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ORIGINAL RESEARCH

Sex- Specific Differences in Clinical 
Outcomes After Percutaneous Coronary 
Intervention: Insights from the TAILOR- PCI 
Trial
Mina Madan , MD, MHS; J. Dawn Abbott , MD; Ryan Lennon , MS; Derek Y. F. So , MD;  
Andrea M. MacDougall, MD; Mary Ann McLaughlin, MD; Vishakantha Murthy, MD; Jacqueline Saw , MD; 
Charanjit Rihal , MD; Michael E. Farkouh, MD, MSc; Naveen L. Pereira , MD; Shaun G. Goodman , MD, MSc; 
on behalf of the TAILOR- PCI Investigators* 

BACKGROUND: TAILOR- PCI (Tailored Antiplatelet Initiation to Lessen Outcomes due to decreased Clopidogrel Response After 
Percutaneous Coronary Intervention) studied genotype- guided selection of antiplatelet therapy after percutaneous coronary 
intervention versus conventional therapy with clopidogrel. The presence of CYP2C19 loss- of- function alleles in patients treated 
with clopidogrel may be associated with increased risk for ischemic events. We report a prespecified sex- specific analysis of 
genotyping and associated cardiovascular outcomes from this study.

METHODS AND RESULTS: Associations between sex and major adverse cardiac events (MACE: cardiovascular death, myo-
cardial infarction, stroke, stent thrombosis, and severe recurrent ischemia) and Bleeding Academic Research Consortium 
(BARC) bleeding at 12 months were analyzed using Cox proportional- hazards models. Among 5276 randomized patients, 
loss- of- function carriers were observed in ≈36% of both sexes, and >80% of carriers were heterozygotes. At 12 months, after 
adjustment for baseline differences, risks of MACE (HR , 1.28 [0.97 to 1.68]; P=0.088) and BARC bleeding (hazard ratio [HR], 
1.36 [0.91 to 2.05]; P=0.14) were comparable among women and men. There were no significant interactions between sex 
and treatment strategy for MACE interaction P value (Pint=0.59) or BARC bleeding (Pint=0.47) nor for sex and genotype (MACE 
Pint=0.15, and BARC bleeding Pint=0.60).

CONCLUSIONS: CYP2C19 loss- of- function alleles were present in ≈1 in 3 women and men. Women had similar adjusted risks 
of MACE and bleeding as men following percutaneous coronary intervention. Genotype- guided therapy did not significantly 
reduce the risk of MACE or bleeding relative to conventional therapy for both sexes.

REGISTRATION: URL: https://www.clini caltr ials.gov; Unique identifier: NCT01742117.
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Women undergoing percutaneous coronary inter-
ventions (PCI) in the setting of acute coronary 
syndromes (ACS) or ST- segment– elevation 

myocardial infarction are often older than men, and 
have more baseline comorbidities.1,2 Women have lower 

rates of coronary revascularization, and are prescribed 
evidence- based medicines less frequently after ACS 
hospitalization.3– 5 Prior studies of sex- based differences 
in major adverse cardiovascular events (MACE) have 
demonstrated conflicting findings.6– 12 While unadjusted 
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rates of MACE and mortality have been higher among 
women in several studies, these associations were no 
longer significant after adjusting for differences in base-
line comorbidity in most studies.6– 9 Female sex has been 
identified as an independent risk factor for major bleed-
ing both in the short term (30  days) and longer term 
(1 year and beyond) follow- up.12 It is unknown whether 
CYP2C19 genotype modifies sex- specific differences for 
bleeding or ischemic events. These relationships were 
explored in a prespecified analysis of the TAILOR- PCI 
(Tailored Antiplatelet Initiation to Lessen Outcomes due 
to Decreased Clopidogrel Response After Percutaneous 
Coronary Intervention) randomized clinical trial.

METHODS
The authors declare that all supporting data are avail-
able within the article (and its online supplementary files).

Summary of TAILOR- PCI
TAILOR- PCI was an international, multicenter, open- 
label randomized trial. The methodology of TAILOR- 
PCI (including study design, inclusion and exclusion 
criteria, patients, and clinical outcomes) has been 
published.13,14 In brief, 5302 patients undergoing PCI 
for ACS or stable coronary artery disease were ran-
domized to the genotype- guided (GG) group and 
underwent point- of- care testing, or the conventional 
therapy (CT) group. CYP2C19 loss- of- function (LOF) 
carriers (CYP2C19*2 and *3) were prescribed ticagre-
lor and noncarriers received clopidogrel. Point- of- care 
genotyping was performed using Spartan Rx (Spartan 
Bioscience, Canada). Patients randomized to the CT 
group were prescribed clopidogrel. All subjects un-
derwent laboratory- based genotyping using TaqMan 
(Applied Biosystems) after 12 months. All patients re-
ceived dual antiplatelet therapy, with the P2Y12 inhibi-
tor and aspirin for 12 months after PCI. Randomization 
was stratified for age, sex, site, and clinical presen-
tation. The primary end point was a composite of 
MACE comprising cardiovascular mortality, myocar-
dial infarction, stroke, stent thrombosis, and severe 
recurrent ischemia at 12  months. A secondary end 
point was major or minor bleeding at 12 months. The 
primary analysis focused on patients with CYP2C19 
LOF alleles and a secondary analysis included all ran-
domized patients; a prespecified sensitivity analysis 
allowed for multiple events per patient. The research 
ethics board at each center approved the study, and 
all participants provided written informed consent. 
Notably, the sex of study participants was ascertained 
by self- report.

The TAILOR- PCI study provides a large contem-
porary PCI- treated cohort in which to examine sex- 
specific differences in presentation, management, and 
clinical outcomes. The main objectives of this analysis 
were to (1) study sex- based differences in clinical out-
comes in a large ACS population undergoing PCI using 
all randomized patients; (2) characterize the prevalence 
of LOF carriers in this cohort by sex, and learn how this 
impacts the occurrence of MACE and bleeding events; 
and (3) evaluate for important interactions between sex 
and treatment strategy, sex and genotype, and sex 
and optimal medical treatment (see definition of opti-
mal medical treatment below).

Outcomes
The primary end point for this analysis was a compos-
ite of MACE as defined for the main trial, at 12 months 
after PCI. Secondary outcomes for this analysis were 
the individual components of the primary end point, all- 
cause mortality, and the safety end points of Bleeding 
Academic Research Consortium (BARC) bleeding 
types 2, 3, and 5, and types 3 and 5.

CLINICAL PERSPECTIVE

What Is New?
• Although CYP2C19 loss- of- function alleles are 

present in ≈1 in 3 women and men, genotype- 
guided selection of antiplatelet therapy after 
percutaneous coronary intervention did not sig-
nificantly reduce the risk of ischemic events or 
bleeding compared with conventional therapy 
with clopidogrel for both sexes.

What Are the Clinical Implications?
• Based on the TAILOR- PCI (Tailored Antiplatelet 

Initiation to Lessen Outcomes due to decreased 
Clopidogrel Response After Percutaneous 
Coronary Intervention) study, a genotype- 
guided strategy for the selection antiplatelet 
therapy after percutaneous coronary interven-
tion is not routinely recommended.

Nonstandard Abbreviations and Acronyms

BARC Bleeding Academic Research 
Consortium

CT conventional therapy
GG genotype- guided
LOF loss of function
MACE major adverse cardiac events
TAILOR- PCI Tailored Antiplatelet Initiation to 

Lessen Outcomes due to 
Decreased Clopidogrel 
Response After Percutaneous 
Coronary Intervention
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Statistical Analysis
Continuous and ordinal variables were tested with the 
Wilcoxon rank sum test. Categorical variables were 
tested using the χ2 test. Summary statistics were 
based on those without missing data. Frequencies of 
*2/*3 allele LOF carriers were compared by sex with 
the Armitage trend test. Carrier status was catego-
rized as noncarrier, heterozygous, and homozygous 
carrier. Cox proportional hazards regression models 
were used to estimate the adjusted hazard ratios for 
the effect of sex on time to first event for study end 
points. A likelihood ratio test was used to test the 
effect of sex. As in the primary analysis for the trial, 
age group and clinical presentation were selected a 
priori as covariates, with site of enrollment included 
as a random effect; treatment arm, however, was not 
included. Additionally, the following covariates were 
also selected post hoc because they were distributed 
significantly differently between men and women: 
country of enrollment, diabetes, hypertension, current 
smoker, kidney disease (estimated glomerular filtration 
rate <60), number of stents placed (square- root trans-
formed) and peri- PCI loading antiplatelet medication. 
For some outcomes with few events, Firth’s correction 
for monotone likelihood was used to enable estimation 
of hazard ratios. Variables with substantial missing data 
(>10%) were excluded from being covariates. Missing 
data for eligible covariates (≤10% missing) had single 
values imputed based on the sample means specific 
to strata defined by age group, sex, and country (di-
abetes, n=19; hypertension, n=19; number of stents, 
n=20; low estimated glomerular filtration rate, n=461) 
to allow modeling on the entire data set, and avoid loss 
of power because of missing covariates. Kaplan– Meier 
methods were used to estimate unadjusted event rates 
in the first 12 months with the log- rank test used for 
group differences.

Interaction Analyses
The following interaction effects on study end points 
were analyzed: sex and genotype, sex and treatment 
(GG versus CT), and sex and optimal medical treat-
ment. All models included the main effects for any 
interaction terms. An optimally treated patient was 
defined as a patient who received a specific P2Y12 
receptor inhibitor according to their genotype (clopi-
dogrel/noncarrier and ticagrelor/LOF carrier); a LOF 
carrier who received clopidogrel would be considered 
not optimally treated. Cox proportional hazards mod-
els were used with covariates as described above. To 
investigate the interaction between genotype and sex, 
patients were categorized into 6 groups: clopidogrel/
male/noncarrier; clopidogrel/male/LOF; clopidogrel/
female/noncarrier; clopidogrel/female/LOF; ticagrelor/
male; and ticagrelor/female.

Although a P value of <0.05 was considered sta-
tistically significant, multiple comparisons were made, 
without correction for multiple comparisons. All analy-
ses were undertaken using SAS version 9.4 (Cary, NC).

RESULTS
Baseline Characteristics
Of 5302 patients randomized in TAILOR- PCI, 5276 pa-
tients were eligible for analysis13; 1293 patients (24.5%) 
were women, and 3983 patients (75.4%) were men 
(Figure  1). Women were older than men, with lower 
body weight, but similar body mass index (Table  1). 
Approximately 6% of patients were LOF carriers for 
both sexes, with >80% of patients with LOF being 
heterozygotes (Figure 2). Women had a higher preva-
lence of diabetes, hypertension, and kidney disease 
than men, and lower rates of current smoking, prior 
myocardial infarction, and prior coronary revasculari-
zation. Approximately 50% of subjects presented with 
an acute myocardial infarction, and 40% had multives-
sel disease at angiography; most patients received 1 
stent during PCI, and one third of subjects had radial 
vascular access.

Clinical Outcomes
At 12 months, women had a greater risk of experienc-
ing the primary end point than men (6.5% versus 4.3%; 
hazard ratio [HR], 1.52 [95% CI, 1.16– 1.98]; P=0.002) 
(Table 2, Figure 3). Women also had a greater risk of 
12- month BARC 2- 3- 5 bleeding events (3.2% versus 
1.9%; HR, 1.69 [95% CI, 1.14– 2.49]; P=0.008) and 
BARC 3– 5 bleeding (2.0% versus 1.2%; HR, 1.73 [95% 
CI, 1.06– 2.81]; P=0.027) compared with men. The 
most common sites of bleeding were gastrointestinal 
bleeding and hematoma formation.

After adjustment for baseline differences, risks of 
the primary end point (HR, 1.28 [95% CI, 0.97– 1.68]; 
P=0.09) and BARC 2- 3- 5 bleeding (HR, 1.36 [95% CI, 
0.91– 2.05]; P=0.14) or BARC 3- 5 bleeding (P=0.30) 
were similar between men and women (Table 2). These 
results were also similar when assessing for multiple 
events per patient and in the LOF cohort specifically.

Interactions and Exploratory Analyses
Several analyses for potential interactions were under-
taken. When compared with CT, GG therapy was as-
sociated with nonsignificant reductions in the primary 
end point for both men and women (male: 3.9% versus 
4.8%, P=0.18, and female: 6.1% versus 6.8%, P=0.57). 
A significant interaction between sex and randomized 
treatment strategy was not identified for the primary 
ischemic end point interaction P value (Pint=0.59) or 
for BARC 2- 3- 5 bleeding events (Pint=0.47, Figure 4A, 
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Figure S1, Table S1). This finding was similar for MACE 
and bleeding end points when examining the LOF co-
hort alone (Figure 4B, the primary analysis for TAILOR- 
PCI). However, compared with CT, assignment to GG 
resulted in numerically lower rates of cardiovascular 
mortality among women, but not men (male: GG 0.6% 
versus CT 0.7%, P=0.82; female: GG 0% versus CT 
1.4%, P=0.08, Pint=0.034). Specifically, there were 3 
cardiovascular deaths (1.4%) among women with LOF 
assigned to CT (2 were because of myocardial infarc-
tion, and 1 of unknown cause) and no cardiovascular 
deaths (0%) among women with LOF assigned to GG 
(unadjusted log- rank P=0.08).

When studying the relationship between sex and 
CYP2C19 genotype among 5044 participants with 
evaluable data (Figure 5, Figure S2), although we ob-
served significantly higher unadjusted rates of MACE 
and BARC bleeding among noncarrier women re-
ceiving clopidogrel when compared with noncarrier 
men (MACE: 7.2% versus 4.0%, log rank P<0.001; 
adjusted HR, 1.56 [95% CI, 1.11– 2.20]; and BARC 2- 
3- 5 bleeding: 3.3% versus 1.7%, log rank P=0.006; 
adjusted HR, 1.60 [95% CI, 0.95– 2.69]), these event 
rates were not statistically different among women 
and men for LOF carriers, regardless of whether they 
received clopidogrel or ticagrelor. Furthermore, the 
interaction of sex with genotype was not significant 
(primary end point Pint=0.15; BARC 2- 3- 5 bleeding 
Pint=0.60). Among LOF carriers receiving ticagrelor, 2 
women (n=197, 1.0%) compared with no men (n=638, 
0%, unadjusted log rank P=0.01) experienced stent 

thrombosis. The unadjusted rates of stent thrombo-
sis among those subjects receiving clopidogrel (LOF 
carrier or noncarrier) were not significantly different 
among men and women, and the interaction between 
sex and genotype was not significant for this variable 
(Pint=0.08).

We explored the interaction of sex with whether 
the patient received optimal P2Y12 inhibitor therapy 
according to genotype (Figures  S3 and S4). Among 
subjects considered optimally treated, women had a 
greater risk of MACE compared with men (6.8% ver-
sus 4.0%, unadjusted log rank P<0.001; adjusted HR, 
1.48 [95% CI, 1.08– 2.03]). For patients considered 
not optimally treated, the risk of the primary end point 
was not significantly different between sexes (female 
5.7% versus male 5.8%, unadjusted log rank P=0.95; 
Pint=0.067). While greater unadjusted rates of BARC 2- 
3- 5 bleeding were observed among optimally treated 
women compared with men (3.4% versus 2.0%, un-
adjusted log rank P=0.011; adjusted HR, 1.41 [95% CI, 
0.90– 2.21), the interaction of sex with treatment status 
was not significant (Pint=0.53).

DISCUSSION
In this study of sex- based differences in the TAILOR- 
PCI trial, there were no important sex differences in 
the prevalence of CYP2C19 LOF carriers (≈1 in 3 sub-
jects), and >80% of subjects were heterozygotes for 
LOF genotypes. Women had significantly higher rates 

Figure 1. Study cohort.
A total of 5302 patients were randomized; however, only 5276 patients were eligible for analysis. 
ACS indicates acute coronary syndrome; CAD, stable coronary artery disease; and PCI, 
percutaneous coronary intervention.

ACS/CAD
PCI

n = 5276

Female
n =1293

Genotype Guided 
Therapy
n =648

Conven onal 
Therapy
n =645

Male 
n =3983

Genotype
Guided Therapy

n =1993

Conven onal
Therapy
n =1990
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of 12- month MACE and BARC bleeding; however, after 
adjusting for differences in presenting characteristics, 
female sex was no longer a predictor of adverse is-
chemic events or bleeding. Based on the prespeci-
fied statistical assumptions made for TAILOR- PCI, 
genotype- guided therapy did not emerge as a domi-
nant strategy for women compared with conventional 

Table 1. Baseline and Procedural Characteristics

Female
n=1293

Male
n=3983 P value

Age, y, median (IQR) 67 (59– 74) 61 (54– 69) <0.001

Weight, kg, median (IQR) 70.3 
(60– 84.8)

85.1 
(74– 99.7)

<0.001

Body mass index, kg/m2, 
median (IQR)

27.7 
(24.2– 32.5)

28 
(25.1– 31.8)

0.18

Randomization strategy 0.96

Genotype- guided 
therapy

648 (25) 1993 (75)

Conventional therapy 645 (24) 1990 (76)

Race <0.001

White 815 (63.3) 2541 (64)

East Asian 292 (22.7) 895 (22.5)

South Asian 55 (4.3) 181 (4.6)

Black 49 (3.8) 75 (1.9)

Hispanic or Latin 
ethnicity

38 (3) 110 (2.8)

Other* 39 (2.9) 165 (4.2)

Country of enrollment 0.02

United States 693 (53.6) 2024 (50.8)

Canada 243 (18.8) 914 (22.9)

South Korea 332 (25.7) 972 (24.4)

Mexico 25 (1.9) 73 (1.8)

Loss of function 
CYP2C19 genotype

0.72

Loss- of- function 
carrier

444 (35.8) 1405 (36.6)

Loss- of- function 
noncarrier

797 (64.2) 2434 (63.4)

Cardiac risk factors

Diabetes 426 (33.1) 1002 (25.2) <0.001

Hypertension 917 (71.2) 2386 (60.1) <0.001

Dyslipidemia 680 (52.8) 2067 (52.1) 0.65

Current smoker 235 (18.2) 1050 (26.4) <0.001

Family history of CAD 516 (40.1) 1484 (37.4) 0.09

Comorbidities

Prior myocardial 
infarction

141 (10.9) 617 (15.5) <0.001

Prior PCI 242 (18.8) 982 (24.7) <0.001

Prior coronary bypass 
surgery

61 (4.7) 323 (8.1) <0.001

Prior heart failure 124 (9.6) 320 (8.1) 0.08

Peripheral artery 
disease

34 (2.6) 102 (2.6) 0.89

Stroke/TIA 40 (3.1) 108 (2.7) 0.47

CAD presentation 0.32

Stable CAD 214 (16.6) 758 (19.0)

Acute coronary 
syndrome

Unstable angina 449 (34.7) 1173 (29.5)

Non- STEMI 374 (28.9) 1160 (29.1)

 (Continued)

Female
n=1293

Male
n=3983 P value

STEMI 256 (19.8) 892 (22.4)

Pre- PCI LVEF, %, 
median (IQR)

60 (54– 66) 58 (51– 65) <0.001

Laboratory investigations

Kidney disease, eGFR 
<60 mL/min

220 (18.5) 319 (8.8) <0.001

Creatinine, mg/dL, 
median (IQR)

0.8 (0.7– 0.9) 1.0 (0.8– 1.1) <0.001

Baseline hemoglobin, 
g/dL, median (IQR)

13 (12– 13.8) 14.5 
(13.5– 15.6)

<0.001

Procedural characteristics

Multivessel disease 521 (40.5) 1698 (42.8) 0.14

PCI lesion location

Left anterior 
descending

665 (51.6) 2046 (51.6) 0.97

Right coronary 465 (36.1) 1401 (35.3) 0.60

Left circumflex 324 (25.2) 1086 ( 27.4) 0.12

Left main 27 (2.1) 100 (2.5) 0.39

Number of stents placed, 
median (IQR)

1 (1– 2) 1 (1– 2) 0.002

Vascular access site 0.30

Radial 442 (34.3) 1310 (33.0)

Femoral 839 (65.1) 2647 (66.7)

Other* 7 (0.5) 12 (0.3)

Intraprocedural anticoagulant use

Unfractionated heparin 1108 (86) 3409 (85.9) 0.90

Bivalirudin 145 (11.3) 524 (13.2) 0.07

Low- molecular- weight 
heparin

65 (5) 213 (5.4) 0.66

Loading antiplatelet 
therapy at time of PCI

0.03

Clopidogrel 912 (70.9) 2666 (67.2)

Ticagrelor 263 (20.4) 944 (23.8)

Prasugrel 25 (1.9) 102 (2.6)

Ticlopidine 0 (0) 2 (0.1)

Other* 6 (0.5) 7 (0.2)

None 81 (6.3) 247 (6.2)

Unless otherwise specified, values are n (%). CAD indicates coronary 
artery disease; eGFR, estimated glomerular filtration rate; IQR, interquartile 
range; LVEF, left ventricular ejection fraction; PCI, percutaneous coronary 
intervention; STEMI, ST- segment- elevation myocardial infarction; and TIA, 
transient ischemic attack.

*Other includes 16 Native American or Alaskan American subjects (7 
females, and 9 males) and rest of subjects include those with unclassified 
race/ethnicity 32 females, and 156 males.

Table 1. Continued
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therapy. However, among women with LOF alleles, 
those assigned to GG may have lower cardiovascu-
lar mortality compared with those receiving CT. While 
female noncarriers prescribed clopidogrel had higher 
rates of MACE and BARC 2- 3- 5 bleeding compared 
with men, there were no significant sex- by- genotype 
interactions identified for these end points. A related 
finding was that women considered optimally treated 
with either ticagrelor or clopidogrel according to their 
genotype may be at higher risk of MACE events than 
optimally treated men, given the trend for a significant 
interaction for this analysis. As observed in several prior 
comparative studies,1,2 women were older and had a 
higher prevalence of certain cardiovascular risk factors 
such as diabetes, hypertension, and kidney disease, 
lower rates of smoking, and prior revascularization, 
and similar body mass index, extent of coronary artery 

disease, and procedural characteristics compared 
with men.

Although female sex is not an independent criterion 
in the Academic Research Consortium’s definition of 
a patient with high bleeding risk, female sex is often 
associated with several defining criteria, such as older 
age, chronic kidney disease, and anemia, resulting in 
a higher prevalence of high bleeding risk status among 
women compared with men.15,16 Our study confirms 
that that adjustment for baseline differences corrects 
the excess bleeding signal we observed for female 
participants in TAILOR- PCI. Compared with men, prior 
studies have demonstrated that women have high 
platelet reactivity, both at baseline, and while taking 
clopidogrel therapy.17– 20 This high platelet reactivity was 
associated with significantly lower rates of bleeding 
among women.18,19 We observed numerically higher 
adjusted rates of BARC bleeding among women, but 
these findings did not reach statistical significance, 
possibly because we were underpowered to uncover 
these relationships, and low bleeding rates overall.

While the TAILOR- PCI study demonstrated that a GG 
strategy resulted in a 34% (HR, 0.66) relative reduction 
in ischemic events compared with conventional clopi-
dogrel therapy without point- of- care genotyping among 
LOF carriers, this reduction did not achieve conventional 
statistical significance; however, consistent with this 
finding, the direction of reduction was similar in women 
(HR, 0.54) as compared with men (HR, 0.71).13 We also 
did not identify significant interactions of sex with ran-
domized treatment strategy for MACE (Pint=0.59) or 
BARC 2- 3- 5 bleeding (Pint=0.47) in the cohort of all ran-
domized subjects. Furthermore, these findings did not 
change when examining the relationships in the LOF 

Figure 2. Genotype status.
Genotype status among 5276 randomized patients: female 
patients n=1293, and male patients n=3983.
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Table 2. Clinical Outcomes 12 Months After Percutaneous Coronary Intervention

Female
n=1293

Male
n=3983

Hazard ratio
(95% CI)

Log- rank 
P value

Adjusted hazard 
ratio (95% CI)

Adjusted 
P value*

Primary end point

Cardiovascular mortality, MI, stroke, 
severe recurrent ischemia, stent 
thrombosis

81 (6.5) 167 (4.3) 1.52 (1.16– 1.98) 0.002 1.28 (0.97– 1.68) 0.09

Secondary ischemic end points

Cardiovascular mortality 15 (1.2) 26 (0.7) 1.78 (0.94– 3.36) 0.07 1.01 (0.52– 1.98) 0.97

Myocardial infarction 26 (2.1) 53 (1.4) 1.52 (0.95– 2.43) 0.08 1.23 (0.75– 2.00) 0.42

Stroke 8 (0.6) 14 (0.4) 1.77 (0.74– 4.21) 0.19 1.20 (0.49– 2.97) 0.69

Severe recurrent ischemia 38 (3.1) 82 (2.2) 1.44 (0.98– 2.12) 0.06 1.36 (0.92– 2.03) 0.13

Stent thrombosis 11 (0.9) 22 (0.6) 1.55 (0.75– 3.19) 0.23 1.12 (0.53– 2.39) 0.76

All- cause mortality 18 (1.4) 34 (0.9) 1.64 (0.92– 2.90) 0.09 0.93 (0.51– 1.70) 0.82

Safety end points

BARC bleeding 2,3,5 39 (3.2) 72 (1.9) 1.69 (1.14– 2.49) 0.008 1.36 (0.91– 2.05) 0.14

BARC Bleeding 3,5 25 (2.0) 45 (1.2) 1.73 (1.06– 2.81) 0.03 1.31 (0.79– 2.19) 0.30

Unless otherwise specified, values are n (%). Percentages are Kaplan– Meier estimates. BARC indicates Bleeding Academic Research Consortium; and MI, 
myocardial infarction.

*Adjusted P values (likelihood ratio test) adjusted by age, clinical presentation, country of enrollment, diabetes, hypertension, current smoking, kidney disease 
(estimated glomerular filtration rate<60 mL/min), number of stents, and use of a thienopyridine loading dose.
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cohort alone. Given the multiple comparisons under-
taken, it is difficult to know whether the significant inter-
action identified— a lower risk of cardiovascular mortality 

with GG therapy in LOF carrier women but not men— is 
spurious; the extremely low adjusted HR of 0.07, with a 
broad CI of 0.00 to 2.18, makes this observation seem 

Figure 3. Event rates among all randomized patients according to sex.
Kaplan– Meier estimated event rates (unadjusted) in female and male subjects for the primary end point 
of time to cardiovascular mortality, myocardial infarction, stroke, stent thrombosis, or severe recurrent 
ischemia (A) and the safety end point time to Bleeding Academic Research Consortium 2, 3, 5 bleeding 
(B); n=5276 randomized patients: female patients n=1293, male patients n=3983. HR indicates hazard ratio.
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Figure 4. Analysis of interaction between sex and treatment strategy.
Interaction analysis between sex and randomized treatment strategy. A, All randomized patients 
(n=5, 276). (B) LOF cohort (n=1849 patients). BARC indicates Bleeding Academic Research Consortium; 
CT, conventional therapy; CV, cardiovascular; GG, genotype- guided therapy; and LOF, loss of function. 
Adjusted hazard ratios and 95% CIs are shown.
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less plausible. On the other hand, this observation may 
have some biological plausibility based on the pub-
lished literature to date. A prior single center observa-
tional report of 1260 of patients undergoing CYP2C19 
genetic testing at the time of PCI (62% with ACS, and 
31% female) demonstrated a 2- 3- fold higher risk of 
MACE, but not bleeding, among LOF carriers receiving 
clopidogrel, compared with prasugrel or ticagrelor; this 
effect was observed among both men and women.21 
The POPular- GENETICS study (CYP2C19 Genotype- 
Guided Antiplatelet Therapy in ST- Segment Elevation 
Myocardial Infarction Patients –  Patient Outcome After 
Primary PCI) demonstrated the noninferiority of using 
a GG approach to de- escalate antiplatelet therapy to 
clopidogrel from more potent P2Y12 inhibitors such as 
ticagrelor or prasugrel in patients with ST- segment– 
elevation myocardial infarction.22 In addition, this study 
demonstrated lower rates of PLATO (The Prospective, 
Randomized, Platelet Inhibition and Patient Outcomes) 
trial major or minor bleeding and BARC 2- 3- 5 bleeding 
using a GG strategy among patients with ST- segment– 
elevation myocardial infarction as compared with pre-
scribing ticagrelor/prasugrel for all.22 The results of 
the prespecified sex- based subgroup analysis of the 
POPular GENETICS trial were consistent with those 
in the overall cohort. In a GG therapy group, more pa-
tients would be expected to be appropriately assigned 

to clopidogrel based on genotyping with the attendant 
benefits of lower bleeding rates as opposed to the 
comparator group (using ticagrelor or prasugrel for all 
regardless of genotype). Both studies demonstrated 
higher clinical event rates among women compared 
with men; however, subgroup analyses did not identify 
significant interactions of sex with randomized treatment 
strategy. A meta- analysis of 15 949 patients (98% had 
ACS, 29% female) from 7 randomized trials, including 
TAILOR- PCI, found that ticagrelor or prasugrel therapy 
compared with clopidogrel resulted in a 30% relative 
risk reduction in ischemic events in CYP2C19 LOF car-
riers, but not in noncarriers (Pint=0.013), suggesting that 
the main mechanism of benefit for more potent anti-
platelet therapy such as ticagrelor and prasugrel may 
be in overcoming risk of MACE in LOF carriers.23

Prior studies of sex- based differences among pa-
tients presenting with chronic or ACS demonstrated 
conflicting findings.4– 12,24 Similar to our study, prior 
comparisons consistently show worse cardiovascular 
risk profile among women, and have also established 
disparity for women with less use of coronary revas-
cularization, evidence- based therapies, and timely ac-
cess to care.25 Like other studies,6,9– 11 we found that 
unadjusted rates of MACE and bleeding events were 
higher among women compared with men; however, 
these associations were no longer significant after 

Figure 5. Analysis of interaction between sex and genotype.
n=5044 patients. BARC indicates Bleeding Academic Research Consortium; CV, cardiovascular; and 
LOF, loss of carrier. Adjusted hazard ratios and 95% CIs are shown.
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adjusting for differences in baseline comorbidity. In 1 
study of patients with ST- segment– elevation myocar-
dial infarction, female sex remained an independent 
predictor of short- and long- term bleeding after adjust-
ment for confounders.12 Bleeding rates were low overall 
in the TAILOR- PCI study, making it difficult to identify 
potential relationships with sex, or even genotype. Even 
when treated optimally according to genotype, women 
may be at greater risk for MACE compared with opti-
mally treated men. The optimally treated group is mainly 
composed of noncarrier/clopidogrel subjects. Our 
study demonstrates that hyporesponsiveness to clopi-
dogrel because of LOF carrier status occurs with equal 
frequency between sexes. Clopidogrel pharmacody-
namics are similar between men and women, with sim-
ilar plasma concentrations of the active metabolite.26 
Several nongenetic factors could contribute to more 
hyporesponsiveness to P2Y12 inhibition in women than 
men. For example, high on- treatment platelet reactivity 
among women may be contributing to our observation 
of elevated MACE rates among noncarrier women re-
ceiving clopidogrel.17 The elevated MACE rates could 
also be driven by sex differences in epigenetic factors 
such as poor adherence, decreased gastrointestinal 
absorption of therapy, differences in non- CYP2C19 he-
patic enzyme activity, glomerular filtration rate, volume 
of distribution, and drug interactions, as some exam-
ples.27 Indeed, genotype- based antiplatelet therapy 
selection may be only 1 of several factors that need to 
be considered to mitigate sex- based differences in ACS 
quality of care and outcomes.

Limitations
Given the exploratory nature of our analysis, these 
results should be considered hypothesis generating. 
Given that the overall trial did not detect a statistically 
significant difference for the primary end point, the 
demonstration of any subgroup differences in events 
should be viewed cautiously. Consistent with other car-
diovascular trials, women comprised only one fourth of 
the study population. Furthermore, the overall rates of 
ischemia and bleeding were very low in this modern 
cohort of patients undergoing PCI. Thus, TAILOR- PCI 
was similarly underpowered to detect sex- based dif-
ferences in study end points. A larger sample size or 
higher event rates may have overcome some of these 
limitations. Given the low frequency of stent thrombo-
sis events in TAILOR- PCI (10 events, in total), there is 
considerable uncertainty around the finding of excess 
stent thrombosis among women treated with ticagre-
lor compared with men (2 versus 0 events). Given that 
platelet function testing was not performed in TAILOR 
PCI, we are unable to formally assess the independ-
ent effect of residual on- treatment platelet reactivity on 
clinical outcomes in our study cohort.

CONCLUSIONS
In this sex- based analysis of the TAILOR- PCI study, we 
did not identify sex- based differences in the inheritance 
of CYP2C19 LOF genotypes that were present in one 
third of all study subjects. Although women are at higher 
risk for ischemic or bleeding outcomes, sex was not an 
independent predictor of these outcomes. In this study, 
GG therapy did not significantly reduce the risk of MACE 
or bleeding relative to CT and the effect of GG therapy 
was not different in women compared with men.
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Table S1. Clinical outcomes 12 months after percutaneous coronary intervention, stratified by randomized strategy and sex 

Conventional 
Therapy* 

Genotype-Guided 
Therapy* 

Log-Rank P  
value 

Adjusted Hazard 
ratio (95% CI) 

P value for 
interaction 

Primary endpoint .59 

Male 92/1990 (4.8) 75/1993 (3.9) .18 0.82 (0.60-1.11) 

Female 43/645 (6.8) 38/648 (6.1) .57 0.95 (0.61-1.47) 

CV mortality .15 

Men 11/1990 (0.6) 15/1993 (0.8) .43 1.47 (0.67-3.21) 

Women 10/645 (1.6) 5/648 (0.8) .20 0.57 (0.19-1.67) 

Myocardial infarction .94 

Men 31/1990 (1.6) 22/1993 (1.1) .21 0.71 (0.41-1.23) 

Women 16/645 (2.6) 10/648 (1.6) .23 0.69 (0.31-1.53) 

Stroke .52 

Men 7/1990 (0.4) 7/1993 (0.4) >.99 1.05 (0.37-3.00) 

Women 5/645 (0.8) 3/648 (0.5) .48 0.59 (0.14-2.48) 

Severe recurrent ischemia .11 

Men 46/1990 (2.4) 36/1993 (1.9) .26 0.79 (0.51-1.22) 

Women 16/645 (2.6) 22/648 (3.6) .32 1.48 (0.77-2.82) 

Stent thrombosis .25 

Men 11/1990 (0.6) 11/1993 (0.6) >.99 1.04 (0.45-2.41) 

Women 8/645 (1.3) 3/648 (0.5) .13 0.43 (0.11-1.62) 

All-cause mortality .36 

Men 16/1990 (0.8) 18/1993 (0.9) .73 1.20 (0.61-2.35) 

Women 11/645 (1.7) 7/648 (1.1) .34 0.70 (0.27-1.81) 

BARC 2,3,5 bleeding .47 

Men 34/1990 (1.8) 38/1993 (2.0) .63 1.14 (0.72-1.81) 

Women 16/645 (2.6) 23/648 (3.7) .26 1.53 (0.80-2.90) 

BARC 3,5 bleeding .98 

Men 21/1990 (1.1) 24/1993 (1.3) .66 1.16 (0.65-2.09) 

Women 12/645 (2.0) 13/648 (2.1) .85 1.15 (0.52-2.53) 
*Numbers presented are actual frequencies and percentages; Primary endpoint is a composite of cardiovascular mortality, myocardial infarction, stroke,

severe recurrent ischemia, or stent thrombosis; CV Cardiovascular, BARC Bleeding Academic Research Consortium 



Figure S1 Kaplan-Meier estimated event rates (unadjusted) in female and male subjects for the 

primary endpoint of time to cardiovascular-related death, myocardial infarction, stroke, stent 

thrombosis, or severe recurrent ischemia (Figure S1A) and the safety endpoint time to BARC 

2,3,5 bleeding (Figure S1B) stratified according to randomized treatment strategy; N=5, 276 

patients. 

Figure S2 Kaplan-Meier estimated event rates (unadjusted) in female and male subjects for the 

primary endpoint of time to cardiovascular-related death, myocardial infarction, stroke, stent 

thrombosis, or severe recurrent ischemia (Figure S2A) and the safety endpoint time to BARC 

2,3,5 bleeding (Figure S2B) stratified according to genotype and antiplatelet therapy received; N= 

5, 044 patients.

Figure S3 Analysis of interaction of sex with assignment to optimal therapy based on genotype. 

N= 5,044 patients; CV cardiovascular, BARC Bleeding Academic Research Consortium; Adjusted 

hazard ratios and 95% confidence intervals are shown. 

Figure S4 Kaplan-Meier estimated event rates (unadjusted) in female and male subjects for the 

primary endpoint of time to cardiovascular-related death, myocardial infarction, stroke, stent 

thrombosis, or severe recurrent ischemia (Figure S4A) and the safety endpoint time to BARC 

2,3,5 bleeding (Figure S4B) stratified according to whether optimal antiplatelet therapy was 

received; N= 5,044 patients.  



Figure S1A. 



Figure S1B. 



Figure S2A. 



Figure S2B. 



Figure S3. 



Figure S4A. 



Figure S4B. 
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