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Identifying electron transfer coordinates
in donor-bridge-acceptor systems using mode
projection analysis
Xunmo Yang1, Theo Keane2, Milan Delor2, Anthony J.H.M. Meijer2, Julia Weinstein2 & Eric R. Bittner1,3

We report upon an analysis of the vibrational modes that couple and drive the state-to-state

electronic transfer branching ratios in a model donor-bridge-acceptor system consisting of

a phenothiazine-based donor linked to a naphthalene-monoimide acceptor via a platinum-

acetylide bridging unit. Our analysis is based upon an iterative Lanczos search algorithm that

finds superpositions of vibronic modes that optimize the electron/nuclear coupling

using input from excited-state quantum chemical methods. Our results indicate that the

electron transfer reaction coordinates between a triplet charge-transfer state and lower lying

charge-separated and localized excitonic states are dominated by asymmetric and symmetric

modes of the acetylene groups on either side of the central atom in this system. In particular,

we find that while a nearly symmetric mode couples both the charge-separation and charge-

recombination transitions more or less equally, the coupling along an asymmetric mode is far

greater suggesting that IR excitation of the acetylene modes preferentially enhances charge-

recombination transition relative to charge-separation.
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O
ne of the highly desirable goals of modern chemical
physics is to directly manipulate the outcome of a
chemical reaction using ultrashort laser pulses. The

absorption of a visible or ultraviolet photon by a molecule
initiates a cascade of events driven by a sudden change in the
electronic state followed by nuclear motion, in which the excess
vibrational energy is rapidly dissipated and redistributed. One
suggested means of controlling the outcome of an electron
transfer process is to use an infra-red light to selectively excite
specific nuclear motions that are strongly coupled to an electron
transfer event1–4.

In this context, dynamics of photoinduced electron transfer
have been investigated in a series of three donor-bridge-acceptor
molecular triads5–7. The triads consist of a phenothiazine-based
(PTZ) donor linked to a naphthalene-monoimide (NAP) acceptor
via a Pt-acetylide bridging unit7. The structures of the triads are
given in Fig. 1a. All three systems undergo a similar sequence of
processes after following ultraviolet excitation: electron transfer
from the Pt-acetylide centre to the NAP acceptor, resulting in a
charge-transfer state, D�Bþ �A� , which due to strong spin–
orbit coupling efficiently populates triplet charge-transfer state,
CT. Further electron transfer leads to a fully charge-separated
state (CSS) Dþ �B�A� with the electron and hole localized on
the acceptor and donor units, respectively. The charge-transfer
state can also undergo charge recombination to form a localized
triplet exciton on the NAP unit (3NAP), or the ground state. Both
CSS and 3NAP decay to the singlet ground state on the
nanoseconds and sub-millisecond time scales, respectively. We
also show in Fig. 1b the triplet energy along a linear interpolation
coordinate connecting the 3NAP minimum energy geometry to
the CT minimum energy geometry. Between the two is a
significant energy barrier reflecting the relative rotation of the
NAP and the PTZ groups about the CC-Pt-CC axis.

The ultraviolet pump-IR push experiments performed on these
triads showed that infrared (IR) excitation of bridge vibrations
after the initial ultraviolet pump radically changes yields of
intermediate states. Excitation of the -CC-Pt-CC- localized
vibrations in the CT state of PTZ-complex 2 at 1 ps after the
ultraviolet pump decreases the yield of the CSS state, whilst
increasing that of the 3NAP state. IR excitation in the course of
electron transfer has caused a 100% decrease in the CSS yield in 1,
B50% effect in 2 and no effect in 3. This demonstration of
control over excited-state dynamics strongly suggests that the
acetylide stretching modes are significantly involved in the
electron/nuclear coupling in these systems and play central roles
in the electron transfer process.

This paper investigates the excited-state dynamics in such
systems with the goal of understanding how specific vibrational
modes can dramatically influence the state-to-state dynamics. To
do so, we employ a mode projection method we have developed

recently that efficiently determines a minimal set of vibrational
normal modes that optimize the electronic coupling between two
electronic states. We combine this approach with a time-
convolutionless master equation (TCLME) method for comput-
ing state-to-state rate constants. The approach has been
benchmarked and used for many systems, ranging from organic
photovoltaics to the molecules in Closs’ classical experiments8–14.
Besides the computation of transfer rate constant, our method
includes a mode projection scheme, which can parse out a
hierarchy of nuclear motions primarily coupled to the transition.
The most important vibrational motion is termed ‘primary mode’
in our previous work, as a Lanczos algorithm is employed in the
projection13,14. Our results indicate that the majority of the
electronic coupling is mediated by local acetylide stretching
modes.

The structure of this paper is as follows. We first review our
theoretical approach which connects an ab initio determination
of all input parameters to the state-to-state dynamics. We then
present the results of these investigations and discuss their
implications in interpreting the IR control experiments discussed
above. We focus on compound 2 as best illustrating the
competition between the two pathways of electron transfer.

Results
Quantum chemical workflow. In this paper, we focus our
attention on the PTZ system and anticipate that the other systems
in this study will exhibit similar behaviour due to the overall
similarity of the various donor groups. For purposes of facilitating
the calculations, the molecular structures are simplified such that
the P(Bu)3 moieties and octyl chain of the NAP group were
truncated to -PH3 and a single methyl group, respectively. In all
quantum chemical calculations, we used the B3LYP functional
Stuttgart/Dresden (SDD) pseudo-potential and associated valence
basis set for Pt and 6-31G(d,p) for the other atoms. We also used
the polarizable continuum model to account for the dichlor-
omethane solvent15,16 as per from refs 5–7. The transition dipole
moments and electron/hole distributions surfaces were calculated
using the Multiwfn (v3.3.8) programme17. An energy level
diagram based on our calculations is sketched in Fig. 2a
together with the corresponding electron/hole distribution plots.
To obtain the diabatic potentials and couplings, we perform a
geometry optimization of both the lowest triplet (3NAP) and the
third triplet excited states (CT). As discussed below, we use the
optimized states as reference geometries for determining the
diabatic coupling within the Generalized Mulliken Hush (GMH)
approximation18,19. The normal modes and vibrational
frequencies were obtained by harmonic expansion of the energy
about the CT state. Once we have determined the diabatic states
and couplings, we use the TCLME approach from ref. 20 to
compute the time-correlation functions and state-to-state golden-
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Figure 1 | Chemical structures and energies. (a) Chemical structures of the donor (D), bridge (-Pt-), acceptor (NAP) complexes considered here.

(b) Triplet energy along a linear interpolation coordinate connecting the 3NAP minimum energy geometry and the CT minimum energy geometry.
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rule rates. We also use the projection technique to determine an
optimal set of normal modes and determine the number of such
optimal modes that are required to converge the time-correlation
functions to a desired degree of accuracy. We then use both the
CT and 3NAP minima as reference states for computing the
diabatic potentials and couplings necessary for computing rates
and modes. Those obtained at the CT minimum can be used to
compute transitions originating in from the CT state, while those
obtained at the 3NAP minimum can be used for transitions
terminating in the 3NAP state.

Primitive model. The primitive model consists of a system with
localized electronic states, |ai and |bi and a set of internal
vibrational modes, q.

H ¼ Ea Vab

V�ab Eb

� �
þ ga � q 0

0 gb � q

� �
þ

P
n
‘o1n a

y
n anþ 1=2

� � ð1Þ

where ½an0 ; ayn�¼dnn0 . We shall refer to these modes as the pri-
mitive modes. Also we have adopted a compact notation for the
linear electron–phonon coupling

gi � q¼
XN

n

gin ayn þ an

� �
=2 ð2Þ

where gi are the linear force vectors acting on the phonon modes.
Diagonalizing just the electronic part (at the initial geometry), our
model produces a set of vertical excitation energies,

Ea;b¼~E�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vabj j2þD2

q
; ð3Þ

where ~E¼ Eaþ Ebð Þ=2 and D¼ Ea� Ebð Þ=2 and tan 2y¼ |Vab|/D is
the mixing angle between the local electronic states.

In practice, we construct this Hamiltonian using input from
quantum chemistry. The electronic Hamiltonian is referenced to
a localized set of adiabatic states determined at an initial starting
geometry, typically taken to be at the energy minimum of either
the initial or final states, in which case we can set either ga¼ 0 or
gb¼ 0. In other words, we can obtain Ea,b directly from quantum
chemistry and need to determine the diabatic energies Ea;b and the
off-diagonal diabatic coupling Vab. To do so, we use either the
Edmiston-Ruendenberg (ER) localization scheme or GMH
approach to approximate the donor and acceptor states18,19.
GMH works well for linear or near-linear systems, but does not
generalize well to non-collinear systems with multiple charge
centres. ER localization can be seen as an extension of GMH
which overcomes some drawbacks of GMH21. The molecular
systems here are nearly linear and the charge centres generally

along the C�C axis. As the result, both the GMH and ER
localization approaches are expected to give similar results. The
diabatic coupling given by GMH is

Vab¼
2D mabj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ma� mbð Þ2þ 4m2
ab

q ð4Þ

where ma and mb are the dipole moments of corresponding
adiabatic states, and mab is the transition dipole moment between
two states. Note, that Vab is also related to the adiabatic energy
difference and mixing angle via Vab¼ (Ea�Eb)sin(2y)/2.

Computing spectral densities and transition rates. Once a
suitable set of parameters and vibrational modes have been
determined, we construct the spectral density in terms of the
electron–phonon coupling operators between states n and m

SnmðoÞ¼
Z 1
�1

dte� iotCnmðtÞ; ð5Þ

where

CnmðtÞ¼
X
qq0

V̂nmq0 ðtÞV̂mnqð0Þ
* +

; ð6Þ

is the autocorrelation function of the polaron-transformed
electron–phonon coupling operator in the Heisenberg repre-
sentation and h?i denotes a thermal average over the vibrational
degrees of freedom. The derivation and explicit form for the
kernel in equation (5) is quite lengthy and is given in ref. 20. It is
important to notice that Cnm(t) includes scattering between
different phonon modes q-q0 as the result of the electronic
transition. Using this approach, the golden-rule rates are given by

knm¼ lim
t!1

2Re
Z t

0
dtCnmðtÞe� i~onmt : ð7Þ

where ~o is the transition frequency. In a practical sense, we take
t to be some finite time at which the autocorrelation function
Cnm(t) has relaxed to zero. In our numerical studies, we use the
Cnm(t) to benchmark the convergence of our model with respect
to the number of nuclear modes.

Primary modes. Transforming the electron/phonon coupling to
the non-local representation results in a new operator with both
diagonal (longitudinal) and off-diagonal (transverse) compo-
nents: The same unitary transformation that diagonalizes the
electronic part of the Hamitonian mixes the force vectors g1 and
g2. Since this is a linear transformation, we define new non-
orthogonal coordinates and forces that describe the electron/
phonon coupling. Operationally, these are taken as vectors along
each of the normal vibrational modes. By analysing such forces
we can gain insight into the dynamics of the transition as well as
open avenues for developing improved approximations for the
state-to-state transition rates. In our previous works13, we
presented a Lanczos-based ranking algorithm that projects out
a ranked set of orthogonal nuclear modes that optimally capture
the electron/nuclear couplings. We refer to the highest-ranked
mode identified by the algorithm as the ‘primary Lanczos mode’
(PLM).

For our purposes, an ‘exact’ calculation involves including all
nuclear vibrational modes. In our previous work we showed that
both C(t) and the total transfer rate constant, knm calculated using
only the first few projected modes provide an excellent agreement
with the exact quantities computed using the full set of normal
modes, as well as the experimental rates, when parameterized
using accurate quantum chemical data13. Since this is a non-
standard technique, we include in the Supplementary
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Figure 2 | Energy level diagram for the triplet states of PTZ at the 3NAP

and CT state geometries. The electron/hole distributions for the CT and

CSS are shown to the right (green¼ electron, blue¼ hole).
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Information (SI) a set of Mathematica scripts for constructing the
Lanczos modes.

Marcus theory rates. By far the simplest approach for computing
the transition rates is using the Marcus expression for the electron
transfer rate constant,

kMarcus¼
2p
‘

Vabj j2 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4plkBT
p exp � lþDG�ð Þ2

4lkBT

� �
: ð8Þ

Table 1 provides a summary of the various parameters we com-
pute for various transitions in the PTZ system. The two columns
under the heading labelled 3NAP correspond to parameters
computed using the 3NAP minimum as a reference geometry
while those under the heading labelled CT correspond to para-
meters computed using the CT reference geometry. A careful
examination of this table portends a difficulty in using the 3NAP
geometry as a reference. In fact, for the CSS-3NAP, the driving
force is in the wrong direction since the derived CSS state lies
lower in energy than the 3NAP state, which is inconsistent with
the experimental observations.

Time-convolutionless master equation rates. To compute the
rates using the TCLME expression (equation (7)), we begin by
computing the electron/nuclear correlation function and compare
its convergence with respect to the number of Lanczos modes.
Recall that the Lanczos modes are determined by an iterative
ranking algorithm that identifies superpositions of normal modes
that optimize the electron/phonon coupling. Figure 3 gives a
summary of these numerical tests in which we compute Cnm(t)
versus time with an increasing number of Lanczos modes. In all
cases, we compare to the ‘exact’ result in which all nuclear modes
were used. The top two figures (Fig. 3a,b) use the 3NAP as the
reference geometry. In these cases, convergence of Cnm(t) with
respect to the number of modes proved to be problematic for
both transitions considered. Correspondingly, the rates computed
using this geometry also compare poorly against the observed
experimental rates, although are an order of magnitude closer
than Marcus rates. We speculate that this may signal a break-
down in the Condon approximation which insures separability
between nuclear and electronic degrees of freedom.

In Table 2, we summarize both the experimental and computed
state-to-state rates for the PTZ system. Given the complexity and
size of the system, overall the numerical rates computed using the
exact TCLME approach are in quantitative agreement with the
experimental rates, particularly for those using the CT geometry
as a reference point (cf, Fig. 3c,d). We note that fewer projected
modes (30–50) are needed to converge the correlation function
out to the first 50 fs when using the CT geometry. Furthermore,
while Marcus rate for the CT-CSS transition agrees with the
exact TCLME result, it misses the CT-3NAP experimental rate

by 4 orders of magnitude whereas the TCLME rate is in much
better agreement with the experimental rate.

If we compare the exact TCLME rate, which uses the full set of
normal modes in constructing the Cnm(t) correlation function, to
the rate computed used only the PLM (TCLMEþ PLM), for both
the CT-CSS and CT-3NAP rates, the single mode approxima-
tion is within 86% of the exact result. This indicates that
while multiple vibrational normal modes contribute to the
electronic coupling, the linear combination identified by the
projection algorithm carries the vast majority of the electron/
phonon coupling. This is entirely consistent with our previous
study of triplet energy transfer in small donor-bridge-acceptor
systems13,14.

Breakdown of the condon approximation. Our theoretical
model explicitly relies on two assumptions: that the excited-state
surfaces are nearly parabolic and we can separate nuclear and
electronic motion via the Condon approximation. The first
assumption holds since the excited-state potentials are parabolic
along C�C stretching coordinate as shown in refs 5,6. The latter
assumption implies that the diabatic coupling is independent of
nuclear coordinates, that is, our parameters do not change
significantly with geometric changes in the molecular shape. In
Fig. 4 we plot the GMH diabatic coupling along an interpolation
coordinate connecting the 3NAP equilibrium geometry to the CT
equilibrium geometry. It is clear that diabatic couplings undergo
significant changes (note the y axis is logarithmic), especially in
the CSS -3NAP case, where the coupling changes by over
two orders of magnitude with only a small change in the nuclear
geometry.

To explore the effect of the change of diabatic coupling,
we substituted the original coupling with an average coupling, �V ,
computed along the interpolation coordinate. The correction
brings significant improvements, to both the Marcus and TCLME
approaches, at the 3NAP geometry, especially for the problematic
CSS-3NAP case where the discrepancy between the theoretical
and experimental rates is reduced significantly. In fact, using the
averaged coupling brings the TCLME rates into near perfect
agreement with the experimental rates.

However, changing how the diabatic coupling is determined
will affect the D in equation (3) and hence the computed driving
force DG� used in the Marcus expression since

D¼ tanð2yÞ Vj j: ð9Þ

For the CSS-3NAP transition at the 3NAP geometry, DG� is
insensitive to whether V or �V is used even though �V is 2 orders of
magnitude greater than diabatic coupling computed at the 3NAP
geometry. The reason for this is that even though the diabatic
coupling changes considerably, the mixing angle between the
diabatic and adiabatic representations changes only slightly.
On the other hand for the CT-3NAP transition at the 3NAP
geometry, the diabatic coupling is much larger and �V is on the
same order of magnitude as the original coupling. Here, we see
that the driving force obtained using the averaged coupling
DG��V ¼ � 0.851 eV is much closer to the electronic energy
difference between the two optimized states (0.818 eV).

However, for transitions originating from the CT geometry,
using an averaged coupling does not lead to quantitative
improvement of the rates, most markedly for the CT-CSS
transition. In fact in this case, the average coupling �V4(Ea� Eb)/
2 in equation (3) and produces an physically unreasonable mixing
angle between the adiabatic states. Looking at Fig. 4, we suspect
that the best choice of diabatic coupling is where the coupling
varies little with molecular geometry.

Table 1 | Driving force DG�, reorganization energy l, diabatic
coupling V, mean diabatic coupling �V and DG�V (driving force
calculated with �V) for different transitions.

3NAP geom. (0 eV) CT geom. (0.818 eV)

CSS-3NAP CT-3NAP CT-3NAP CT-CSS

DG� (eV) 0.414 �0.913 �0.781 �0.20
l (eV) 1.01 0.271 1.38 1.08
V(eV) 2.56E-4 0.345 1.34E-2 9.22E-3
�V (eV) 6.34E-2 0.106 0.106 0.192
DG��V (eV) 0.414 �0.851 �0.770 NA
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Primary mode analysis. As discussed earlier, our ranking algo-
rithm allows us to rapidly determine the vibrational motions that
optimize the electron/nuclear couplings. In addition to providing
an accurate way to compute rate constants, they provide addi-
tional insight into actual dynamics. Here, we shall focus upon the
transitions originating from the CT geometry. Generally speak-
ing, the highest-ranked mode, termed the PLM, captures much of
the short-time dynamics of the transitions. We can see this by

looking at the Cab(t) correlation functions in Fig. 3 where the
primary mode reproduces the exact dynamics up until the first
recurrence at E10 fs. Adding more modes rapidly improves
agreement out to longer and longer times; however, the majority
of the coupling is actually concentrated in the PLM.

In Fig. 5 we show PLMs for the CT-3NAP and CT-CSS
transitions as projected onto the normal modes of the full
molecule. In all cases, the PLM is composed of a linear
combination of normal modes spanning the entire range of
molecular motions. Here, most of the projection is concentrated
upon the higher frequency modes involving the acetylene
stretching modes which confirms our initial suspicion that these
stretching modes are strongly coupled to the charge-transfer
dynamics. However, while both transitions involve acetylene
bond-stretching motions, the CT-CSS transition involves a
symmetric combination, whereas the CT-3NAP involves both
the symmetric and anti-symmetric combination, as shown in
Fig. 6.

It is tempting to conclude that the secondary IR push used in
the experiments preferentially excites the asymmetric mode and
thus selectively enhances the CT-3NAP transition. Indeed, from
our calculations, the IR oscillator strength of the asymmetric
mode is roughly an order of magnitude greater than the
symmetric mode. It agrees to the fact that in experiment, the

0.2

0.4

0.6

0.8

1.01.0

0.5

–0.5

1.0

0.8

0.6

0.4

0.2

10 20 30 40 50 –0.4

10 20 30
–0.2

0.2

0.4

0.6

0.8

1.0

10

a b

c d

20 30 40 50

–0.2
10 20 30 40 50

40 50

t (fs)

t (fs)

t (fs)

t (fs)

151 modes

101 modes

51 modes

1 modes

Exact

31 modes

21 modes

11 modes

1 modes

Exact

Re (C            (t))
3NAP
CT→3NAP

Re (C            (t))CT
CT→3NAP Re (C           (t))CT

CT→CSS

Re (C              (t))
3NAP
CSS→3NAP

Figure 3 | Convergence of electronic correlation for specified transitions with respect to projected modes. The ‘exact’ result corresponds to using all

modes. (a) CSS-3NAP at 3NAP geometry, (b) CT-3NAP at 3NAP geometry, (c) CT-3NAP at CT geometry and (d) CT-CSS at CT geometry. (For

electronic correlation functions see equation 6).

Table 2 | Comparison between experimental and computed state-to-state transition rates for PTZ.

CT geom. 3NAP geom.

Rates (ps� 1) CT-CSS CT-3NAP CT-3NAP CSS-3NAP

Exp. 0.0879 0.097 0.097 1.84E-3
Marcus 0.846 0.2043 1002.82 8.250E-11
Marcus (mean V) 365.7 12.75 95.23 5.04E-6
TCLME 0.725 0.0562 12.89 3.022E-8
TCLMEþ PLM 0.627 0.0488 21.6 0.500E-4
TCLME (mean V) – 2.79 8.931 1.51E-3

The experimental rates for each process are obtained from (ref. 6) the 3-ps lifetime of the CT state, and the relative yields of CT-4CSS, CT-43NAP and CT-4ground state competing processes.
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asymmetric normal mode extinction coefficient is 3 times larger
than that for the symmetric normal mode. In the CT-3NAP,
both types of acetylene stretching motions (symmetric and
asymmetric) contribute more or less equally to the electronic
coupling while in the CT-CSS transition, only the symmetric
acetylene motion carries the majority of the coupling. Conse-
quently, driving these modes with the IR pulse increases the
electronic coupling, consistent with the experimental observation
that IR excitation following formation of the CT states accelerates
the CT-3NAP transition relative to the CT-CSS transition.
This claim can be justified theoretically by examining how
the vibrational population of a given normal mode enters into the
transition rate equation in equation (7), which we give in the
‘Methods’ section.

Discussion
We present here an analysis of the vibrational modes that couple to,
and drive, the state-to-state electronic transitions, and largely
determines their relative efficiencies of electron transfer in a model
Donor-Bridge-Acceptor system, where the -CC-Pt-CC- unit acts as
a bridge. Our analysis is based upon an iterative Lanczos search
algorithm that finds superpositions of vibronic modes that optimize
the electron/nuclear coupling using input from ab initio excited-
state quantum chemical methods. Our results indicate that the
electron transfer coordinate which corresponds to electronic
transition between the branching charge-transfer state and CSS;
or between the CT state and the acceptor-localized triplet state
(3NAP), can be dominated by symmetric and anti-symmetric
stretching vibrations involving two acetylide groups on both sides of
the Pt centre. We show that the relative magnitude of coupling
between the CT and the CSS states versus that between the CT and
3NAP states largely determines the outcome of the IR push. In
particular, the relative magnitude of coupling between the CT and

the CSS state versus that between the CT and the 3NAP states
largely determine the outcome of the IR push. In particular, while
the symmetric mode couples both the CT-3NAP and CT-CSS
transitions more or less equally, the coupling along asymmetric
mode is far greater in the CT-3NAP transition. This analysis is
consistent with recent optical control experiments on these
molecular units reported in refs 5–7.

The proposed analysis, which is described in technical detail in
the ‘Methods’ section, allows one to identify reaction coordinates
in ultrafast transitions between coupled electronic states. The
results agree with the experimental observations, and identify
the reaction coordinate for the electron transfer process in the
model system. The algorithm illustrated here in the example of
photoinduced charge-transfer may be of considerable utility for
understanding of a multitude of light-induced reactions where
several electronic states are involved in ultrafast transformations.

Methods
Electron/phonon Hamiltonian. We present here a recapitulation of the electron/
phonon coupling model and derivation of the golden-rule rates from ref. 20. Our
analysis begins by writing a general Hamiltonian describing the coupling between a
set of discrete electronic states nj i with a set of phonon oscillators. Assuming that the
coupling is linear on both the diagonal and off-diagonal, one obtains (with :¼ 1)

H¼
X

n

En nj i nh j þ
X
nmi

gnmi nj i mh j a
y
i þ ai

� �
þ
X

i

oia
y
i ai: ð10Þ

Here |ni’s denote electronic states with vertical energies En , ayi and ai are the creation
and annihilation operators for the normal mode i with frequency oi, and gnmi are the
coupling parameters of the electron–phonon interaction which we take to be linear in
the phonon normal mode displacement coordinate. Parameters for this model H can
be obtained from electronic structure calculations as described in the manuscript and
in our recent publications13,14. Code for extracting the necessary information and
performing the analysis are included in the Supplementary Information.

We can separate H into a part that is diagonal with respect to the electronic
degrees of freedom,

H0¼
X

n

En nj i nh j þ
X

ni

gnni nj i nh j a
y
i þ ai

� �
þ
X

i

oia
y
i ai; ð11Þ

and an off-diagonal part V

V¼
X0
nmi

gnmi nj i mh j a
y
i þ ai

� �
; ð12Þ

where the prime at the summation sign indicates that the terms with n¼m are
excluded. This separation is useful for the following two reasons. First, in many
systems only off-diagonal coefficients gnmi are small compared to gnni Hence, V can
be treated as a perturbation. Second, for many cases of interest, the initial density
matrix commutes with H0. In this case, the separation gives simpler forms of the
master equations.

A crucial component of our analysis is to diagonalize H0 with respect to the
normal mode degrees of freedom. This is achieved with the unitary shift operator
(polaron transformation)

U¼e
�
P

ni

gnni
oi

nj i nh j a
y
i � ai

� �
¼
X

n

nj i nh je
�
P

i

gnni
oi

a
y
i � ai

� �
ð13Þ
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Figure 5 | Projection of primary mode on normal vibrational modes. (a) CT-3NAP, and (b) CT-CSS calculated at CT geometry onto the normal modes

of CT. Embedded molecule shows the atomic displacement vectors of primary mode.
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Figure 6 | Acetylene bond-stretching motions. Symmetric (a) and anti-

symmetric (b) stretch.
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as

~H0¼U � 1H0U¼
X

n

~En nj i nh jþ
X

i

oia
y
i ai; ð14Þ

where the renormalized electronic energies are

~En¼En�
X

i

g2
nni

oi
: ð15Þ

Applying the polaron transformation to V gives

~V ¼ U � 1VU

¼
P0
nmi

gnmi nj i mh j a
y
i þ ai� 2gnni

oi

� �
e

P
j

gnnj � gmmjð Þ
oj

a
y
j � aj

� �0
B@

1
CA ð16Þ

We now introduce dressed operators

Mnmi¼gnmi a
y
i þ ai �

2gnni

oi

� �
e

P
j

gnnj � gmmjð Þ
oj

a
y
j � aj

� �
; ð17Þ

we can rewrite ~V in a compact form as

~V¼
X0
nmi

nj i mh jMnmi: ð18Þ

The terms involving (gnnj� gmmj)/oj can be related to the reorganization energy

El
nm¼

X
j

gnnj � gmmj
	 
2

o2
j

: ð19Þ

Similarly the energy difference between the renormalized energies is related to the
driving force

DEnm¼~En �~Em: ð20Þ
As can be seen from equation (16), in the transformed picture the electronic
transitions from state |ni to |mi are accompanied not only by the creation or
annihilation of a single phonon of mode i but also by the displacements of all the
normal modes.

Golden-rule rate expression. Pereverzev and Bittner (ref. 20) also give the Fermi
Golden-rule rates for transitions between states m and n as in terms of the
autocorrelation function of their time-dependent coupling

kmn¼ lim
t!1

2<e
Z t

0
dt
X

ij

MnmiMmnjðtÞ
� �

e� i ~En �~Emð Þt; ð21Þ

where

MnmiMmnjðtÞ
� �

¼ Tr MnmiMmnjðtÞros
eq

� �
: ð22Þ

Due to the explicit form of operators Mnmi (equation (17)) the calculation of the
correlation functions in equation (22) can be reduced to the averaging of the
displacement operators over the equilibrium ensemble. After straightforward but
lengthy calculations, one can arrive at a compact expression for the autocorrelation
function of the electron/phonon coupling

MnmiMmnjðtÞ
� �

¼ gnmigmnj Dnmi �ni þ 1ð Þeioit �Dnmi�nie� ioit þOnmið Þð
	 Dnmj �nj þ 1

	 

eiojt �Dnmj�nje� iojt þOnmj

	 

þ dij �ni þ 1ð Þeioit þ dij�nie� ioit



qnmðtÞfnmðtÞ:

ð23Þ
Here

Dnmi¼
gnni � gmmið Þ

oi
; ð24Þ

Onmi¼
gnniþ gmmið Þ

oi
; ð25Þ

�ni¼
1

eboi � 1
; ð26Þ

qnmðtÞ¼e
i
P

j

D2
nmj sinojt

; ð27Þ

fnmðtÞ¼e� 2
X

j

�njþ
1
2

� �
D2

nmj 1� cosojt
	 


: ð28Þ

Note that �ni is the Bose population of vibrational normal mode i. If specific
vibrational normal modes of the system are driven by an IR pulse, the population
of these modes are increased and consequently their overall contribution to the
golden-rule rate is enhanced.

Projected mode approach. For a two-state system, the adiabatic Hamiltonian in
equation (1) can be written as

H¼ E1 0
0 E2

� �
þ g11 g12

g21 g22

� �
� qþ p2

2
þ 1

2
qT � O � q: ð29Þ

where the gij vectors denote the electronic couplings and q denotes the normal
displacement coordinates. If we imagine that the {gij} define three unique and
non-orthogonal vectors in the N-dimensional space of vibrational modes, we can
use Schmidt orthogonalization to project a three-dimensional basis embedded in
N-dimensional that entirely captures the electronic coupling. Our previous work
indicates that such decomposition provides a robust description of the short-time
dynamics9,10.

To parametrize equation (29), we start from the diabatic form of Hamiltonian,
where only static off-diagonal couplings are kept. Furthermore, if we compute at a
minimum of potential energy surface (PES), one diagonal g can be eliminated, and
we get

HDia;e¼
E1 V12

V21 E2

� �
þ 0 0

0 1

� �
g22 � qþHosc; ð30Þ

where we assume g22 is the gradient of the second state’s PES at the minimum of
the first state’s PES, and the off-diagonal coupling V12 can be approximated by
diabatic coupling computed from any diabatization method. The two Hamiltonians
can be related by unitary transformation resulting in

H ¼ UT HDiaU

¼ E1 0
0 E2

� �
þ sin2y 1

2 sin 2y
1
2 sin 2y cos2y

� �
g22:qþHosc:

ð31Þ

Once we have H into this form, we can begin to define a reduced set of modes that
capture the electronic coupling.

It is crucial to notice that the vectors given in equation (31) are not linearly
independent and we can not generate a reduced subspace as before. Consequently,
special care must be taken to generate the reduced subspace. To do so, we use an
iterative approach taking the normalized vector v1¼ g22/|g22| as a starting point.
We initialize each step indexed by k, by defining a projection operator

Pk¼vk 
 vk ð32Þ
and its complement Qk¼ I�Pk. Pk is the projection operator for the kth mode. We
also construct

p¼
X

k

Pk ð33Þ

as the total projection operator for all krN modes. We then project the hessian
matrix X into each subspace viz.

Op¼Pk � O � Pk Oq¼Qk � O �Qk ð34Þ
and diagonalize each to obtain eigenvalues and eigenvectors {ap, Mp} and {aq, Mq}
respectively. As above, Xp and Xq are N	N matrices. The first set will have a
single non-trivial eigenvalue and the second set will have N� k non-trivial
eigenvalues. As above we collect the non-trivial eigenvectors associated with each
to form the orthogonal transformation matrix

Mk¼ Mp;Mq
 �

: ð35Þ
and again transform the full hessian X into this new vector space to form the
N	N matrix X0 . At each step in the iteration, the transformed hessian, X0 is in the
form of a k	 k tridiagonal submatrix in the upper-left part of the matrix and a
diagonal submatrix in the lower-right. For example, after k¼ 3 iterations, one has a
Hessian matrix of the form:

O0¼

a1 b1 0 0
b1 a2 b2

0 b2 a3 ckþ 1 ckþ 2 � � � cN

ckþ 1 akþ 1 0
ckþ 2 akþ 2

..

. . .
.

0 cN 0 aN

0
BBBBBBBBB@

1
CCCCCCCCCA

ð36Þ

We note that only the kth mode is coupled to the N� k remaining modes. Since all
of the transformations are orthogonal, diagonalizing X0 at any point returns the
original Hessian matrix.

To continue iterating, we take the kth row of X0 and zero the first k elements

e¼ 0; � � � 0; ckþ 1; ckþ 2; � � � ; cNf g: ð37Þ
This is the coupling between the upper tridiagonal block and the lower diagonal
block. We thus obtain a new vector

vkþ 1¼e �M ð38Þ
which is then reintroduced into the iteration scheme.

At any point along the way, we can terminate the iteration and obtain a
reduced set of couplings. This approach is analogous to the ‘power method’ for
finding the largest eigenvector of a matrix; consequently, it converges first upon the
vector with the largest electron/nuclear coupling–which we refer to as the ‘primary
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mode’. After k-steps, the final electron–phonon couplings are then obtained by
projecting the original set of couplings (in the normal mode basis) into the final
vector space.

For the first iteration, v1 is parallel to the bare electron–phonon coupling vector
g22 and the associated frequency is v1 �O � v1. The subsequent iterations introduce
corrections to this via phonon–phonon coupling. For example, for the k¼ 3
iteration, we would determine the active vector space in terms of the upper-left
3	 3 block of the matrix in equation (36).

X03¼
a1 b1 0
b1 a2 b2

0 b2 a3

0
@

1
A ð39Þ

Diagonalizing X03 returns a set of frequencies and associated eigenvectors which are
then used to compute the electron–phonon couplings in this reduced active space.
After N� 1 iterations, X0 is a fully tridiagonal matrix and diagonalizing this
returns the original normal mode basis.

Data availability. Source code for computing rates and performing the
mode analysis are available in the Supporting Information. Quantum
chemistry log files will be archived for at least 3 years following the publication
date of the paper and can be available upon request to the corresponding author.
Request for materials should be directed towards JW at the University of
Sheffield.
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