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A B S T R A C T   

The calculation of temporally varying upstream process outcomes is a challenging task. Over the last years, 
several parametric, semi-parametric as well as non-parametric approaches were developed to provide reliable 
estimates for key process parameters. We present generic and product-specific recurrent neural network (RNN) 
models for the computation and study of growth and metabolite-related upstream process parameters as well as 
their temporal evolution. Our approach can be used for the control and study of single product-specific large- 
scale manufacturing runs as well as generic small-scale evaluations for combined processes and products at 
development stage. The computational results for the product titer as well as various major upstream outcomes 
in addition to relevant process parameters show a high degree of accuracy when compared to experimental data 
and, accordingly, a reasonable predictive capability of the RNN models. The calculated values for the root-mean 
squared errors of prediction are significantly smaller than the experimental standard deviation for the considered 
process run ensembles, which highlights the broad applicability of our approach. As a specific benefit for plat-
form processes, the generic RNN model is also used to simulate process outcomes for different temperatures in 
good agreement with experimental results. The high level of accuracy and the straightforward usage of the 
approach without sophisticated parameterization and recalibration procedures highlight the benefits of the RNN 
models, which can be regarded as promising alternatives to existing parametric and semi-parametric methods.   

1. Introduction 

Over the last years, modelling and simulation has become an 
important field of research for biotherapeutical manufacturing and 
process development. Due to increasing computational power as well as 
the improved use of process analytical technologies, novel computa-
tional approaches for complex upstream and downstream processes are 
in the focus of recent interest [1–3]. While mechanistic 
kinetic-dispersive models are nowadays considered as standard methods 
for the study of capturing and polishing steps in downstream operations 
[4–10], there exist a plethora of distinct models for upstream processes 
with certain advantages and shortcomings. The large number of 
modelling approaches may be related to the importance of correlated 

molecular mechanisms at distinct length scales as well as the broad 
variability of biological parameters among living organisms. 

At the largest length and time scales, active pharmaceutical in-
gredients (APIs) like monoclonal antibodies (mAbs) are produced by 
distinct cells in bioreactors whose optimal design is nowadays studied by 
computational fluid dynamics or Lattice-Boltzmann simulations 
[11–18]. At smaller or even molecular scale, one is usually interested in 
modelling the cell metabolism, which helps to identify optimal feeding 
strategies as well as improved process protocols for higher product titers 
and improved product quality [19]. Specifically often used standard 
Chinese hamster ovary (CHO) cells show a rather complex cell meta-
bolism [20] in combination with diverse post-translational modification 
profiles [21], such that the understanding of the cell metabolism in 
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terms of high API quality is of fundamental interest. 
In addition to detailed metabolic flux pathway models [22–27], often 

also simpler mechanistic models are used to predict the time-dependent 
concentration profiles from standard cell cultures [28–35]. The mathe-
matical framework is represented by coupled partial differential equa-
tions which may also include the temperature as well as pH values in 
order to provide a more detailed representation of experimental condi-
tions. Although most models show an overall good agreement with the 
experimental results, certain systematic deviations are often evident, 
which can be attributed to an incomplete knowledge of the cell meta-
bolism as well as the use of oversimplified pseudo first-order and Monod 
reaction kinetics [36]. As a specific example, complex and varying feed 
strategies in terms of bolus addition are often not reliably reproduced 
[36]. Thus, certain deviations from experimental outcomes as well as the 
neglected or simplified influence of intrinsic parameters like tempera-
tures or pH values for mechanistic growth models become evident. 
Recently, so-called hybrid models were introduced in order to improve 
process simulations [37,38,36,39–42]. In combination with a mecha-
nistic framework, experimental data are used to derive time-dependent 
rate constants in combination with relevant process parameters like the 
temperature and the pH value as well as feeding rates in terms of an 
artificial neural network approach or other advanced regression tech-
niques [36–38,43–45,3,46,42,41]. Despite slight differences between 
the approaches, a hybrid model usually extracts the temporally varying 
rate νp,x(t) for a biomass-related parameter x or for the product titer p 
from an ANN approach, which is then introduced according to 

d
dt

x
(

t
)

=

(

νp,x

(

t
)

− D
(

t
))

⋅x
(

t
)

(1)  

and 

d
dt

p
(

t
)

= νp,x

(

t
)

⋅x
(

t
)

⋅θ
(

t
)

− D
(

t
)

⋅p
(

t
)

, (2)  

where θ(t) is the Heaviside function, which can be either 0 or 1, 
dependent on the presence or absence of induction in combination with 
the dilution factor D(t), which contains information about bolus addition 
or sampling. The corresponding temporal values for p(t) or x(t) are then 
calculated by standard numerical integration schemes [43]. Hence, 
hybrid models are able to reproduce the growth and metabolic rates of 
fed-batch processes [36,43] in combination with complex feeding stra-
tegies. Such a detailed description is not achieved by mechanistic 
models, however, their benefit for simple predictions of growth pa-
rameters even for perfusion processes was recently demonstrated [33, 
47]. 

Notably, the determination of rate constants for mechanistic and 
hybrid models as well as the parameterization of the approaches is still a 
challenging task. Moreover, it has to be noted that the corresponding 
mechanistic framework provides a rather coarse-grained picture when 
compared to more sophisticated metabolic flux pathway models [26]. 
Hence, the corresponding insights in terms of Eqs. (1) and (2) into 
growth, death and production behavior are of limited value for more 
refined considerations due to simplified descriptions as well as 
unphysical temporal variations of the rate constants. Although hybrid 
models can be used as a beneficial tool to complement Design of 
Experiment studies with regard to an adequate exploration of the design 
space [44,41], it has to be noted that experimental work in terms of 
initial parameter scans is of essential need. Thus, given the limitations 
with regard to the complex parameterization procedure in combination 
with the rather limited insights, it can be assumed that straightforward 
non-parametric machine learning approaches provide comparable out-
comes with less efforts. Moreover, such data-driven methods circumvent 
the consideration of temporal variations for the rate constants, which is 
thus in agreement with quasi-equilibrium thermodynamics. 

Over the last years, a lot of effort was spent into the development of 
neural networks or further advanced regression algorithms [48–50] and 

their application for bioprocess control and prediction [51,52,1,53–55]. 
Often used approaches are artificial neural networks (ANNs) which can 
be regarded as highdimensional regression methods for connecting 
input parameters to target variables [56,48]. ANNs are nowadays widely 
used in the field of natural sciences, as can be seen by applications 
ranging from the calculation of molecular properties, prediction of 
chemical reactions and drug screening [57–64]. Although ANNs are well 
suited to connect static features, they are often limited for data showing 
temporal evolution. Promising candidates in this regard are multivariate 
recurrent neural network (RNN) models [65–67,55], whose benefits for 
the calculation and simulation of temporal process data in various 
contexts were recently described [51,55]. 

In this article, we present specific and generic RNN models for the 
simulation of multivariate large- and small scale upstream processes. 
Our approach can be used for the control and study of single product- 
specific large-scale manufacturing runs (specific RNN model) as well 
as small-scale evaluations in terms of combined processes for distinct 
products at development stage (generic RNN model). All RNN calcula-
tions rely on experimental data with broad variability. Certain varia-
tions at well-defined time points can be attributed to differences in 
process conditions as well as biological factors. Despite these challenges, 
our results only show small deviations between calculated and experi-
mental values, which are significantly smaller than the ensemble 
experimental standard deviation. The main advantages of our method 
are the straightforward implementation without complex parameteri-
zation procedures in combination with a high predictive accuracy. In 
contrast to hybrid or mechanistic models, the proposed RNN approach 
can be used without further approximations, pre-defined boundary 
conditions or knowledge about the underlying metabolic connections. 
Moreover, the questionable introduction of temporally varying rate 
constants is avoided. Without further adaption, fully automatized and 
pre-trained RNN models can also be used by non-experts which pro-
motes their usage for the calculation and simulation of modern bio-
therapeutical manufacturing and development processes in real time. 
The results for the platform-dependent generic RNN model approach 
underpin such assumptions. 

The article is organized as follows. In the next section we provide a 
short introduction into the theoretical background of RNNs. Details 
about the numerical implementation and the data sets are presented in 
Section 3. All numerical results are shown in Section 4. We conclude and 
summarize in the last section. 

2. Theoretical background: recurrent neural networks 

Over the last years, recurrent neural networks (RNNs) attracted 
recent interest as promising approaches to process and to evaluate large 
amounts of temporal sequences [67]. Typical applications of RNNs 
include speech recognition [68,67] as well as weather, climate and 
finance forecasting [69–71]. In principle, RNNs can be regarded as a 
modified version of standard feed-forward ANNs [56,48,64]. The basic 
network structure is represented by one input layer, one or multiple 
hidden layers and one output layer with a varying number of nodes in 
each layer. In contrast to feed-forward ANNs, direct connections be-
tween two successive layers of nodes are implemented as recurrent 
loops. Hence, the RNN is able to process temporal sequences and to 
predict the evolution of outcomes. 

The basic algorithm of an RNN [67,68] includes the consideration of 
an input interval x = (x1, …, xT) of length T as fed into the nodes of the 
input layer, the hidden vector h = (h1, …, hT) as calculated in the hidden 
layers and the final output vector y = (y1, …, yT) where bold letters 
denote vectors. The following iterative algorithm connects the input 
sequence to the elements of the hidden vector 

ht = ℋ(ωihxt + ωhhht− 1 + bh) (3)  

and hence also to the output vector 
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yt = ωhoht + bo, (4)  

respectively, with sequence or time points t = 1, …, T, biases bj and the 
weights ωjl, where the indices j, l ∈ {i, h, o} denote the corresponding 
input (i), hidden (h) and output (o) layers. The function ℋ(⋅) represents a 
standard hidden layer activation function like in ANNs which is typically 
a logistic, hyperbolic tangent or sigmoidal function with a smooth 
differentiable form [56]. A scheme of a standard RNN is shown in Fig. 1. 

Notably, a significant improvement for the stability and accuracy of 
RNNs was the introduction of the long-short term memory (LSTM) 
approach [65] which allows the consideration of long times within se-
quences. The recent interest in modern RNN architectures can also be 
attributed to the development of advanced training algorithms [72]. A 
reliable and highly efficient training algorithm is of fundamental 
importance for all iterative multivariate regression approaches. For 
RNNs, a so-called backpropagation through time (BPTT) method [73] is 
often used which requires a temporal unfolding of the network in 
accordance with Fig. 1. We refer the reader to the supplementary ma-
terial for more details on the LSTM approach, stacked hidden layers and 
advanced training algorithms. 

3. Numerical details 

In this section, we present the features and the characteristics of the 
corresponding process experimental data sets. Moreover, we discuss the 
numerical details of the specific and generic RNN models. 

3.1. Data sets 

3.1.1. Large scale process runs 
The large scale data set for the specific RNN model considers indi-

vidual manufacturing runs for a single API with values for the titer, total 
cell density (TCD), viable cell density (VCD), viability, glucose and 
lactate concentration at distinct time points. Non-considered process 
parameters like seeding cell densities, time points for bolus addition or 
feeds as well as set points for temperatures were identical for the runs. 
The data set included 118 process runs with 9 measurements each at 
different time points with roughly comparable time intervals of 24 h. All 
large scale data correspond to a validated process that is executed in a 
12,000 L bioreactor. The measurements were performed by a standard 
set of analytical methods to determine the product, cell or metabolite 
concentration in samples taken from cell suspension. The raw process 

data is shown in the supplementary material. 

3.1.2. Small scale process runs 
The ensemble process data set for the generic RNN model combines 

the runs of four individual mAb production processes at development 
scale. All processes were subject to the same platform procedure 
including identical growth and feed media as well as CHO clone cells. 
The data set included 90 processes in total with 16 runs for mAb A, 25 
runs for mAb B, 25 runs for mAb C and 24 runs for mAb D including 
values for the product titer, TCD, VCD, viability, glucose and lactate 
concentration, actual pH value, bioreactor volume and cultivation 
temperature. All parameters were systematically and consistently varied 
between the runs. The individual runs included 15 measurements from 
initial start time with comparable time intervals of roughly 24 h for each 
mAb production process. Values for the product titer were only 
measured for the last 6 time points due to nearly negligible values for the 
previous lag and exponential growth phase. The glucose concentration 
was manually changed for some processes at later process time points 
due to modified feeding strategies. Despite being platform processes, 
minor differences between the individual products and processes can be 
noted for the temperature, seeding cell density, upper pH values, power 
inputs, medium equilibration times, and gassing rates which vary 
slightly among the products and the processes. Moreover, the different 
mAbs were of similar product type, but had slight differences in their 
genetic sequence and hence expression behavior. In contrast to the large 
scale data set, further variability can be attributed to the analytical 
methods, the used equipment and the corresponding calibration pro-
cedure in non-good manufacturing practice (non-GMP) and hence non- 
validated environment. All key parameter raw data for mAbs A, B, C and 
D are shown in the supplementary material. 

3.2. Details of the RNNs 

3.2.1. Specific RNN model for large scale process runs 
All RNN models were programmed in Python 3.7.1 by using the 

modules PANDAS and NUMPY. The architecture of the RNN was imple-
mented through the KERAS module (version 2.3.1) [74] relying on the 
TENSORFLOW backend (version 1.13.1) [75]. Each of the three hidden 
layers in the RNN was formed by 120 nodes and the first and the second 
layer (LSTM layers) were made recurrent while the third layer only 
considers a feed-forward connection to the dense output layer. A hy-
perbolic tangent (tanh) was chosen as corresponding activation 

Fig. 1. Scheme of a recurrent neural network 
with one hidden layer. The green squares 
denote the input layer, the black circles the 
hidden layer and the blue diamonds the output 
layer. All arrows denote data flow and calcu-
lations in the corresponding direction. A 
compact structure of the RNN is shown on the 
left side with the recurrent loop. The temporal 
unfolding of the recurrent loop and the hidden 
layer shows the network structures on the right 
side. It can be seen that the individual repre-
sentations focus on distinct time or sequence 
points t − 1, t, t + 1 as represented by the 
connections between the input and output 
sequence points. The recurrent loop is imple-
mented as a connection between the nodes ht− 1, 
ht, …, hT such that ht− 1 and ht, respectively, are 
communicated (as denoted by the black square 
with C) to ht and ht+1. The dots on the right side 
mark the remaining and not shown unfolded 
connections with final sequence calculations for 
xT, hT and yT. (For interpretation of the refer-
ences to color in this figure legend, the reader is 
referred to the web version of this article.)   
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function. The learning rate was set to 0.001. For all input values of the 
generic and the specific RNN models, we used a robust scaler which 
removes the median and scales the data according to the interquartile 
range. The interquartile range is the range between the first quartile 
(25% quantile) and the third quartile (75% quantile). No further data 
preprocessing was performed. All calculations for the principal compo-
nent analysis were performed with a standard scaler, which subtracts the 
mean value and normalizes by division with the standard deviation. For 
specific and generic RNN model training, we used the Adaptive Moment 
Estimation (Adam) optimizer [76] with the mean absolute error (MAE) 
as loss function. As a standard procedure to avoid overfitting, we added 
a dropout function [77] with a fraction of 0.1 to the LSTM layers. 

We considered 118 experimental process runs at large scale and 20 
randomly chosen runs were used for validation in terms of a standard 
training/test splitting procedure [48]. The test data are not included in 
the training data set. Input and target values were the titer, TCD, VCD, 
viability as well as glucose and lactate concentrations. The training 
phase initially included 500 epochs with an early stopping function 
[78]. As stopping criterion, we used a standard MAE loss function [48] 
which needs to show a convergent behavior within 20 epochs. The RNN 
batch size for data processing was chosen as 4 which was used for each 
input vector. Instead of predicting or learning the whole temporal 
sequence at once, we introduced an interval procedure which introduces 
the two input values from previous time points for the calculation of the 
output value at the next time point in terms of 

(xt− 1, xt)→yt+1 (5)  

for all t = 1, …, T − 1. Thus, only the first (initial measurement at 
process start) and the second value from the measurements in each run 
need to be known for the RNN calculations. The choice of this value was 
motivated by the presented results for the autocorrelation functions, 
which show a pronounced non-Markovian behavior. Notably, such an 
approach allows a simulation of process outcomes also from random 
starting configurations as outlined in the remainder of this article. 

3.2.2. Generic RNN model for small scale runs 
Due to the smaller data set for the development runs, the RNN 

included only two hidden layers with 120 nodes each and the first layer 
(LSTM layer) was chosen as recurrent while the second layer relies on a 
feed-forward connection to the dense output layer. The learning rate was 
set to 0.001. In order to avoid overfitting, we added a dropout function 
[77] with a fraction of 0.1 to the LSTM layer. All other hyperparameter 
settings and chosen algorithms were identical to the specific RNN 
models for the large scale runs as discussed in the previous subsection. 

For purposes of training, we used 86 process experimental runs (15 
from mAb A, 24 from mAb B, 24 from mAb C and 23 from mAb D) and 
one randomly chosen process experiment for each mAb in terms of 
validation procedures. As an extension of a simple leave-one-out pro-
cedure, further evaluation with regard to random shuffling of training 
and test data for 100 repetitions finally provided reliable estimates for 
important statistical quantities in terms of validation procedures. For all 
repetitions, we ensured that the test data was not included in the 
training data set. The training phase initially included 500 epochs with 
an early stopping function [78]. Input and output values included the 
titer, TCD, VCD, viability, glucose and lactate concentration, actual pH 
value, bioreactor volume and the cultivation temperature. In contrast to 
the specific RNN models, the bioreactor volume, the actual pH value and 
the considered cultivation temperatures (between 307.65 K and 
308.65 K) were additionally taken into consideration. The RNN batch 
size was chosen as 8 which was used for each input vector. An identical 
interval learning procedure (Eq. (5)) like for the specific RNN model was 
used for all calculations. 

3.3. Simulations: impact of different temperatures 

The generic RNN model was also used for simulations including 
different temperatures. Although one can in principle study also other 
effects, e.g. pH variations, we concentrate on the impact of temperatures 
as these induce the most significant changes in the process outcomes. 
Each individual run was started at a fixed temperature of 307.65 K, 
308.15 K and 308.65 K. For each temperature, we performed 2500 in-
dependent process simulations based on the pre-trained small scale RNN 
models. For the initial and the first time point, the corresponding values 
for the titer, TCD, VCD, viability, glucose and lactate concentration, pH 
value and bioreactor volume were drawn from a normal distribution 
with mean value μp(τ) and variance σ2

Exp(τ) where τ denotes the mea-
surement time. The values for μp(τ) and the variance σ2

Exp(τ) were 
calculated for the individual process parameters from the original 
experimental process data sets at the corresponding first two measure-
ment points in accordance with the simulated temperatures. The generic 
RNN model used these values as random input parameters drawn from 
normal distributions with the same moments and provides the corre-
sponding outcomes for the later time points in terms of fixed interval 
calculations (Eq. (5)). The temperature was kept constant during the 
simulations while all other parameters were subject to intrinsic changes. 
The corresponding mean values and standard deviations for the com-
bined simulation runs are calculated at distinct time points in order to 
study the influence of different temperatures on key process outcomes. 
For purposes of independent validation, experimental values of mAb E 
for the VCD, TCD, product titer and viability at comparable time points 
in terms of a platform process at fixed temperatures of 307.65 K, 
308.15 K and 308.65 K were monitored. The corresponding processes 
and values related to mAb E were not used for training or validation of 
the RNN models and serve as an independent experimental confirmation 
of the simulations. 

3.4. Validation methods 

Each RNN model was validated by comparison between the 
computed and the experimental (target) values. As standard statistical 
quantities, we used the mean absolute error of prediction (MAE) and the 
root-mean-squared error of prediction (RMSE). When divided by the 
standard deviation of the ensemble experimental values for the process 
parameter σExp(x), the corresponding normalized MAEs (nMAEs) and 
normalized RMSEs (nRMSEs) provide an unbiased estimate for the 
precision of the predictions. All our results revealed minor values for 
nMAEs and nRMSEs (nMAE < 0.31 and nRMSE < 0.43), which high-
lights the fact that the corresponding RNN model achieved a signifi-
cantly higher accuracy when compared to a simple standard 3σExp(x) 
deviation criterion. In addition, we computed the corresponding values 
for the validation and the training data set in order to detect overfitting 
issues. With regard to the used dropout procedure in combination with 
the early stopping convention, all our results for the nMAEs and nRMSEs 
revealed that issues of overfitting can be largely ignored. Furthermore, 
the Pearson correlation coefficients showed high values (for most values 
R2 ≥ 0.94), which demonstrates the linear relationship between 
computed and experimental values. Detailed values will be discussed 
and presented in the remainder of the article. Noteworthy, the unknown 
functional relationship between the target and the input values does not 
allow us to compute confidence intervals in order to estimate the sta-
tistical accuracy of the calculations. In over to overcome this short-
coming, we splitted the experimental data sets for the small and the 
large scale runs into training and test data. The test data was not 
considered for the training of the RNN and the nRMSE and nMAE values 
were used for model validation. If the calculations for the test data 
reveal significantly lower nRMSE and nMAE values than unity, a higher 
precision when compared to randomly drawn parameter values from the 
underlying experimental ensemble distribution is assumed. Moreover, 
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such an approach also allows a straightforward detection of outliers. 

4. Numerical results 

In this section, we first discuss the application of the specific RNN 
model for large scale manufacturing processes. Hereafter, we present a 
generic RNN model for the prediction of distinct mAb production pro-
cesses at small scale. The corresponding generic RNN approach will also 
be used to simulate process outcomes for different temperatures. 

4.1. Specific RNN model for large scale processes 

4.1.1. Principal component analysis and autocorrelation functions 
In principle, one may ask why an RNN model should provide 

reasonable results for key process parameters? Such a question is closely 
related to the temporal evolution of variables as well as the corre-
sponding Markovian properties. As a further important property, the 
correlation between the individual parameters can be studied through a 
principal component analysis (PCA) [48]. The covariance matrix C for a 
process parameter vector x is defined by 

C =

〈

(x −

〈

x
〉

)⋅(x − 〈x〉)T
〉

(6)  

where 〈 ⋅ 〉 denote mean values. With regard to the use of orthogonal 
basis transformations to a new vector z in terms of 

x −
〈

x
〉
= Tz (7)  

and equivalently 

z = TT(x −

〈

x
〉

), (8)  

one can obtain the following expression 

C = TT Ω T (9)  

with the diagonal matrix Ω, where the jth column of Ω corresponds to 
the principal component PCj with eigenvalue wj. In addition to the 
introduction of independent and orthogonal eigenvectors (principal 
components), PCA also provides insights into essential fluctuations. 
Herewith, the explained variance can be calculated which sheds light 
onto concerted process parameter variations [48]. For such an analysis, 
we considered the K principal components as calculated from the 
experimental data set, such that the explained variance for the cumu-
lative contribution of fluctuations including all principal components 
PCj with j = 1, …, α can be written as 

EVα =

∑α
j=1wj

∑K
j=1wj

(10)  

with the condition α ≤ K. The corresponding results for the large scale 
runs are shown in Fig. 2. As can be seen, roughly 67% of all variations 
within the data set can be assigned to the principal component PC 1. In 
combination with PC 2, it follows that nearly 95% of all fluctuations and 
variations can be described by only two PCs. Such extremely high values 
for the first two PCs forming the essential subspace are remarkable and 
point to the fact that most of the process outcomes are highly correlated. 
In addition to the correlations, one can also observe a temporal evolu-
tion of the process outcomes as monitored by the first two principal 
components. Hence, the values in the lower left corner of Fig. 2 (right 
side) can be attributed to initial process conditions while the final values 
for key process parameters in terms of PC 1 and PC 2 are located in the 
upper right corner. The corresponding correlations as shown in the 
supplementary material reveal that PC 1 is mainly dominated by the 
titer, the viability and the glucose concentration, while PC 2 shows its 
highest correlations with the TCD and the lactate concentration. 

Closely related, the results for the individual autocorrelation func-
tions [79–82] in terms of actual process parameter values x as defined by 

ACF(τ) =

∑τN − τ
τ0

(xτ0 −
〈

x
〉
)⋅(xτ −

〈
x
〉
)

∑τN
τ0
(xτ0 −

〈
x
〉
)

2 (11)  

at certain time points τ and τ0 with τ0 ≤ τ ≤ τN provide an estimate for 
the temporal correlation and the full decorrelation time τD at ACF 
(τD) ≈ 0. The corresponding results for all process outcomes are 

Fig. 2. Left side: Explained variance in terms of principal components (PC) for the large scale manufacturing runs. The values for the explained variance of the 
individual PCs are presented in the inset. Right side: Values of PC 1 and PC 2 for individual large scale manufacturing process runs. 

Fig. 3. Autocorrelation functions for the corresponding temporal process 
parameter changes with reference to distinct time points τ/τmax. 
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presented in Fig. 3. As can be seen, the autocorrelation functions for the 
titer, lactate concentration and viability show a comparable decay and 
thus strong temporal correlations. In addition, all correlations vanish for 
these parameters at τD/τmax = 0.4, where τmax denotes the final time 
point. Notably, also the values for the TCD, VCD and glucose concen-
tration show a concerted temporal decay with a shorter decorrelation 
time of τD/τmax = 0.2. Such findings can be rationalized by the strong 
correlation between lactate and titer production as well as glucose 
consumption [83]. Due to different slopes, the individual phases of the 
process in terms of exponential growth phase and stationary non-growth 
phase can be clearly identified [84]. Despite the fact that one recognizes 
two relevant decorrelation times for the initial decay of the process 
variables, the broad comparability of the individual process parameter 
autocorrelation functions becomes evident. As already mentioned, such 
characteristics are highly beneficial for any RNN in terms of 
non-Markovian processes which facilitate meaningful predictions for 
reasonable changes in the process outcomes. Finally, the negative values 

for the ACF can be attributed to an anticorrelated behavior in which the 
temporal change of the process parameter values is reversed. 

4.1.2. Results of the specific RNN model 
The experimental data sets for the large scale runs in terms of mean 

values and standard deviations for certain time points are presented in 
the supplementary material. As expected for large scale manufacturing 
processes, individual variations due to slight process parameter changes 
are noticeable, but not highly pronounced. Nevertheless, such small 
variations are a challenging task for a specific RNN approach. Arbitrarily 
chosen experimental values for key parameters in combination with the 
outcomes of specific RNN model calculations are presented in Fig. 4. In 
general, one can recognize a good agreement between the calculated 
and the experimental values, which also includes accurate predictions 
for rapid changes in the glucose concentration at τ/τmax = 0.5 − 0.6 as 
well as for the TCD (significant increase for τ/τmax > 0.6). With regard to 
larger standard deviations at certain time points in the training data sets 

Fig. 4. Specific RNN model calculations (blue triangles) and experimental results (red circles) for the large scale process data sets in terms of randomly chosen 
process runs including TCD (top left), VCD (top right), viability (middle left), titer (middle right) as well as glucose (bottom left) and lactate concentration (bottom 
right). The blue lines correspond to cubic spline functions as guides for the eyes. The errorbars denote the global root-mean-squared errors of predictions for the RNN 
in terms of the test data set and the corresponding target variable (see text for more details). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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(as shown in the supplementary material), one would specifically as-
sume less precise RNN calculations for TCD and VCD values at 
τ/τmax > 0.2. With reference to the RNN results, it can indeed be seen 
that the calculated TCD and VCD values show some slight variations at 
exactly these time points. In terms of the chosen interval approach (Eq. 
(5)), one would assume that such inaccuracies also progress to later time 
points, which rationalizes the slight discrepancies between experimental 
and computed results. Corresponding conclusions can also be drawn for 
some outliers in the glucose and lactate concentration at later process 
times. In terms of the experimental values as shown in the supplemen-
tary material, it can be seen that the standard deviation of the data 
points increases with process time. Hence, such an increasing variability 
can be regarded as a challenge for the interval learning approach (Eq. 
(5)) in terms of error progression which rationalizes the observed slight 
deviations. In addition, the glucose concentration is slightly changed by 
non-monitored external bolus additions whereas the lactate concentra-
tion strongly depends on the cell metabolism. Despite such slighter 

deviations, it has to be noted that all trends in the process parameters are 
well reproduced. 

The results for the computed values based on the training and the test 
data sets are shown in Fig. 5 and the corresponding key statistical values 
are presented in Table 1. As can be seen, all computed results show a 
high linear correlation with the experimental data in terms of Pearson 
correlation coefficients R2 ≥ 0.94. Notably, the lowest values of R2 can 
be observed for the values of VCD, TCD and the glucose concentration. 
The larger deviations from linearity for these process outcomes can be 
related to the more pronounced variations in the experimental data set 
as discussed before. Although some outliers can be identified which 
deviate significantly from the black line with unit slope, the vast amount 
of predictions reveals a high agreement with the corresponding exper-
imental values due to rather low mean absolute errors for the validation 
data set as defined by 

Fig. 5. Specific RNN model calculations for the test data set (red diamonds) and for the training data set (blue circles) with regard to the experimentally measured 
data (x-axis) and the predicted values (y-axis) including the TCD (top left), VCD (top right), viability (middle left),product titer (middle right), glucose (bottom left) 
and lactate concentration (bottom right). The black solid line has a slope of unity and represents full coincidence between measured and predicted values while the 
straight blue lines represent the ensemble standard deviation σExp of the experimental data set. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
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as well as the root-mean-squared error 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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2

√
√
√
√ (13)  

where yi and ŷi denote the corresponding calculated and target values 
for Ns samples. Such assumptions are further underpinned by the values 
of the normalized MAEs 

nMAE =
MAE
σExp

(14)  

and the normalized RMSEs 

nRMSE =
RMSE

σExp

(15)  

where σExp denotes the standard deviation of the experimentally 
measured ensemble data for the corresponding process parameter. 
Specifically the calculations for the titer, the viability as well as the 
lactate concentration reveal a high level of accuracy in terms of low 
nMAEs and nRMSEs (Table 1). Slighter deviations can be observed for 
the TCD, VCD and the glucose concentration. Nevertheless, the corre-
sponding values for the nMAEs and nRMSEs are smaller than unity 
which highlights the applicability of the RNN model even for predictions 
of more complex process outcomes. As can be concluded, the results of 
the specific RNN model provide a significantly higher accuracy when 
compared to statistical estimates in terms of experimental standard de-
viations and the often used 3σExp criterion. In addition, a comparison of 
the nMAE and nRMSE values in Table 1 for the training and the test data 
reveals a comparable order. Hence, significant issues of overfitting can 
be largely ignored such that the aforementioned outliers can mainly be 
attributed to the broader experimental variability at the corresponding 
process stages. In consequence, the corresponding nMAEs and nRMSEs 
show a good predictive accuracy which rationalizes the use of this 
approach for large scale manufacturing runs. With regard to this point, it 
has to be noted that large scale processes reveal minor variations due to 
already well-defined process conditions when compared to exploratory 
small scale development processes. The application of RNNs for such 
processes will be discussed in more detail in the next subsection. 

4.2. Generic RNN model for small scale processes 

4.2.1. Principal component analysis and autocorrelation functions 
With regard to the last section, it can be concluded that a specific 

RNN model for large scale runs provides meaningful results. However, 
the question remains if also a generic model can be developed which is 
able to compute the outcomes of mAb production processes at smaller 

scales. Such a model would be helpful to study optimal process condi-
tions and to predict general trends for the performance of novel devel-
opment candidates. Motivated by these points, we combined the small 
scale run data sets for four mAb products in order to study the properties 
as well as the validity of such a generic RNN model. As a first step, we 
performed a PCA on the corresponding data. The results for the 
explained variance of the combined process data as well as a projection 
of the process data on the first principle components are shown in Fig. 6. 
Due to the larger number of input variables, it has to be noted that we 
have to consider 9 PCs in contrast to the large scale runs. In conse-
quence, the consideration of only two principle components PC 1 and PC 
2 provides a reduced value for the explained variance in terms of 
roughly 58%. Hence, the corresponding values are a little bit smaller 
when compared to the large scale runs which can be rationalized by the 
larger number of input vectors as well as the distinct process charac-
teristics (as shown in the supplementary material). A projection of the 
process data on the first two principle components is depicted on the 
right side of Fig. 6. As can be seen, the individual process data differ 
slightly in terms of mean positions and ranges, but significant overlap 
regions can also be identified. Thus, the individual processes show slight 
deviations but also some similarities which rationalizes their use for the 
development of a generic RNN model. Specifically the individual values 
for PC 2 highlight the clustering of the data into separated mAb pro-
cesses. Noteworthy, the points in the lower left corner in Fig. 6 can be 
assigned to initial process parameter values while the symbols in the 
upper right corner correspond to final process outcomes. Such conclu-
sions are further supported by the individual correlation coefficients of 
the principal components with the considered process parameters as 
shown in the supplementary material, which reveal high correlations of 
PC 1 with the product titer, the pH value and the viability as well as the 
product titer, the volume and the TCD (PC 2). In comparison to the 
specific RNN model, it can be assumed that the accuracy of the generic 
RNN approach will be less pronounced, which is due to the broader 
variation of the corresponding process parameters with regard to the 
individual platform projects. 

Despite these slighter discrepancies, the results for the autocorrela-
tion functions (Fig. 7) highlight a comparable temporal evolution of the 
corresponding process variables. Thus, all mAb process outcomes show a 
similar decay pattern for the titer, VCD and TCD with a decorrelation 
time of τD/τmax ≈ 0.35. In contrast to the large scale runs (Fig. 3), the 
temporal evolution of the titer is inherently coupled to the VCD and the 
decorrelation time is significantly larger. These findings can be ratio-
nalized by the complex biological metabolism of the CHO cells as 
described in the literature [83–85,20]. Notably, the comparable tem-
poral decay of all process outcomes for distinct products can be 
considered as a consequence of the underlying platform process. With 
regard to this point, also the autocorrelation functions for the viability, 
as well as the glucose and lactate concentration reveal a comparable 
decay. In consequence, the outcomes of the PCA and the ACF highlight 
the potential applicability of a generic RNN model. Moreover, the pro-
nounced non-Markovian behavior for the first three time points 
(τ/τmax < 0.18) rationalizes the use of the proposed interval learning 
scheme (Eq. (5)). 

The raw data for the individual process runs are presented in the 
supporting material. In contrast to the large scale runs, the variance of 
the ensemble small-scale runs due to distinct mAb production processes 
is more pronounced. However, the question remains if a generic RNN 
model is able to distinguish between the four distinct mAbs in terms of 
individual process predictions. Examples for predicted values in terms of 
randomly chosen process runs for products mAb A, mAb B, mAb C and 
mAb D are presented in Fig. 8. As can be seen, the computed results show 
some larger variations which are expected in terms of the larger variance 
in the experimental data as shown in the supplementary material. 
However, it is worth to notice that the RNN is even able to reproduce the 
complex glucose concentration profiles as observed in the experiments. 
Notably, the deviations for all values become larger at τ/τmax ≥ 0.75 

Table 1 
Mean Pearson correlation coefficients R2, fraction of computed values x which 
are located within the ensemble experimental standard deviation P(x < σExp), 
normalized mean absolute error MAEs (nMAE) and normalized root-mean 
squared error (nRMSE) between computed and experimental values for the 
specific RNN model when averaged over the test data set (columns 3 and 4) and 
over the training data set (last two columns).  

Value R2 P(x < σExp) nMAE nRMSE nMAEtr nRMSEtr 

Titer 0.99 1.0 0.09 0.14 0.04 0.06 
TCD 0.94 0.95 0.30 0.42 0.07 0.11 
VCD 0.94 0.95 0.30 0.40 0.08 0.12 
Viability 0.99 1.0 0.16 0.22 0.07 0.09 
Glucose 0.97 0.95 0.25 0.33 0.06 0.10 
Lactate 0.99 0.98 0.16 0.23 0.04 0.08  
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which can be related to the propagation behavior of uncertainties as 
discussed in the previous subsection. Despite some discrepancies, it 
becomes evident that the corresponding results reveal a good agreement 
with the experimental data such that general trends are well reproduced. 

The comparison between all predicted and experimental values for 
different mAbs is shown in Fig. 9. As can be seen, the accuracy is not that 
high when compared to the specific RNN predictions for the large scale 
runs, but still establish a reasonable agreement in comparison with the 
experimental outcomes. With regard to the corresponding statistical 
values in Table 2, it can be seen that the normalized MAEs and 
normalized RMSEs reveal a satisfying accuracy. Slighter deviations can 
mainly be observed for the glucose and the lactate concentrations which 
are subject to modified feeding strategies within the process as well as 
metabolic properties. In summary, the corresponding results for the 
titer, the TCD, the VCD and the viability reveal a high predictive accu-
racy. Despite the fact that certain predictions for individual mAb process 
outcomes differ from the experimental values, e.g. larger differences for 
mAb A between predicted and experimental values in Fig. 9, one can 
conclude that the generic RNN model is validated for processes with 
comparable parameter variation ranges. Such conclusions are also 
underpinned by the low nMAE and nRMSE values which rationalize the 
validity of our approach. 

4.3. Simulated processes: temperature effects 

In this subsection, we use the generic RNN model to study the in-
fluence of distinct conditions on small scale process outcomes. Here, we 
explicitly focus on the influence of different temperatures and how these 
affect the corresponding key process outcomes. With regard to this 

point, we simulated artificial process runs for fixed temperatures 
T = 307.65 K, 308.15 K and 308.65 K. The corresponding results with 
standard deviations (vertical bars) are presented in Fig. 10. The corre-
sponding simulations are compared to experimental outcomes for key 
parameters of mAb E (filled symbols) in terms of a comparable platform 
process. Noteworthy, the values for mAb E were not used for training of 
the generic or specific RNN models. As can be seen, the corresponding 
values for the product titer, TCD, VCD and viability are mainly located 
within the standard deviation of the process simulations. Slighter de-
viations can only be observed for the viability at the lowest considered 
temperature. Despite these differences, it becomes evident that the 
computed results are in good agreement with independent experimental 
values as monitored for the product mAB E subject to the same platform 
process. 

Besides predictions, one can obtain insights into the impact of 
distinct temperatures on growth rates and metabolite concentrations. 
For instance, it becomes evident that increasing temperatures establish 
higher titer as well as TCD and VCD values. In contrast, the values for the 
viability decrease with increasing temperatures. These findings can be 
rationalized by the faster metabolism at higher temperatures as known 
for mammalian cells [85]. In consequence, it can be concluded that the 
generic RNN model can be used to achieve deeper insights into modified 
process conditions and how they affect the process outcomes. 

5. Summary and conclusions 

We presented a novel approach for the calculation and prediction of 
upstream process outcomes in terms of specific and generic RNN models 
which do not rely on specific calibration procedures when compared to 

Fig. 6. Left side: Explained variance in terms of principal components (PC) for the small scale process runs. The corresponding value of the explained variance for the 
individual PCs is presented in the inset. Right side: Values for principal component 1 and principal component 2 in terms of individual process runs for mAb A (blue 
circles), mAb B (red squares), mAb C (gray triangles) and mAb D (black diamonds). (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 7. Autocorrelation functions for the four mAb production processes as denoted by circles (mAb A), squares (mAb B), triangles (mAb C) as well as diamondoids 
(mAb C) for the product titer (blue color), TCD (red color) and VCD (gray color). The corresponding results for the viability, the glucose and the lactate concentration 
are shown on the right side. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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semi- or full parametric approaches. We demonstrated the validity of the 
models for large scale runs as well as for distinct individual small scale 
processes in terms of a platform-dependent generic RNN model. The 
corresponding results reveal a reasonable and good agreement with the 
experimental data which highlights the validity of our approach. All 
calculated values show minor variations when compared to ensemble 
experimental standard deviations such that the normalized MAE and 
normalized RMSE values are smaller than unity. Thus, our models pro-
vide a high accuracy which can also be used to simulate key process 
outcomes for small scale upstream processes in order to support the 
identification of suitable process conditions. In principle, one can use 
such simulations for the study of varying temperatures, pH values or 
other process parameter variations like modified feeding strategies with 
regard to the growth rates as well as metabolite concentrations. Even for 
large scale runs with minor parameter variations, the corresponding 
approach can be considered as an useful alternative to hybrid or 
mechanistic models. In particular, the proposed method reveals its 

benefits in terms of tighter process control and the identification of 
potential outliers. 

In contrast to parametric models like mechanistic approaches, the 
proposed RNN modelling strategy is also able to consider intense pa-
rameters like temperatures, pH values or dissolved oxygen content. 
Comparable conclusions can be drawn with regard to modified bolus 
additions or feeding strategies, which often require a singular and ad- 
hoc change of the parameters in mechanistic models. Noteworthy, 
such variations contradict the differentiable form of reaction dynamics 
in thermodynamic equilibrium and also violate the minimum entropy 
production principle [86], thereby pointing to the fact that mechanistic 
models which only rely on mass balance conditions reveal certain 
shortcomings. Similar conclusions are also valid for hybrid models, 
which crucially rely on temporally varying rate constants. In agreement 
with mechanistic models, certain aspects of these models are inconsis-
tent with equilibrium thermodynamics as well as linear non-equilibrium 
thermodynamics in terms of rapid and non-continuous changes of the 

Fig. 8. Specific RNN model results (blue diamonds) for randomly chosen processes from four mAb development candidates in combination with the corresponding 
experimental results (red squares) including the TCD (top left), VCD (top right), viability (middle left), titer (middle right) as well as glucose (bottom left) and lactate 
concentration (bottom right). Measured data for the titer at τ/τmax ≤ 0.6 are not available. The predicted profiles (blue lines) are cubic spline functions which connect 
the outcomes of the individual RNN calculations. The errorbars denote the global mean absolute errors of calculations for the RNN in terms of the corresponding 
target variables (see text for more details). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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entropy production. Thus, the RNN models circumvents the missing 
detailed knowledge about the underlying reactions, such that a predic-
tion of process outcomes only relies on non-Markovian properties. 
Hence, although hybrid models may provide a comparable functionality 
and predictive capability when compared to the RNN approach, it has to 
be stated that these are often in conflict with the underlying thermo-
dynamic principles. 

In consequence, we highlight the straightforward and fast develop-
ment of RNN models for cultivation processes. The underlying conflicts 
with thermodynamic boundary conditions can be circumvented by the 
proposed non-parametric functional form. To the best of our knowledge, 
such a broad applicability for generic and specific process description 
was yet not established for any other modeling approach. Although it 
has to be noted that hybrid as well as mechanistic models reveal their 
benefits depending on the level of considered detail [87], a comparable 
complex parameter calibration procedure as known for parametric 
models is not needed for our approach. Furthermore, intrinsic parameter 

Fig. 9. RNN calculations for the training data set (blue diamonds) and for test process data from mAbs A (brown circles), mAbs B (black circles), mAbs C (red circles) 
and mAbs D (magenta circles) with regard to the experimentally measured data (x-axis) and the predicted values (y-axis) for the titer (top left), TCD (top right), VCD 
(middle left), viability (middle right), glucose (bottom left) and lactate concentration (bottom right). The black solid line has a slope of one and represents full 
coincidence between measured and predicted values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Table 2 
Mean Pearson correlation coefficients R2, fraction of computed values x which 
are located within the ensemble experimental standard deviation P(x < σExp), 
normalized mean absolute error MAEs (nMAE) and normalized root-mean 
squared error (nRMSE) between computed and experimental values for the 
generic small-scale RNN model when averaged over the test data set (columns 3 
and 4) and over the training data set (last two columns).  

Value R2 P(x < σExp) nMAE nRMSE nMAEtr nRMSEtr 

Titer 0.98 0.99 0.08 0.18 0.05 0.12 
TCD 0.99 0.93 0.20 0.22 0.06 0.09 
VCD 0.99 0.93 0.22 0.23 0.06 0.09 
Viability 0.99 0.98 0.13 0.14 0.04 0.12 
Glucose 0.83 0.95 0.29 0.38 0.07 0.14 
Lactate 0.95 0.94 0.30 0.39 0.07 0.10  
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values like the temperature as well as the pH value which are not part of 
mass balance conditions can be straightforwardly included in the model. 
Moreover, the use of non-parametric methods also provides a fast and 
straightforward retraining of the model if more experimental data 
become available. The straightforward and fast calculation procedures 
in terms of full automatization and thus in-line process control can be 
seen as the largest benefits when compared to other parametric or 
semi-parametric models. With regard to the recent discussions about the 
importance of integrated process models, digital twins as well as holistic 
process models [1], it also has to be noted that RNN approaches can be 
implemented straightforwardly in any software platform. In summary, 
the presented RNN models are highly flexible, straightforward to train 
and they can be used for distinct platform projects in upstream as well as 
downstream development and manufacturing. 
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