenance parameters have not been experimentally determined for M. album
BG8; thus, they are a limitation of the current GEM.

Gap filling and model refinement. After the biomass production reaction in the GEM was edited as
described in the previous section, automatic gap filling of the draft GEM was performed using KBase
and components of the in silico NMS medium as the nutrient source. All of the reactions added in the
gap-filling step were manually checked to determine their essentiality in the GEM using a leave-one-out
approach, wherein single reactions were excluded and an FBA was applied to maximize the biomass
production reaction. Reactions that were not essential to in silico biomass production were discarded.

After gap filling, the model was fine-tuned using an iterative refinement approach as described pre-
viously (42, 70). The gene-protein-reaction associations, reaction directionality, cofactor and coenzyme
assignments, and Enzyme Commission numbers in the draft GEM were subjected to manual curation,
using the following as references: (i) published literature, (ii) NCBI assembly annotations, (iii) BlastKOALA
(82) genome annotation, (iv) RAST (83) genome annotation and the (v) KEGG (84), (vi) BRENDA (85), and
(vii) KBase (43) reaction and metabolite databases.

The KBase-generated draft GEM in SBML format did not contain the chemical formulae of metabo-
lites. The formulae from the KBase biochemistry database were manually integrated into the GEM. The
balance of carbon, hydrogen, oxygen, and nitrogen was checked using the checkBalance function in the
COBRA Toolbox 2.0. The final version of the M. album BG8 GEM was named iJV803 according to standard
convention (86), where i stands for in silico, J and V are the initials of the name of the GEM builder, and
803 represents the number of included metabolic genes.

Gene locus tags in the GEM. M. album BG8 genes found in KBase (source ID 686340.3) were identi-
fied using locus tags that differed from those in the NCBI (accession no. NZ_CM001475) and Joint
Genome Institute (genome ID 2508501010) depositories. To reconcile these differences and facilitate the
use of the GEM in future research applications, all of the genes present in the GEM were aligned against
genes identified in different repositories using Blast (87) (identity cutoff, 99%) to identify the corre-
sponding locus tags. The annotations of all of the key genes involved in methane oxidation were further
verified against the reported functions in the literature (24, 71), with no discrepancies. The locus tags of
all of the genes in the GEM and their corresponding annotations in the different repositories are sum-
marized in Table S1 in the supplemental material.

Quality control and quality assurance. The quality of the iJV803 GEM was checked using the
MEMOTE platform (88), and a report of the model can be obtained at https://juanvillada.github.io/iJV803/
docs/index.html.

Genome-scale metabolic modeling and FBA. FBA (44) was performed using the R package Sybil
(77). To avoid infeasible metabolic cycles, the cycle-free FBA method (cfFBA) was also applied to meta-
bolic modeling using the R package CycleFreeFlux (89). Linear programming problems were solved
using the GNU Linear Programming kit (version 4.65). Although the objectives of optimization varied
according to the objective of each analysis (90), the biomass production reaction was the default objec-
tive function in the GEM. The FBA method was applied in all phenotype phase plane analyses (91),
whereas the cfFBA method was used to optimize parametrized GEMs. After normalizing the metabolic
flux of each reaction to the methane specific uptake rate of each parametrized GEM, a principal-compo-
nent analysis (PCA) of the metabolic fluxes of all reactions in the parametrized GEMs was performed
using the R function prcomp.

Statistics. The t test was applied to test the difference between the mean of two groups, and analy-
sis of variance (ANOVA) was applied to test the difference between more than two groups. The paramet-
ric tests were applied based on three criteria: (i) the Shapiro-Wilk test indicated a normal distribution, (ii)
the variance of the samples was within the same order of magnitude, and (iii) the same number of inde-
pendent samples was in each group. The majority approach was adopted when the criteria for paramet-
ric testing did not apply perfectly for some sample groups (as in the case for some of the data presented
in Fig. 5F).
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Data availability. The final version of the model can be downloaded in RData, SBML, JSON, and XLS
formats from https://juanvillada.github.io/iJV803.
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