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Abstract

Metabolic biomarkers may play an important role in the diagnosis, prognostication and assess-

ment of response to pharmacological therapy in complex diseases. The process of discover-

ing new metabolic biomarkers is a non-trivial task which involves a number of bioanalytical

processing steps coupled with a computational approach for the search, prioritization and veri-

fication of new biomarker candidates. Kinetic analysis provides an additional dimension of

complexity in time-series data, allowing for a more precise interpretation of biomarker dynam-

ics in terms of molecular interaction and pathway modulation. A novel network-based compu-

tational strategy for the discovery of putative dynamic biomarker candidates is presented,

enabling the identification and verification of unexpected metabolic signatures in complex dis-

eases such as myocardial infarction. The novelty of the proposed method lies in combining

metabolic time-series data into a superimposed graph representation, highlighting the strength

of the underlying kinetic interaction of preselected analytes. Using this approach, we were

able to confirm known metabolic signatures and also identify new candidates such as carno-

sine and glycocholic acid, and pathways that have been previously associated with cardiovas-

cular or related diseases. This computational strategy may serve as a complementary tool for

the discovery of dynamic metabolic or proteomic biomarkers in the field of clinical medicine.

Introduction

Omics biomarkers are gaining importance in biomedical research and clinical applications,

and allow for the identification, characterization, classification and monitoring of disease [1, 2,

3]. In this regard, biomarkers, which are defined as “objectively measurable and quantifiable

indicators of biological or pathological processes” [4, 5], are widely used in a clinical setting as

they may serve as predictors of the disease state and progression. For example, the diagnosis of
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complex cardiovascular diseases such as myocardial infarction typically relies on the measure-

ment of myocardial necrosis markers such as the proteins creatine kinase, muscle and brain

subunits (CK-MB) and cardiac troponins [6, 7, 8, 9, 10], which reach their peak values within

12 to 24 hours after an event and, consequently, are much less suitable to serve as biomarkers

for very early diagnosis [11]. Although newer assays for cardiac injury, e.g., high-sensitivity

troponins, can diagnose myocardial injury at earlier time points, they are limited by decreased

specificity for myocardial infarction [12]. Therefore, the search for new biomarkers that can

aid in the early diagnosis or even prognosis of myocardial injury is of great clinical interest

[13, 14]. In 2008, as the first study worldwide we investigated metabolite level changes in the

human blood with the objective of identifying early metabolic biomarker candidates using a

“planned” myocardial injury (PMI) model. Early alterations in purine and pyrimidine metabo-

lism, such as hypoxanthine and adenosine monophosphate (AMP), as well as transmyocardial

enrichment of metabolites related to myocardial anaerobic metabolism, such as lactic acid and

succinic acid, were associated with myocardial injury [15].

Bioinformatic-driven search strategies for discovering new biomarker candidates are under

continuous research and development, in large part due to innovations in high-throughput

technologies resulting in the generation of large datasets. Thus, both the discovery and valida-

tion of putative biomarker candidates require interdisciplinary collaboration between various

fields of expertise in biomedical research, including bioinformatics for treating all relevant

data-driven tasks [16, 17, 18]. The procedure leading to the discovery of new biomarkers is

highly complex and requires a number of different steps from the bioinformatics perspective,

including well-defined concepts for data management, information retrieval and data mining

to guarantee the validity and generalizability of findings [19, 20].

A commonly used computational approach for information retrieval is inferring networks

of genes, proteins, metabolites, cells and other biological entities from complex biological data-

sets. Dynamic network representations play an especially important role in predicting changes

in biochemical pathways, identifying correlations between biomolecules, or investigating path-

way dynamics when kinetic information is available [21, 22]. A first approach using dynamic

networks to identify candidate metabolic biomarkers of physical activity was introduced by

our group in the work of Netzer et al. [23].

Here we present a new three-step computational strategy for characterizing the dynamics

of longitudinal metabolite levels through an appropriate graph representation. To thoroughly

investigate changes in metabolite interactions using time-series data, the network inference

approach introduced by Netzer et al. [23] was extended by transforming the inferred networks,

created at various measurement time points, into a single superimposed, combined graph

representation and visualization. This new dynamic network approach was tested and evalu-

ated using clinical time series data collected in the study of Lewis et al. [15] for the purpose of

identifying and verifying early metabolic biomarker candidates in myocardial injury.

Materials and methods

The proposed network-based strategy for the discovery and prioritization of new metabolic

biomarker candidates takes into consideration the kinetic information of analytes as an addi-

tional degree of data complexity, represented by longitudinal mass spectrometry (MS) data.

The kinetic network is built up upon a three-step modality, including (i) data preprocessing of

raw data, (ii) the preselection of a subset of metabolites with enhanced discriminatory and pre-

dictive ability by using an appropriate feature selection paradigm and (iii) finally, the network

inference by combining multiple single networks at different measurement time points into

one combined dynamic graph representation.
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Metabolic data

In this study, changes in metabolite levels were measured in a cohort of 17 patients undergoing

alcohol septal ablation for the treatment of symptomatic hypertrophic obstructive cardiomy-

opathy (HOCM), serving as a clinically accepted model for “planned” myocardial injury

(PMI). Blood samples were drawn from the patients over a defined period of time before (base-

line at t0) and, according to the study protocol, at ten minutes [t10 (n = 17)], one hour [t60

(n = 17)], two hours [t120 (n = 13)] and four hours [t240 (n = 8)] after injury, allowing patients

to serve as their own biological controls and thus permitting kinetic analyses of circulating

metabolites according to the selected longitudinal cohort study design. Inclusion criteria of

patients, the detailed patient characteristics as well as the protocol of the MS analysis can be

found in Lewis et al. [15]. All protocols in this study for obtaining blood from patients were

approved by the Massachusetts General Hospital Institutional Review Board, and all subjects

gave written informed consent.

The detailed procedure of metabolite qualification and quantitation is also described in

[15], including the following steps (i) blood sample processing, (ii) metabolite selection for

analysis platform, (iii) HPLC and MS analysis, and (iv) LC-MS analyses with isotope standards

for absolute analyte quantitation. All related information on this procedure can be found in

the Supplemental data, therein (https://www.jci.org/articles/view/35111/sd/1). Briefly, three

HPLC columns for separating the metabolite classes of sugars and ribonucleotides, organic

acids, and amino acids were aligned in sequence with a triple quadrupole mass spectrometer

using a turbo ion spray LC/MS interface. Targeted MS/MS analysis using selective reaction

monitoring (SRM) conditions was performed allowing for measurement of a total of 210

metabolites for each sample. Metabolite quantitation expressed in MS intensity units (IU) was

carried out by integrating peak areas for parent/daughter ion pairs. In addition, for a subset of

metabolites, for which isotope labeled standards were available, an absolute quantitation of

analytes in plasma (ng/ml) was performed.

For computational analysis of time series data, metabolite levels (IU) at time t10 = 10 min, t60

= 60 min, t120 = 120 min and t240 = 240 min after myocardial injury were normalized to the

baseline level at time t0 before alcohol septal ablation. Thus, patients in this study served as their

own biological controls. The data used in this study are available in S1, S2 and S3 Datasets.

Data preprocessing and subset selection

As a first step, data preprocessing was carried out to provide quality-assured data for network

construction, including: (i) technical validation of data with plausibility checks where for each

sample all metabolite peaks were manually reviewed for peak quality in a blinded manner

according to the internal lab standards, with those with poor peak quality labeled as “missing

values” in the final dataset, (ii) outlier detection where a common statistical model based on

interquartile ranges (IQR) was used, leading to a removal of 4% of MS data. We defined an

outlier as an observation outside the range [q25 –k � IQR; q75 + k � IQR], with q25, q75 = first

and third quartiles, IQR = q75 –q25 and set the parameter k = 3 to only remove ‘extreme’ outli-

ers in the data, (iii) handling of missing values, which means that analytes with more than 60%

missing values in a subset of two time points were excluded. In case of less than 60% missing

values, these values were replaced by the median of analyte levels at the given time point. Con-

sequently, from the initial set of 210 analytes, 170 analytes were included for further consider-

ation after handling of missing values. Finally, a set of 71 fully identified and annotated

metabolites was used for dynamic network construction. The three datasets including the orig-

inal (S1 Dataset), preprocessed (S2 Dataset) and fully annotated dataset (S3 Dataset) are avail-

able in the Supporting information.
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Secondly, a univariate feature selection method, termed paired Biomarker Identifier (pBI)

was applied to the data to preselect a subset of metabolites based on the pBI score as starting

point for inferring the networks [24]. The pBI score was developed to select key metabolites

from the data according to the underlying paired data characteristics (e.g. data at baseline t0 vs.

after 10 minutes t10) and to prioritize them into classes of weak, moderate and strong predic-

tors. In detail, the pBI score combines the following terms: a scaling factor λ, the discrimina-

tory ability DA�, a biological effect term calculated as the median percent change in metabolite

levels Δchange at time tx versus baseline t0, divided by the coefficient of variation (CV) in the

normalized data, and the direction of level change given by the sign function:

pBI ¼ l � DA� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jDchangej

jCVj

s

� signðDchangeÞ ð1Þ

with Dchange ¼

D if D � 1

�
1

D
else

8
<

:

Using this method, metabolites were ranked with respect to their absolute pBI scores at

each point in time and scores of the same metabolites higher than a defined cutoff (in this

study |pBI| > q75 including only moderate and strong predictors) at each measurement were

added up and ranked again from highest to lowest. Subsequently, a subset of 20 top-ranked

and fully annotated metabolites was included for final network construction. For this step we

propose a well-defined classification scheme, prioritizing analytes into strong (|pBI| > q90 i.e.

90% percentile), moderate and strong (|pBI| > q75 i.e. third quartile) and weak, moderate and

strong predictors (|pBI| > q50 i.e. second quartile). For reasons of clarity and comprehensibil-

ity in dynamic network analysis the threshold can be adjusted accordingly.

Dynamic network construction

A network graph, representing the preselected subset of candidate metabolites of the given

dataset and their interaction between each other, is inferred by adapting the BiomarkR pack-

age by Netzer et al. [23] using the programming language R [25].

Basically, a network graph G is defined as a set of vertices or nodes V, which are connected

by edges E: G = (V, E). For inferring the metabolic network, three steps are required: (i) calcu-

lating ratios R between metabolites M, which represent chemical interactions where rij = |log2

(mi/mj)| with i> j, and m 2M, r 2 R, (ii) computing the pBI scores sij, s 2 S on the logarithmic

ratios R and finally (iii) constructing a graph G with | sij |> τ for i, j 2 1, . . ., |M|. Note that the

ratio r 2 R represents a pathway reaction of the form A! B, where a reactant A is metabolized

into a product B, taking into account single or multiple reaction paths. For graph construction,

the nodes V are defined as the given analytes M. The edges E represent the chemical interaction

of analyte pairs in the network, i.e. the analytes level ratios. An edge is constructed if the pBI

score of the binary logarithm ratios r of analyte levels (now referred to as pBI�) is higher than a

defined threshold value τ. The resulting graphs are visualized using the igraph R package [26].

Threshold determination. There are different approaches to set the threshold value τ in

order to specify the impact of the network edges for different network representations and

thus to highlight the hidden information in the data. A statistical model based on interquartile

ranges is used to dynamically set the threshold value τ. The absolute values of the pBI� score at

each measurement point are considered for quartile/percentile calculation. The calculated

quartile values serve as cutoff values, where q50 is again the threshold to classify weak, moder-

ate and strong predictors, q75 for including moderate and strong predictors, and q90 only for

Dynamic metabolic biomarkers in cardiovascular disease
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strong predictors. Consequently, different dynamic thresholds τi,j for every measurement

point at t10, t60, t120 and t240 can be chosen, where i stands for the selected time point ti with i =

{1, 2, 3, 4} in this study, and j for the selected quartile/percentile qj with j = {1, 2, 3}, represent-

ing q50, q75 and q90 (see also Fig 1). The dynamic thresholding approach based on interquar-

tile ranges provides a general way to work with various metabolite levels regardless of their

value range. Alternatively, a static threshold value τs which is calculated as the mean value over

all measurements ti can be applied for constructing the combined, superimposed network

graph (see Fig 1, green, yellow and red lines). Note that for all metabolite-to-metabolite ratios,

yielding a pBI� score higher than the respective threshold value τs (static) or respectively τi,j

(dynamic), an edge between the two metabolites is created.

Combined network plots and edge weighting. A graph representation, highlighting the

dynamics in the given data, is introduced by fusing multiple networks created at the different

measurement points. These networks are superimposed, where the nodes are layered upon

each other and all edges occurring in any network are taken into account and weighted accord-

ingly, providing a single combined graph representation. Here, two different concepts for cal-

culating the edge weights are implemented:

The first concept–referred to as degree-based (discrete) weighting–is based on combining

the adjacency matrices of all graphs. To get an idea of how often two metabolites show a connec-

tion over different measurement times, all adjacency matrices are summed up. This results in a

combined adjacency matrix, in which each entry aij can take on values in the range of zero to the

number of networks combined. Thus, if n graphs of n different time points are combined, an

entry aij represents a discrete value x with x = {0, 1, 2, . . ., n-1, n}. These entry values are rescaled

to yield a value in the range of [0,1] to ensure that the weight distribution is independent from

Fig 1. Boxplot of absolute pBI� scores of analyte level ratios r with four measurement points ti [t10, t60, t120, t240].

The dynamic thresholds based on the quartiles/percentiles can be derived from the respective value ranges indicated by

the boxplot diagrams. The horizontal yellow line represents the averaged static threshold value (τs = τ2 = 55.36),

calculated as mean value of the dynamic cutoff values τi,2 (= q75) from the four time points. In addition, the thresholds

for q50 (weak, moderate and strong predictors) and q90 (only strong predictors) are visualized in green and red,

respectively.

https://doi.org/10.1371/journal.pone.0208953.g001
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the total number of graphs combined. The weight values are thus assigned as edge weights to the

combined graph. For visualization of the combined plot, the edge weights are displayed as lines

with different widths within the network graph. The edges with the smallest width indicate a

connection that only occurs in one of the networks at the time points ti. In contrast, those edges

with the highest weights are shown as the thickest lines. Hence, the thickness of an edge serves

as an indicator for the frequency of its occurrence in all of the networks combined.

The second approach for calculating the edge weights, termed score-based (continuous)

weighting, dynamically weights the edges based on the pBI� scores of the logarithmic metabo-

lite level ratios. To ensure the comparability between the different time points and to enable a

combination of the dynamically weighted edges, each pBI� score value is normalized by the

maximum score of each measurement time, before it is assigned as weight to the correspond-

ing edge. The resulting weights take on values in the range of [0,1] and thus are comparable

between the graphs at different measurement points. Similar to the procedure using binary

weights, continuous weights are entered in the respective adjacency matrix and summed over

time. Thus, if n networks are combined, each matrix entry is a continuous value y 2 [0; n]

which are rescaled to achieve edge weights being independent from the number of combined

graphs. Afterwards, the rescaled values are assigned as edge weights to the combined, superim-

posed graph. Analogous to the discrete weighting approach, the edge weights are displayed as

lines of different thickness, again serving as an indicator for their frequency of occurrence

weighted by the accumulated pBI� score in the superimposed network graphs. The R-based

computational framework is available in S1 File.

Verification of inferred dynamic networks. The networks constructed provide informa-

tion on the degree of connection and strength of interaction between the preselected metabo-

lites. To verify these findings based on the given graph representation, a KEGG database query

combined with a literature search was conducted for pathway identification, mapping and ver-

ification of the underlying biochemical and molecular mechanisms (see also Table 1) [27].

Results

The proposed computational approach for kinetic network representation using time-series

data combines (i) feature selection to preselect a subset of metabolites with enhanced

Table 1. Results of a representative KEGG database and literature search.

Metabolic pathway Related metabolites Related disease

KEGG ID Pathway KEGG

ID

KEGG Compound KEGG

ID

KEGG Disease / Disease-Related References

map00230 Purine metabolism C00385 Xanthine H00674 Anemia due to disorders of nucleotide metabolism

C00262 Hypoxanthine H00824 Calcification of joints and arteries

map00240 Pyrimidine

metabolism

C00112 CDP (cytidine

diphosphate)

H00674 Anemia due to disorders of nucleotide metabolism

C00063 CTP (cytidine

triphosphate)

H00824 Calcification of joints and arteries

map04152

0

AMPK signaling

pathway

C00020 AMP (adenosine

monophosphate)

- Regulation of cell metabolism in cardiometabolic diseases (atherosclerosis,

heart failure, diabetes) [29]

map00340 Histidine

metabolism�
C00386 Carnosine - Cholesterol and glucose metabolism (diabetic nephropathy) [30, 31]

The first main column (with two sub-columns) represents metabolic pathways, the second main column shows metabolites important for the respective pathway and the

third main column depicts disease entries linked to the respective metabolic pathway.

� interacting with the purine metabolism.

https://doi.org/10.1371/journal.pone.0208953.t001
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predictive value using pBI scoring, and subsequently (ii) construction of the dynamic network

by translating the kinetic information of circulating metabolites into a superimposed graph

representation. For the latter step, a threshold value needs to be defined to specify the degree

of interconnectability of analyte pairs present in the network (see section Combined network

plots and edge weighting).

Fig 1 shows the absolute pBI� scores of the given dataset in boxplot representation used for

network inference at the different time points.

Specifically, the upper limit of each single box indicates the dynamic cutoff τi,2 deduced

from the quartile q75, resulting in different threshold values for each measurement point ti.

The horizontal lines represent the static threshold τs (s = 1 . . .3 representing q50, q75 and

q90), computed as the mean of the dynamic cutoff values τi,j from the four times ti, which is

applied to all measurement points uniformly to generate the superimposed dynamic graph

representation. For example, the selected threshold τs = τ2 = 55.36 (q75, yellow line) prioritizes

metabolites and their interactions accordingly into the classes of moderate and strong predic-

tors, characterized by their absolute pBI� scores and weights of network edges in the combined

graph.

Fig 2 shows the heatmap of a subset of the 20 top ranked, annotated metabolites of a com-

bined network graph based on static thresholding τs = τ3 (q90), in which connections originate

from the representative network metabolite AMP and their respective pBI� scores for each of

the four time points are computed.

Numbers in the map denote the computed absolute pBI� scores of metabolite level ratios

between AMP and the respective selected metabolites. The color code thus indicates the inter-

action strength that is directly associated with the absolute value of the pBI� score. Using this

color key, analytes are categorized with regard to their predictive value and strength of their

respective connections. For instance, AMP has the strongest relationship with the listed metab-

olites at t240 and the weakest relationship with the listed metabolites at t120. These patterns

Fig 2. Heatmap representing metabolite interactions originating from the metabolite AMP. The color code

indicates the connection strength between AMP and the respective selected metabolites. A high absolute pBI�score

indicates a strong interaction between two metabolites and is represented by darker colors (dark red and dark blue).

https://doi.org/10.1371/journal.pone.0208953.g002
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indicate the dynamics of interaction among metabolites at different time points, demonstrat-

ing an enhanced regulatory activity for AMP (AMP is involved in the regulation of cell metab-

olism in multiple cardiometabolic diseases) one hour and four hours after myocardial injury.

Fig 3 illustrates the combined, superimposed dynamic network graph after the pBI score-

based selection of a subset of 20 analytes using the fully annotated dataset (see S3 Dataset). The

depicted kinetic network graph is inferred using the continuous weighting approach for

highlighting the various strengths of connections, i.e. thickness of edges between the network

metabolites by combining the network edge information of the four time points. This means

that the pBI� scores of all single networks are considered. Thicker lines indicate higher pBI�

scores, showing stronger interactions between analytes, considering one or multiple measure-

ment points. For visualization a circular graph representation was selected.

The graph combines the networks of the four different measurement points inferred with a

static threshold τs = τ3 (q90), considering all time points to weight the edges using the continuous

weighting approach. Fig 4 illustrates a second variant of a superimposed network graph again

inferred with the static threshold τs = τ3 (q90), combining networks from the same four measure-

ment points as demonstrated in Fig 3. In contrast, the edges in the resulting combined graph are

highlighted using the discrete weighting approach. Thicker line widths indicate stronger interac-

tions between the respective metabolites in terms of their occurrence in the network. Note that for

both networks (Figs 3 and 4) we used the highest static threshold at q90 (= 90% percentile) to

Fig 3. Combined network graph with continuous weighted edges. The graph combines the networks of the four

different measurement points inferred with a static threshold τs = τ3 (q90). The pBI� score values of all time points are

considered to weight the edges using the continuous weighting approach. Thicker line widths indicate stronger or

strongest interactions between two metabolites (e.g. AMP ! carnosine or alanine at t240 or AMP ! sucrose at

multiple time points t10, t60 and t240; see heatmap Fig 2).

https://doi.org/10.1371/journal.pone.0208953.g003
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visualize only the strongest interactions among the selected metabolites. All networks inferred

with the static thresholds τs = q50, q75 and q90 are available in S1 File, Example Plots.

In addition to the two presented edge-weighting concepts, an alternative method of infer-

ring the network is briefly introduced which uses the concept of weighting the nodes instead

of the edges. Using this concept, the combined network graph is created upon a degree-based
(discrete) node weighting modality as depicted in Fig 5.

The superimposed graph combines the single networks inferred at the four different time

points ti using the individual dynamic thresholds τi,3 (= q90 for i = 1. . ..4). For metabolite sub-

set selection a pBI score threshold at q75 was selected, leading to a higher number of prese-

lected analytes (n = 48) as demonstrated in Fig 5. Here, the node size in the graph depends on

the respective node degree, i.e. the number of connections corresponding to a node by com-

bining again the individual network graphs of all measurement points into one superimposed

graph representation. For visualization the force-directed Fruchterman-Reingold layout was

selected [28]. For biochemical interpretation and verification, a KEGG database and literature

search was conducted. Relevant pathways and metabolic interactions associated with cardio-

metabolic diseases, in particular with myocardial injury, are summarized in Table 1.

As a proof-of-concept, significant metabolite interactions highlighted in the dynamic

graphs (see Figs 3, 4 and 5) include the metabolites xanthine and hypoxanthine (prioritized as

moderate/strong predictors), both associated with purine metabolism, as well as CDP and

CTP, which are related to pyrimidine metabolism. Multiple network connections originating

from adenosine monophosphate (AMP), linked to the AMPK signaling pathway, are

Fig 4. Combined network graph with discrete weighted edges. The graph combines the networks of the four

measurement points inferred with the static threshold τs = τ3 (q90) where thicker line widths indicate stronger

interactions and serves as an indicator for the frequency of its occurrence in all of the networks combined.

https://doi.org/10.1371/journal.pone.0208953.g004
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highlighted as well. AMPK is a key energy sensor that regulates metabolism at the level of both

the cell and the whole organism. It is activated during metabolic stress, under conditions

where the generation of ATP decreases or ATP consumption increases, and leads to the inhibi-

tion of anabolic pathways. Therefore, it can be considered to be associated with cellular stress

that occur after a myocardial infarction. Reviewing the AMPK signaling pathway in more

detail, an interaction with the starch and sucrose metabolism can also be shown [32, 33].

A strong network connection between alanine and AMP was also present, potentially repre-

senting alanine-mediated activation of AMPK [34].

Interestingly, a new and so far unexpected analyte, glycocholic acid, and its relationship

with ornithine are prominently represented in the network graphs. This metabolite requires

further consideration, as it has been discussed as a potential biomarker of liver injury in rodent

toxicity studies, but its role in myocardial injury has not been characterized [35]. However,

other bile acids have recently been implicated in the dysregulation of cardiac metabolism and

the development of cardiomyopathy, highlighting the biological plausibility of glycocholic acid

as a biomarker of cardiovascular disease [36].

Discussion

The presented computational approach for the identification, prioritization and characteriza-

tion of interactions of new dynamic metabolic biomarker candidates gathered from

Fig 5. Combined network graph of all measurement points with degree-based edge weighting. The graph combines

the single networks of the four time points ti inferred with a dynamic threshold τi,3 (= q90 for i = 1. . ..4). The node size

is adapted to the degree of the respective edges with larger node sizes indicating higher node degrees. In total, a

number of n = 48 preselected analytes are displayed in the network graph.

https://doi.org/10.1371/journal.pone.0208953.g005
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longitudinal MS high throughput data provides a powerful tool for biomarker discovery by

translating the kinetics of the data into a combined graph representation. Our proposed

approach can be divided into three steps: (i) data preprocessing, (ii) feature subset selection

and (iii) network construction. The latter two steps are based on the pBI score measure intro-

duced by Baumgartner et al. [24] for selecting and prioritizing metabolite data. In particular,

the pBI score is used as a decision criterion for preselecting candidate metabolites upon their

discriminatory ability from time series data. In step three, the kinetic network based on differ-

ent edge weighting approaches is inferred. Here, the introduced pBI� score is combined with

the threshold τ to identify significant edges out of all possible connections in a network. In

principle, these cut-off values are computed dynamically according to a statistical model based

on interquartile ranges so that the resulting networks created from multiple time points yield

the same number of edges. In this regard, static thresholding was used to infer combined,

superimposed networks as demonstrated in Figs 3 and 4, whilst Fig 5 demonstrates a com-

bined network graph by using dynamic thresholds alternatively. However, it is important to

note that the task of choosing the threshold τ for network edge selection is crucial for setting

up networks for the subsequent biological interpretation of metabolite interactions.

Specifically, the proposed method for inferring kinetic network graphs with various edge

weighting concepts (discrete vs. continuous) represents a powerful approach for discovering

metabolic signatures in terms of their discriminatory ability and their strength of interactions

over time, as demonstrated in the selected clinical example of myocardial injury. Two different

strategies for weighting the network edges were introduced. First, the discrete approach, which

uses the adjacency matrices of the graphs to be combined, presents a straightforward method

where all edges occurring in the underlying network graphs are considered equally since the

weights take on discrete values according to their occurrence frequency in the networks to

combine. Second, the continuous approach used for calculating the edge weights takes into

account the respective pBI� score values of all edges in the network graphs. This results in con-

tinuous weights which are related to the strengths of connections over all time points and

therefore allows for a more differentiated quantification of the underlying analyte interactions.

When comparing the different edge weighting approaches, more prominent edges are

highlighted with thick lines for the discrete calculation of edges than for those of a continuous

type. This may lead to misinterpretations, especially if low threshold values for network infer-

ence are chosen. Therefore, it is recommended to combine both edge weighting approaches

for the biological interpretation of findings, starting with “discrete” weighting for preselection

of all promising interactions, and subsequently differentiation of the impact of interactions by

the “continuous” weighting method.

As a result of this applied new computational approach, the presented networks highlight a

broad panel of promising key metabolites and the chemical interaction of analyte pairs in the

network, which were evaluated with an appropriate pathway database, i.e. the KEGG database,

as an essential initial step for the verification and interpretation of findings (see Table 1). This

analysis enabled the confirmation of known metabolic signatures—in addition to some unex-

pected candidates such as carnosine or glycocholic acid—and pathways that have been previ-

ously associated with cardiovascular disease or related disorders [15, 29–36].

Conclusions

Using the proposed bioinformatics approach of inferring dynamic networks for biomarker dis-

covery in complex diseases like myocardial infarction, we identified promising single putative

biomarker candidates and provided additional quantitative information on the analytes’ inter-

connectability in single or multiple metabolic pathways over time. In particular, the introduction
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of dynamic networks provides a further source of information, representing not only the kinetics

of the metabolite changes themselves, but also their chemical interactions over time.

Furthermore, our results have demonstrated biochemical and biological plausibility, indi-

cating that this approach can serve as a significant tool for aiding in the discovery of dynamic

metabolic or proteomic biomarkers in clinical cardiology.

Supporting information

S1 Dataset. Original dataset. This is the original, unprocessed dataset with n = 210 analytes,

including missing values, but already cleaned for extreme outliers (file name in R-scripts:

DataAll).

(CSV)

S2 Dataset. Preprocessed dataset. This is the preprocessed and cleaned dataset (n = 170 ana-

lytes) after handling missing values by replacement with the median of analyte levels at the

given time point (file name in R-scripts: PreprocessedAll).

(CSV)

S3 Dataset. Annotated dataset. This is the fully identified and annotated dataset of n = 71

metabolites for final network construction (file name in R-scripts: DataPreprocessedAnno-

tated).

Measurement values in all three datasets (S1–S3 Datasets) represent metabolite levels in MS

intensity units (IU) for the five defined measurements before alcohol septal ablation (baseline

at time t0) and t10 = 10 min, t60 = 60 min, t120 = 120 min and t240 = 240 min after myocardial

injury.

S1–S3 Datasets are available in CVS format. The first column represents a class level (1. . .time

point t0, 2. . .time point t10, etc.), the second column indicates the explicit time point for a

selected case such as D_t0_p1 (time point t10 for case p1), the third column shows again the

case ID and the rest of columns comprises the analyte levels denoted in MS intensity units

(IU) for each metabolite at the different time points.

(CSV)

S1 File. Computational framework. The R-based computational framework for data prepro-

cessing, metabolite subset selection and dynamic network construction consists of the follow-

ing R-scripts and text files:

1. Main.R: Main script for the analysis of metabolic data in order to identify putative bio-

marker candidates based on dynamic network visualization.

2. Preprocessing.R: (i) Removes metabolites with more than 60% of the values missing from

the dataset; (ii) Replaces missing values with the metabolite’s median at a given time point for

the remaining dataset; (iii) Creates a data subset, containing only those metabolites, which are

present at all time points.

3. BI.R: Function that calculates pBI scores for all metabolites.

4. InferBIGraph.R: Function to sum up the function calls for the calculation of a network

graph.

5. FunctionsGraph.R: Multiple functions for network graph construction and visualization

(i.e. create boxplot diagrams with different thresholds, graph calculation, adapt ratio for heat-

map construction, plot heatmaps, plot graphs, calculate discrete weights, calculate degree-

based weights, calculate graph object, plot pBI scores as bar charts).

6. �.txt files: Contain coordinates for graph visualization.

For further information please read the “ReadMe.txt” file in the Supporting information.

(ZIP)
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