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Abstract

Persistent insomnia is among the most frequent complaints in general practice. To identify genetic 

factors for insomnia complaints, we performed a genome-wide association study (GWAS) and a 

genome-wide gene-association study (GWGAS) in 113,006 individuals. We identify three loci and 

seven genes of which one locus and five genes are supported by joint analysis with an independent 

sample (n=7,565). Our top association (MEIS1, P<5×10-8) has previously been implicated in 

Restless Legs Syndrome (RLS). Additional analyses favor the hypothesis that MEIS1 shows 

pleiotropy for insomnia and RLS, and that the observed association with insomnia complaints 

cannot be explained only by the presence of an RLS subgroup. Sex-specific analyses suggested 

different genetic architectures across sexes in addition to common genetic factors. We show 

substantial positive genetic overlap with internalizing and metabolic traits and negative overlap 

with subjective well-being and educational attainment. These findings provide novel insight into 

the genetic architecture of insomnia.

Insomnia Disorder (ID) is the second-most prevalent mental disorder1 with prevalence 

estimates ranging from 10% (adults) to 22% (elderly)2,3, and is characterized by lasting 

problems falling asleep or waking up in the night or early morning, with subjective 

repercussions for daytime functioning. It is the primary risk factor for depression4 and 

contributes to the risks of cardiovascular disease5–9, type 2 diabetes10 and obesity11. 

Heritability estimates of 38% (males) and 59% (females)12 suggest a substantial role for 

genetic factors. In contrast to presumed neurobiological mechanisms involved in most 

mental disorders, it has been suggested that insomnia merely involves reversible maladaptive 

learning of sleep-related cognitions and behaviors13,14. Indeed, interventions that address 

these are at least partly effective in about two-thirds of cases15, but ameliorate complaints 

only by about 50%16, often resulting in a persistent course17. Family and twin studies 

suggest the involvement of genetic factors in the etiology of insomnia18–21. However, few, 

and mainly underpowered (n < 5,000) linkage and association studies of insomnia-related 

phenotypes have been conducted, and recent larger studies used non-validated proxy 

measures for ID22–24. For example, the habitual duration or the timing of sleep25,26 do not 

discriminate reliably between cases and controls of ID27, and therefore genes found for 

these phenotypes are not indicative of biological mechanisms of insomnia. The most recent 

GWAS for sleep disturbance traits reported several novel loci24. However, this study did not 

provide information on the predictive accuracy of the included traits for ID, making it 

difficult to interpret their findings in terms of clinical relevance. In addition, their top finding 

(MEIS1) is a known risk factor for Restless Legs Syndrome (RLS), and it is still unclear 

whether the shared associations in this gene reflect causality, partial mediation or 

pleiotropy24.

Here we report a GWAS using the UK Biobank sample28 (see URLs) including 113,006 

individuals (mean age 56.92, sd = 7.94) to identify genetic risk factors for insomnia 

URLs. UK Biobank, www.ukbiobank.ac.uk; Netherlands Sleep Registry, http://www.sleepregistry.nl; UK Biobank genotyping and 
QC, http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=155580; SNPTEST, https://mathgen.stats.ox.ac.uk/genetics_software/snptest/
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complaints (Online Methods, Supplementary Table 1). The discriminative value of insomnia 

complaints for identifying ID cases versus controls was validated in an independent cohort 

(n = 1,918). In addition, we report extensively on the possible mechanisms of action 

explaining the shared genetic signal in MEIS1 for insomnia complaints and RLS.

Results

Insomnia complaints is predictive of Insomnia Disorder

ID was assessed by using a single question on trouble falling asleep and waking up in the 

middle of the night (Supplementary Note, Supplementary Fig. 1). Individuals that answered 

‘usually’ were scored as cases and individuals reporting ‘never/rarely’ or ‘sometimes’ were 

scored as controls. We note that this operationalization differs from24 where the same 

question in the UK Biobank sample was used but where cases were defined as scoring 

‘usually’ and controls as scoring ‘never/rarely’ (Supplementary Note). We validated the 

predictive utility of this question for ID in an independent sample of 1,918 participants (845 

insomniacs and 1,073 controls) of the Netherlands Sleep Registry29 (NSR, see URLs) 

(Supplementary Note). The equivalent of the UK Biobank question (using our response 

category cut-off) in the NSR had a sensitivity of 98%, and a specificity of 96% in 

discriminating questionnaire-defined insomnia ID cases from non-affected controls (χ2 = 

1356.45, P < 0.0001), or discriminating ID cases from cases with exclusively RLS 

(sensitivity 0.96, specificity 0.97, χ2 = 639.06, P < 0.0001; Supplementary Note, 

Supplementary Table 2). It did not discriminate RLS from controls well, with a sensitivity of 

only 0.43, and a specificity of 0.74 (χ2 = 1.28, P = 0.26; Supplementary Fig. 1 and 2, 

Supplementary Table 2), nor any cases versus controls of 19 possibly related disease 

categories (Supplementary Note, Supplementary Fig. 3). Further strong support for the 

validity of the UK Biobank insomnia phenotype was provided by an accuracy of correct 

classification of 91% of clinical ID in NSR participants diagnosed by a structured interview 

(Supplementary Note). Moreover, sleep and mood characteristics of individuals who 

reported difficulties falling and staying asleep closely resembled the corresponding profile of 

NSR participants with ID, but not the profile of those with RLS (Supplementary Note, 

Supplementary Fig. 4). These findings show that the UK Biobank insomnia phenotype is 

predictive of ID, with little confounding by comorbidity. We will refer to this classification 

as 'insomnia complaints'.

Implicated genes and functional mechanisms

Prevalence of insomnia complaints was 29% in the UK Biobank sample (Supplementary 

Table 1, and further descriptives in Supplementary Table 3), in keeping with previous 

estimates for people with advanced age in the UK30 and elsewhere31,32. Females (33%) 

had a higher prevalence than males (24%). The sex odds ratio of 1.37 matches the previously 

published meta-analytic estimate of 1.412. GWAS was performed on all individuals of 

European descent, and standard quality-control procedures included correction for 

snptest.html; MAGMA, http://ctg.cncr.nl/software/magma; Sanger Imputation Service, https://imputation.sanger.ac.uk/; Genotyping 
chip strand files, www.well.ox.ac.uk/~wrayner/strand/; dbSNP data, ftp://ftp.ncbi.nih.gov/snp/; PLINK, https://www.cog-
genomics.org/plink2; BUHMBOX, http://software.broadinstitute.org/mpg/buhmbox/; METAL, http://genome.sph.umich.edu/wiki/
METAL_Program; MSigDB, http://software.broadinstitute.org/gsea/msigdb/; LD score regression, https://github.com/bulik/ldsc.
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population stratification and filtering on minor allele frequency and imputation quality 

(Online Methods). The GWAS included 12,444,916 SNPs. The pooled-sex analysis 

identified two genome-wide significant loci (Fig. 1a; Table 1), implicating two genes: 

MEIS1 on chromosome 2 and SCFD2 on chromosome 4 (Supplementary Fig. 5a/b). Sex-

specific analyses revealed MEIS1 for females as well, including the same significant SNPs 

found in the pooled-sex analysis, and an additional locus for males, WDR27 on chromosome 

6 (Fig. 1b/c; Table 1; Supplementary Fig. 5c/d). Both MEIS1 and WDR27 have been 

identified by the recent GWAS for sleep disturbance24 traits using the UK Biobank data as 

well, using a slightly different insomnia phenotype (Supplementary Note, Supplementary 

Figs. 6 and 7). Our top SNPs in both genes were the same as in this study with similar 

association signals (MEIS1: rs113851554, P=9.11×10-19; WDR27: rs13192566, 

P=3.17×10-8).

Possible functional mechanisms of the identified SNPs and the SNPs in high LD (r2 > 0.6) 

are reported in the Supplementary Note and Supplementary Table 4. The majority of 

genome-wide significant SNPs were intronic and unlikely to be deleterious, or part of a 

regulatory element. However, the SNPs in the locus at chromosome 6 were associated with 

increased expression of two neighboring genes in blood cells (PHF10, lowest P = 3.65 × 

10-13; C6orf120, lowest P = 3.81 × 10-13). One SNP (rs113851554) in the MEIS1 locus 

showed evidence (P = 1.08 × 10-6, FDR < 0.05) to act as a cis-methylation quantitative trait 

locus (meQTL). Credible set analysis (Online Methods) of the SNPs in the MEIS1 locus 

identified 2 variants (rs113851554 and rs182588061) within the 99% confidence set that are 

plausibly the causal variants (Supplementary Table 5). When incorporating functional 

annotation, rs113851554 accounted for the full posterior probability, suggesting that the 

most strongly associated SNP in the MEIS1 locus is also the most likely causal SNP.

SNP heritability

SNP-based heritability was estimated at 0.09 (SE=0.0082) by LD score regression33 

(LDSC) and at 0.11 (SE = 0.0093) by BOLT-REML34 (BR) analysis. The sex difference 

was small with estimates at 0.12 (SE=0.018; LDSC) and 0.11 (SE = 0.02; BR) in males, 

versus 0.08 (SE = 0.014; LDSC) and 0.09 (SE = 0.02; BR) in females. The quantile-quantile 

(Q-Q) plots of all SNPs exhibited only mild inflation (λALL = 1.11; λM = 1.06; λF = 1.05; 

Supplementary Fig. 8) as is expected for a polygenic trait using the current sample size. The 

intercepts estimated by LDSC of 1.00, 0.99, and 1.00 for sex-combined, males and females 

respectively, suggested that this mild inflation was unlikely to be due to population 

stratification.

Gene-based results

A genome-wide gene-association study (GWGAS) as implemented in MAGMA35 (Online 

Methods) on all individuals identified three genes: MEIS1 (also implicated by the GWAS), 

DCBLD1 and MED27. Sex-specific GWGAS identified two additional genes (HHEX and 

RHCG) for males, and two additional genes (IPO7 and TSNARE1) for females (Fig. 1d/e/f, 

Table 2, Supplementary Table 6). Some of these genes have been associated before with 

other phenotypes such as diabetes and schizophrenia (Supplementary Table 7; 

Supplementary Note section 3.1). The top gene MEIS1 encodes a homeobox protein that 
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acts as transcriptional regulator and activator, and it is thought to be important for normal 

development36. The highest expression levels are found in the female internal reproductive 

organs, but it is expressed in many other tissues as well, including the brain37. HHEX and 

MED27 are involved in the regulation of transcription as well. TSNARE1 and SCFD2 
(implicated in the GWAS) play a role exocytosis (Supplementary Note, Supplementary 

Tables 8, 9, Supplementary Figs. 9-12).

Joint analysis with independent sample

To examine the robustness of the 3 loci and 7 genes that reached genome-wide significance 

in the primary analyses, we tested their associations with a well-defined insomnia phenotype 

in the deCODE sample of n=7,565 (Online Methods, Supplementary Note, Supplementary 

Tables 10-12), and meta-analyzed these results with the UK Biobank association results, 

while adhering to the GWAS significance threshold of 5 × 10-8 (Online Methods, 

Supplementary Tables 13 and 14). The probability to replicate significant SNPs in the 

deCODE sample was low due to the difference in sample size (Supplementary Note section 

4 and Supplementary Table 15), whereas a meta-analysis takes into account standard errors 

(i.e. sample size) of the observed effects, and allows to evaluate whether discovery P values 

increase (suggesting no replication) or decrease (supporting a similar effect in the added 

sample)38. Effects of 11 out of 12 SNPs from the full (both sexes combined) GWAS and all 

five SNPs from the female GWAS were sign concordant while the three SNPs from the 

GWAS in males were not. Only SNPs in the MEIS1 locus showed a stronger association 

signal (six SNPs in the full, and two SNPs in the females GWAS). Six out of seven genes 

detected in the GWGAS were significant at the genome-wide threshold of 5 × 10-8 in the 

meta-analysis. The signal for MEIS1, as well as for the four genes associated in the sex-

specific analyses, showed a stronger association, and remained below the genome-wide 

gene-based threshold of association.

The role of MEIS1 in insomnia complaints and RLS

Most strongly associated with insomnia complaints was MEIS1. Winkelmann and 

colleagues39,40 previously reported an association of multiple SNPs in MEIS1 with RLS, 

and two of our top SNPs have been associated before with clinically diagnosed RLS patients 

in a sequencing41 and gene expression study42 of MEIS1. RLS is a prevalent disorder 

characterized by the urge to move the legs, a symptom which has been suggested to involve 

deficiencies in the dopaminergic system, while arousals during sleep, which is present in 

some RLS patients, is related to the glutamate/GABA balance43. The latter has also been 

implicated in hyperarousal in insomnia44. RLS and insomnia have some form of agitation or 

restlessness in common: expressed primarily in the cognitive domain in insomnia, and in the 

sensorimotor domain in RLS. Given the possible phenotypic overlap and reported genetic 

associations in MEIS1 for RLS, we investigated the mechanisms of action that can explain 

the shared signal in MEIS1 for insomnia complaints and RLS.

First, we investigated whether the observed associations of MEIS1 with insomnia complaints 

and RLS are independent. At least two signals in MEIS1 are associated with RLS: one 

including common SNPs reported in39,40, and a second signal of low-frequency SNPs 

reported by41,42. The Winkelmann RLS-associated SNPs in MEIS1 are not genome-wide 
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significant in our insomnia complaints GWAS, and are in low LD with our associated SNPs 

(Supplementary Table 16). Conditioning our top SNP rs113851554 on these SNPs (Online 

Methods) showed that our top SNP has an effect (P = 2.90 × 10-13) independent from those 

RLS SNPs in MEIS1. We did not condition on the two SNPs of the second RLS signal in 

MEIS1 (our top SNP rs11385155442 and rs1169322141) as those SNPs were part of our top 

findings for insomnia complaints (Table 1).

Second, we applied BUHMBOX45, which provides information on the likelihood that a 

heterogeneous RLS subgroup exists within our sample that could explain our association 

results (Online Methods). After establishing sufficient power (0.82 reported by BUHMBOX 

power calculator based on sample size, RLS SNP effect sizes, and RLS prevalence, Online 

Methods) to detect heterogeneity when defining RLS genetic structure by the six RLS-

associated loci reported in the RLS GWAS40 (Supplementary Table 17), we found no 

evidence that an RLS subgroup solely drives the reported associations, both when excluding 

the MEIS1 locus (P = 0.33), and when including this locus (P = 0.36). However, adding our 

top SNP in MEIS1 for insomnia complaints which was also previously associated with 

RLS42 (P = 4.80 × 10-12), we did find excessive positive correlation for the RLS loci in a 

subgroup of the individuals reporting insomnia (P = 0.029), yet this was driven by this single 

SNP. Note that because of a lack of power (due to the small RLS sample size and smaller 

effect sizes of the insomnia loci), we could not test the reverse hypothesis that an insomnia 

subgroup drives the RLS associations.

Third, we performed a genetic risk score analysis (Online Methods) to interpret the 

BUHMBOX results. This yielded a significant association between insomnia complaints and 

the RLS associated loci when including the same RLS loci as tested in BUHMBOX 

(Supplementary Table 17), namely; i) five RLS loci excluding the MEIS1 locus (P = 7.28 × 

10-3); ii) six RLS loci including the MEIS1 association of the RLS GWAS (P = 6.23 × 10-4); 

and iii) six RLS loci including the MEIS1 RLS-associated SNP that was the insomnia 

complaints top hit as well (P = 5.30 × 10-13). As in the BUHMBOX analysis, including the 

insomnia complaints top hit strongly increased the association. The results of the 

BUHMBOX and genetic risk score analyses together are compatible with pleiotropy, but 

phenotypic overlap between RLS and insomnia complaints might contribute to the 

association found in the MEIS1 locus.

Fourth, we investigated possible confounding of RLS and insomnia at MEIS1 using 

conditional phenotypic analysis in data of the Course of Restless Legs Syndrome study 

(COR; included in40) and the Dortmund Health Study (DHS), containing information on 

both RLS and insomnia complaints (Online Methods, Supplementary Note). The combined 

COR+DHS sample included 1,985 individuals with quality-controlled genotypes 

(Supplementary Table 18). We note that this sample has strong ascertainment biases due to 

COR (53% of the combined sample) consisting only of patients who are relatively old (65 

years on average) and, as members of RLS support groups, tend to have severe RLS. The 

resulting biases are i) oversampling of insomnia evoked by severe RLS because all 

individuals with insomnia complaints in COR necessarily have RLS, and ii) 
overrepresentation of RLS comorbid with insomnia because insomnia increases with age 

and people seeking help for RLS may be more likely to have comorbid insomnia. Keeping 
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this in mind, MEIS1 was found to be strongly associated with insomnia complaints, 

supporting our initial finding, and with RLS as expected (Supplementary Tables 19 and 20). 

Conditioning insomnia complaints on RLS and vice versa reduced the association signals, 

indicating that phenotypic overlap contributes to the associations of both phenotypes. 

However, this reduction, which was complete when conditioning insomnia complaints on 

RLS but incomplete when conditioning RLS on insomnia complaints, cannot exclude 

pleiotropy of MEIS1 because of the strong ascertainment biases. Up to 83% of all insomnia 

cases in COR+DHS may belong to the subgroup that is evoked by severe RLS or comorbid 

with RLS (Supplementary Table 18), explaining why an effect of MEIS1 on insomnia was 

not visible after conditioning on RLS.

Fifth, we predicted P values for insomnia complaints in the UK Biobank sample under the 

assumption that RLS alone drives the association. To this end we calculated the expected 

proportions of RLS individuals in the UK Biobank insomnia cases and controls, using data 

on age-specific RLS prevalence46, on RLS sensitivity and specificity of the UK biobank 

question as derived from the NSR and Dortmund Health Study (DHS) sample, and on the 

reported rs113851554 effect size in RLS cases and controls42 (Supplementary Note). A χ2 

test resulted in a predicted association P value of 2 × 10-4 (95% CI 0.056-1.1 × 10-11; based 

on sampling variances; Supplementary Note). This predicted P value under the assumption 

that the complete signal was driven by an RLS subgroup was much weaker than the actual P 
value we observed (2.14 × 10-18), and the latter was outside of the 95% CI of the predicted P 
value. This finding thus supports the notion that the effect of MEIS1 on insomnia complaints 

can at most be explained in part by an RLS contamination of the UK Biobank insomnia 

cases.

Finally, we conducted sign concordance and low P value enrichment tests (Online Methods) 

on the summary statistics of insomnia complaints and RLS (unfortunately the sample of 

RLS GWAS40 was insufficient to obtain a reliable estimate of genetic correlation). 78% of 

the independent top SNPs (P = 1 × 10-4) of insomnia complaints were sign-concordant in 

RLS, while 83% of the top SNPs of RLS were discordant (Supplementary Table 21). The 

top signals of both studies showed little overlap (Supplementary Tables 22 and 23 and 

Supplementary Fig. 13). This suggests that besides pleiotropy of some loci there are genetic 

factors specific to each of the two disorders.

Taken together, the above results suggest that phenotypic overlap between RLS and 

insomnia can drive some, but not all of the MEIS1 insomnia association. This effect on the 

association likely has the same effect vice versa (i.e. insomnia complaints confounding 

RLS). Hence, we conclude that MEIS1 is likely to have pleiotropic effects on both RLS and 

insomnia.

Overlap with sleep-related phenotypes

Multiple sleep related phenotypes are present in the UK Biobank and multiple loci have 

been identified for sleep duration24,26, chronotype25,26, and excessive daytime 

sleepiness24. We performed GWASes on six additional sleep phenotypes in UK Biobank 

(Supplementary Fig. 14, Supplementary Table 24) and investigated the genetic and 

phenotypic correlations with insomnia complaints (Supplementary Note). Phenotypically, 
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individuals reporting insomnia complaints have shorter sleep duration, have more trouble 

getting up, and have more unintentional dozing, but do not show a systematically different 

chronotype. Furthermore, insomnia complaints showed a significant positive genetic 

correlation with daytime dozing/sleeping (rg = 0.51, P = 3.25 × 10-4) and napping during the 

day (rg = 0.42, P = 3.95 × 10-6), and a negative genetic correlation with sleep duration (rg = 

0.47, P = 1.97 × 10-16; Supplementary Table 25). The loci identified for insomnia 

complaints showed no significant association with the six additional sleep phenotypes 

(Supplementary Table 26). In addition, we investigated possible confounding of other 

psychiatric, metabolic and social economic traits (Online Methods, Supplementary Note). 

Adjustment of the significant SNP associations with insomnia complaints by these traits did 

not show confounding effects (Supplementary Table 27).

Sex-differences in genetic associations

Females have a higher predisposition for insomnia2 than males, which might result from 

sex-related differences in the genetic architecture. The genetic correlation between sexes was 

estimated at 0.79 (SE = 0.13) which was just significantly smaller than 1 (one-sided Wald 

test P = 0.045). This estimate is comparable to e.g. waist circumference for which between-

sex genetic heterogeneity is expected, in contrast to height and BMI where no heterogeneity 

is found47. In keeping with these overall differences, the significant SNP- and gene-based 

association results also differed between the sexes except for MEIS1 (Fig. 2). Adding sex as 

an interaction term to the GWAS on the full sample (Online Methods) did not result in 

genome-wide significant interactions (Supplementary Fig. 15), yet this may also be due to 

low statistical power for interaction analyses. Sign concordance and low P value enrichment 

tests of sex-specific results showed little evidence for overlap in the top signals (Online 

methods, Fig. 2, Supplementary Tables 28-30), suggesting that sex has a role in evoking 

specific genetic risk factors of insomnia. Whether X-chromosomal loci or sex-specific 

imprinting48,49 play a role, still needs to be determined. Our finding is in line with sex 

differences across most sleep variables50, including subjective sleep complaints51, the 

prevalence2 and heritability12 of insomnia, and physiological signatures of sleep both in the 

general population52 and within the population that has insomnia53.

Functional networks

We applied the heat diffusion algorithm HotNet254 (Online Methods) to investigate protein-

protein interaction networks enriched with genes most strongly related to insomnia 

complaints (P < 0.1) in the full and sex-specific GWGASes (Supplementary Note, 

Supplementary Table 31, Supplementary Figs. 16 and 17). For each input gene, HotNet2 

processes a heat diffusion algorithm on the protein-protein interaction network to define a 

local neighborhood of ‘influence’, followed by a two-stage multiple hypotheses test to 

identify recurrent subnetworks. As input for HotNet2, we selected genes with P < 0.1 from 

the GWGAS, thereby considering crosstalk across pathways and network topology. In total, 

we observed twelve subnetworks of genes for males (P = 0.01, δ = 0.012, k = 7, expected = 

8.24) and nine subnetworks for females (P = 0.02, δ = 0.014, k = 7, expected = 5.61; 

Supplementary Fig. 18). These subnetworks significantly overlapped with known pathways, 

mostly involved in transcription (Online Methods, Supplementary Table 32). In females, one 

subnetwork involved MEIS1 (Fig. 3a) together with multiple homeobox genes, encoding a 
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family of transcription factors important for development. Other subnetworks presented 

candidate genes at ‘hotspots’ that were not detected by GWGAS alone, among them GNAS 
in the largest of the subnetworks in females (Fig. 3b). GNAS is an imprinted gene that is 

expressed from the maternal chromosome. It has metabolic functions and modulates REM 

and NREM sleep states49. This is especially interesting given that stronger maternal 

transmission21, hypermetabolism55 and instability of those sleep states56 are all 

characteristic of insomnia. Future studies have to confirm the involvement of the identified 

subnetworks in insomnia.

Genetic overlap with other traits

Insomnia implies an increased risk for major health problems, notably in the domains of 

cardiovascular diseases5–9, obesity11, and psychiatric disorders like depression4. We 

assessed the genetic correlation of insomnia by whole-genome LD score regression33 

against 29 traits from these domains and additional anthropometric and life style traits 

(Online Methods). Significant genetic correlations (conservatively adjusted for multiple 

testing: P < 1.72 × 10-3 [= 0.05/29]) were observed between insomnia complaints and ten 

other traits (Fig. 4, left panel; Supplementary Table 33). Strong positive genetic correlations 

were observed with anxiety (rg = 0.59, P = 7.14 × 10-5), depressive symptoms (rg = 0.53, P = 

1.03 × 10-17), neuroticism (rg = 0.44, P = 1.20 × 10-25), and Major Depressive Disorder (rg = 

0.41, P = 6.50 × 10-4). Other positive yet weaker genetic correlations were observed with 

metabolic traits, i.e. Type II Diabetes, waist circumference, waist-to-hip ratio, and body 

mass index. Strong but negative genetic correlations were observed with subjective well-

being (rg = -0.44, P = 5.64 × 10-11) and educational attainment (rg = -0.34, P = 1.81 × 10-22). 

Of the 29 traits, 18 have also been assessed in the NSR, allowing to investigate the 

phenotypic differences of these phenotypes in insomnia cases versus controls. We found that 

the profile of the magnitudes (d) of phenotypic group differences (Online Methods) was 

strikingly similar to the profile of genetic correlations (rank correlation 0.82; Fig. 4 right 

panel and Supplementary Table 34), providing further evidence for a link between the above 

mentioned traits and insomnia.

Discussion

We conducted a large scale GWAS and GWGAS on insomnia complaints, using a measure 

that reliably discriminates ID from non-affected controls. We identified five novel genes 

(MEIS1, HHEX, RHCG, IPO7 and TSNARE1) and one locus (including MEIS1) that are 

associated with insomnia complaints and that were supported by joint analysis with an 

independent sample. These findings partly (i.e. two genes) overlapped with those reported in 

a recently published GWAS24 using a slightly different operationalization of the phenotype, 

which was less discriminative of clinical ID cases versus controls. Our top association was 

with MEIS1, which was also found in24, and has previously been implicated in RLS. Our 

extensive analyses now show that both residual phenotypic overlap and pleiotropy are 

relevant for the involvement of MEIS1 in insomnia as well as RLS.

We also provided evidence of sex-specific genetic effects and showed genetic overlap with 

several psychiatric and metabolic disorders. These findings provide starting points for 
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subsequent functional analyses to unravel the molecular neurobiological mechanisms 

underlying the vulnerability to ID.

Online Methods

UK Biobank sample

We used data provided by the UK Biobank Study28 (see URLs). UK Biobank is a major 

national health resource including >500,000 participants, with the aim of improving the 

prevention, diagnosis and treatment of a wide range of serious and life-threatening illnesses 

– including cancer, heart diseases, stroke, diabetes, arthritis, osteoporosis, eye disorders, 

depression and forms of dementia. All participants provided written informed consent; the 

UK Biobank received ethical approval from the National Research Ethics Service 

Committee North West–Haydock (reference 11/NW/0382), and all study procedures were 

performed in accordance with the World Medical Association Declaration of Helsinki 

ethical principles for medical research. The current study was conducted under the UK 

Biobank application number 16406.

The study design of the UK Biobank has been described elsewhere28,57. Briefly, in 

2006-2010 about 9.2 million invitation letters to participate in the study were sent to all 

people aged 40-69 years who were registered with the National Health Service and living up 

to ~25 miles from one of the 22 study assessment centers. A total of 503,325 participants 

were recruited into the study28. Apart from registry based phenotypic information, extensive 

self-reported baseline data were collected by questionnaire, in addition to anthropometric 

assessments, and DNA collection. For the present study we focused on insomnia, which was 

measured as experiencing trouble falling asleep or waking up in the middle of the night 

(Supplementary Note section 1.1).

SNP analysis of the UK Biobank sample

We used imputed genetic data from UK Biobank (May 2015 release) including ~73 million 

genetic variants in 152,249 individuals. Details on the data are provided elsewhere (see 
URLs). In summary, the first ~50,000 samples were genotyped on the UK BiLEVE custom 

array, and the remaining ~100,000 samples were genotypes on the UK Biobank Axiom 

array. After standard quality control of the SNPs and samples which was centrally performed 

by UK Biobank, the dataset comprised 641,018 autosomal SNPs in 152,256 samples for 

phasing and imputation. Imputation was performed with a reference panel that included the 

UK10K haplotype panel and the 1000 Genomes Project Phase 3 reference panel.

For the analyses in our study, we selected Caucasians only. After removal of related 

individuals, discordant sex, withdrawn consent, and missing phenotype data, 113,006 

individuals remained for analysis (Supplementary Table 1). This is the largest available 

GWAS sample for insomnia to date. Previous power analyses showed that a samples size of 

n = 40,000 already allows for high power (>90%) detection of SNPs with small effect sizes 

explaining only 0.1% of the variance58, indicating sufficient statistical power of detecting 

SNPs associated with insomnia in our sample.
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Association tests were performed in SNPTEST59 (see URLs), using a logistic regression 

including the covariates age, sex (for the full sample), genotyping array, and the top five 

genetically determined principal components and additional ones out of ten extra that were 

associated with the phenotype (tested by logistic regression). SNPs with imputation quality 

<0.8 (based on the total sample, and on the Caucasians only) and MAF<0.001 were 

excluded after the association analysis, resulting in 12,444,916 SNPs, 12,428,592 SNPs, and 

12,432,937 SNPs for the full, male and female analyses respectively.

Gene analysis

We used all 19,427 protein-coding genes from the NCBI 37.3 gene definitions as basis for a 

genome-wide gene-association study (GWGAS) in MAGMA35 (see URLs). We annotated 

all SNPs of our association analysis to these genes, resulting in 18,355 genes that were 

covered by at least one SNP. We included a window around the genes of 2 kb before 

transcription start site and 1 kb after transcription stop site. Gene-association test were 

performed taking LD between SNPs into account. We applied a stringent Bonferroni 

correction to account for multiple testing.

A GWGAS can identify genes in which multiple genetic variants show a mild effect that is 

not sufficiently strong to be picked up by GWAS. On the other hand, while a GWAS analysis 

can indicate a significant locus including a gene, it is possible that this gene is not identified 

in the GWGAS because the genes can harbor many more SNPs that did not show an 

association signal, and the GWGAS takes all SNPs within the gene into account.

SNP analysis of the deCODE sample

The Icelandic GWAS dataset used in the current study is based on whole genome 

sequencing (WGS), chip genotyping and long range phasing of Icelandic population 

samples60. In brief, we whole genome sequenced 15,220 Icelanders using Illumina 

technology (Illumina, San Diego, CA, USA) to an average depth of at least 34X, resulting in 

the identification of some 94 million variants. Using imputation assisted by long-range 

haplotype phasing61 and after removing variants with imputation information content below 

0.8 as well as with an imputed minor allele frequency below 0.01%, we successfully inferred 

the genotypes of 32,463,443 variants in 434,571 Icelanders, of whom 151,677 had been 

genotyped using the Illumina chip genotyping platform. The remaining 282,894 Icelanders 

are first- and second degree relatives of the chip-typed individuals and are imputed by aid of 

genealogic information. Of the 3,774 cases and 3,791 controls used in this study, 3,671 and 

3,697 were directly genotyped, respectively.

Logistic regression was used to test for associations between variants and insomnia, 

assuming a multiplicative model, treating disease status as the response and expected 

genotype counts from imputation as covariates. For the Icelandic cohort this was done using 

software developed at deCODE genetics60. Testing was performed using the likelihood ratio 

statistic and population stratification was adjusted for by including county of birth as 

covariates.

To account for inflation in test statistics due to cryptic relatedness and stratification within 

the case and control sample sets, we applied the method of LD score regression33. With a 
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set of 1.1 million variants we regressed the χ2 statistics from our GWAS scan against LD 

score and used the intercept as a correction factor. The estimated correction factors were 

1.059, 1.025 and 1.036 for the analysis including all, males only and females only, 

respectively. All P values were adjusted using these correction factors.

Genotyping and association analyses of the ‘Course of Restless Legs Syndrome’ and 
Dortmund Health Study samples

1,051 Dortmund Health Study (DHS) participants were genotyped using the Illumina 

HumanOmni chip 2.5-4v1 and the GenomeStudio Genotype module. 1,057 ‘Course of 

Restless Legs Syndrome’ (COR) study participants were genotyped using the Affymetrix 

Axiom CEU array and the Axiom GT1 algorithm. Genome-wide imputation of autosomal 

SNPs according to phase 3 of the 1000 Genomes Project was performed at the Sanger 

Imputation Service (see URLs). Quality control before imputation removed variants with 

genotyping rate of less than 95%, minor allele frequency of less than 10 × 10-3, or strong 

deviation from Hardy-Weinberg equilibrium (P < 10 × 10-8), excluded individuals with sex-

mismatch or genotyping rate of less than 95%, and finally selected a maximal set of 

unrelated individual (Pi hat > 0.16). Variants were recoded before imputation according to 

human genome build 37 information on position, strand orientation, and major alleles, as 

reported by genotyping chip strand files (see URLs) and dbSNP (see URLs). Recoded 

datasets were merged by PLINK software62 (see URLs) and subjected to multidimensional 

scaling (MDS) on 10 dimensions which involved outlier detection (>4 SD from the 

population mean) and provided covariates besides age and sex for the association analyses. 

For the latter, the imputed genotypes were merged, yielding data on 1,985 individuals after 

quality control and outlier removal. For 1,772 of them, the three-level insomnia severity 

score was available. In case of individual SNPs, association analysis applied an additive 

model and linear or logistic regression as implemented in PLINK. For the gene analysis, 

MAGMA was used with the same phenotypes and covariates, using the same method in 

MAGMA as the GWGAS.

Credible set analysis

For the MEIS1 locus, we defined a credible set of SNPs that could plausibly be considered 

as causal using PAINTOR (Probabilistic Annotation INTegratOR)63. PAINTOR uses a 

multivariate normal approximation to connect the LD structure of the SNPs in the locus to 

the P value. Data on functional annotation is integrated through an empirical Bayes prior, 

which results in a prior probability of a variant to be causal that is governed by its score on 

the functional classes. The SNPs scoring high on certain functional annotations are up-

weighted, while the SNPs scoring low on a certain functional annotation are down-weighted. 

We included functional annotations reported in Supplementary Note section 2.1 that 

contained information to prioritize the SNPs in the MEIS1 locus: deleteriousness 

(continuous score), regulatory function (continuous score), meQTL (yes/no), and mean 

chromatin state over different tissues (continuous score).

Conditional analyses

We performed 2 types of conditional analyses for our SNPs associated with insomnia 

complaints: i) conditioning our top SNP rs113851554 in MEIS1 upon three SNPs 

Hammerschlag et al. Page 12

Nat Genet. Author manuscript; available in PMC 2017 December 12.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



(rs6710341, rs12469063 and rs2300478) representing the association signals detected in 

RLS GWASes39,40; ii) conditioning all SNPs significantly associated with insomnia 

complaints upon other traits and characteristics related to insomnia that were available in the 

UK Biobank study: waist-to-hip ratio, body mass index (BMI), Townsend deprivation index, 

years of education, depressive symptoms and neuroticism. Analyses were performed in 

SNPTEST59 using the logistic regression model including covariates as described in the 

SNP analysis section. Additive effects of the SNPs in i) were added to the regression model 

with the -condition on flag. The phenotypes in ii) we added to the other covariates with the -

cov_names flag.

Genotype × sex interaction analysis

To investigate possible sex effects on insomnia complaints, we performed an association 

analysis adding sex as an interaction term in the original insomnia complaints GWAS using 

PLINK62 (--linear interaction). We analyzed the same SNPs included in the main GWAS of 

this study and included the same covariates (sex, age, array, principal components).

BUHMBOX

We applied Breaking Up Heterogeneous Mixture Based On Cross-locus correlations 

(BUHMBOX45; see URLs) to test if a heterogeneous subgroup that shows genetic 

characteristics of RLS is present in our UK Biobank insomnia sample, that should otherwise 

be homogeneous (i.e. is the sharing of risk alleles by insomnia and RLS driven by all 

individuals or a subset of individuals). We used the top SNPs of the six associated loci with 

RLS40 with their risk alleles and allele frequencies (Supplementary Table 17) to define the 

genetic architecture of RLS. We first ran the BUHMBOX power calculator including 1000 

simulations experiments including the UK Biobank sample size, risk allele frequencies and 

odds ratio’s of the RLS SNPs (Supplementary Table 17), and proportion of expected RLS 

patients in the insomnia complaints group (0.107). BUHMBOX tests if the RLS risk alleles 

have higher allele frequencies only in a subset of insomnia cases (when pleiotropy would 

exist, the RLS risk alleles are expected to have higher allele frequencies across the total 

sample of insomnia cases). If the RLS risk alleles are enriched in one subgroup of insomnia 

cases, the expected correlations of number of risk alleles between the loci will be 

consistently positive. The pairwise correlations are combined in one statistic to test for 

excessive positive correlations.

Genetic risk score analysis

We used the top SNPs of the six associated loci with RLS (same as for BUHMBOX) as 

input for the genetic risk score analysis. For each individual, we calculated the GRS by 

summing the risk allele dosage (0, 1 or 2) multiplied by the effect size (log[OR]) of the six 

top SNPs. An association analysis was performed between this genetic risk score and the 

UK Biobank insomnia phenotype using a logistic regression including the genetic principal 

components as covariates.
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Sign concordance test

As input for the sign concordance test, we used independent SNPs that we defined by 

pruning the data with PLINK62 (--indep-pairwise 1000 100 0.1; see URLs). For the analysis 

with the RLS and insomnia complaints data, we first removed all SNPs with the allele 

combinations A/T and C/G to exclude strand ambiguity. In addition, all SNPs with non-

matching alleles were removed. Sign concordance between two datasets was tested by a 

two-sided binominal test for a probability of 0.5, for SNP selections below six different P 
value thresholds (1, 0.5, 0.05, 1 × 10-3, 1 × 10-4, 1 × 10-5).

Low P value enrichment tests

The pruned data used as input for the sign concordance test (see above) was used for the low 

P value enrichment test as well. Enrichment of low P values between two datasets was tested 

with a two-sided Fisher’s exact tests on the cross tabs of the SNPs below and over four 

different P value thresholds (0.05, 1 × 10-3, 1 × 10-4, 1 × 10-5). In addition, because the RLS 

and insomnia complaints summary statistics are from samples that substantially differ in size 

(which is influencing the P values), we performed the analysis for seven different ranked P 
value thresholds as well (50, 100, 200, 400, 800, 1600, 3200).

Meta-analysis

Meta-analysis of the SNPs in UK Biobank and deCODE was performed in METAL64 (see 
URLs). The analysis was based on P values, taking sample size and direction of effect into 

account. Meta-analysis of the genes in UK Biobank and deCODE was performed in 

MAGMA35 (see URLs), which uses the Stouffer’s weighted Z-transform method.

HotNet2 analysis

We applied the HotNet2 algorithm54 to identify networks of genes that are related to 

insomnia. HotNet2 is based on a heat diffusion model. The key advantage of HotNet2 

compared to conventional methods is the possibility to detect genes in connected 

subnetworks with associations to the phenotype stronger than expected by chance. 

Conventional gene enrichment or gene set analyses are limited by the rigid “in or out” 

definition of a gene set which does not allow for crosstalk between pathways that are 

represented by different gene sets. To depict an entire network topology, conventional 

enrichment tools therefore need to define a large number of gene sets resulting in a loss of 

statistical power due to a high level of multiple testing.

As input for the HotNet2 analysis we selected all genes from our GWGAS results with a P 
value ≤ 0.1 (2335, 2101, and 2077 genes for full, female, and male analyses respectively). 

The -log10(P value) was defined as input gene score. HotNet2 was performed based on 

protein-protein interactions reported by iRefIndex65. For four delta thresholds (minimum 

edge weight) that were automatically chosen by HotNet2, the significance of N subnetworks 

at k (the minimum number of proteins in a subnetwork) were reported based on a 100 times 

permuted influence matrix.

Next, we performed an enrichment analysis of the identified subnetworks by calculating a P 
value for the fraction of genes that overlaps with pre-defined pathways using the 
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hypergeometric test. We selected all canonical pathways (n = 1,330) and Gene Ontology 

(GO) pathways (n = 1,454) from the molecular signature database (MSigDB v5.166, see 
URLs). A pathway was considered statistically significant when the hypergeometric test 

showed P ≤ 0.05 after correcting for multiple testing using the Benjamini and Hochberg 

method.

Genetic correlations

Genetic correlations (rg) were calculated between i) insomnia complaints and six other sleep 

related phenotypes present in UK Biobank; ii) insomnia complaints in males and females; 

iii) insomnia complaints and 29 other traits for which summary statistics from GWAS were 

publicly available (Supplementary Table 33), using LD score regression33 (see URLs). We 

used pre-computed LD scores that were provided by LD score regression, which were 

calculated using the European panel of 1000 Genomes. No constraining of the intercept was 

applied. A conservative Bonferroni-corrected P value threshold of 1.72 × 10-3 was used in iii 
to define significant associations.

Phenotypic group differences between individuals with and without insomnia

For 18 disorders, traits and characteristics measures in the Netherlands Sleep Registry 

(NSR)29, group differences between 1,073 individuals without insomnia complaints and 845 

likely to have ID were evaluated using t-tests (continuous phenotype) or χ2-tests 

(dichotomous phenotypes).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manhattan plots for SNP associations with insomnia complaints.
Association results for the frequency of experiencing trouble falling asleep or waking up in 

the middle of the night in 113,006 individuals of European descent in the UK Biobank study, 

of whom those experiencing these complaints usually (cases, n = 32,384) were contrasted 

with those experiencing these complaints never, rarely or sometimes only (controls, n = 

80,622). (a) Manhattan plot of the GWAS including all individuals, (b) males only (12,863 

cases and 40,776 controls), and (c) females only (19,521 cases and 39,846 controls). 

Negative log10-transformed P values for each SNP (y axis) are plotted by chromosomal 

position (x axis). The red and blue lines represent the thresholds for genome-wide statistical 

significant associations (P = 5 × 10−8) and suggestive associations (P = 1 × 10−5), 

respectively. Red dots represent top SNPs. (d) Manhattan plot of the gene analysis including 

all individuals, (e) males only, and (f) females only. Here, each dot represents a gene, and the 

red and blue lines represent the thresholds for gene-wide statistical significant associations 

(P = 2.72 × 10−6) and suggestive associations (P = 2.72 × 10−5), respectively.
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Figure 2. Comparison of association results for insomnia complaints in males and females.
(a) SNP and (b) gene associations with insomnia complaints in males plotted against 

females. Contour lines indicate the density of the data in that region. The lines are colored 

from green to yellow, indicating increasing data density. Dotted lines indicate the P value 

thresholds used in the Low P value enrichment tests; from yellow to red P = 0.05, P > 1 × 

10-3, P = 1 × 10-4, and P = 1 × 10-5 (note that all SNPs present in both GWASes are 

displayed, while the enrichment tests were performed on pruned data).
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Figure 3. Protein-protein-interaction subnetworks identified by the heat diffusion algorithm 
HotNet2.
The genes most strongly related to insomnia (P < 0.1) in the full and sex-specific GWGASes 

were used as input to investigate the enrichment of protein-protein interaction networks. 

Each node (protein) is assigned a score based on the gene P value of the GWGAS. The 

scores, denoted as “heat” in HotNet2, diffuse across the edges of the network. We report 

subnetworks that include genes with a wide range of heat scores: red colored nodes send and 

receive a significant amount of heat, while blue colored nodes do not. (a) Subnetwork 

identified for females including MEIS1. (b) Subnetwork identified for females including 

GNAS. Other identified subnetworks for females and males are shown in Supplementary 

Figure 18.
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Figure 4. Genetic and phenotypic overlap between insomnia complaints and other traits and 
disorders.
Left bar chart: Genetic correlations (rg) between the frequency of experiencing trouble 

falling asleep or waking up in the middle of the night and various other traits and diseases. 

LD Score regression tested genome-wide SNP associations for these insomnia complaints 

against similar data for 29 other anthropometric and cardiovascular traits and 

neuropsychiatric outcomes (Supplementary Table 33). Error bars represent standard errors 

on these estimates. Red bars represent the traits that showed a significant genetic correlation 

after correction for multiple testing (P < 1.72 × 10−3), pink bars the traits that showed 

nominal association (P < 0.05), and blue bars the traits that did not show a significant 

genetic association. Right bar chart: The genetic correlations profile was strikingly similar 

to phenotypic overlap of insomnia with the same subject-characteristics assessed in an 

independent sample. Of the 29 disorders, traits and characteristics, 18 had been assessed in 

the NSR as well. Group differences between the 1,073 individuals without insomnia 

complaints and the 845 likely to have ID were evaluated using t-tests or χ2-tests 

(Supplementary Table 34). The profile of the magnitudes (d) of phenotypic group 

differences strongly resembled the genetic correlations profile.
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