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Simple Summary: The relationship between species and environment are an important basis for the
study of biodiversity. Most researchers have found the distribution of indicator insects such as carabid
beetle at the local community scale; however, a few studies on the distribution of indicator insects
in grassland in China. Here, we used Generalized Additive Models (GAM) to predict temperate
steppe of northwestern China carabid beetle species richness distribution, and to determine the
possible underlying causal factors. Predicted values of beetle richness ranged from 3 to 12. The
diversity hotspots are located in the southwest, south and southeast of the study area which have
moist environment, the carabid beetle is mainly influenced by temperature and precipitation. The
results underline the importance of management and conservation strategies for grassland and also
provides evidence for assessing beetle diversity in temperature steppe.

Abstract: Beetles are key insect species in global biodiversity and play a significant role in steppe
ecosystems. In the temperate steppe of China, the increasing degeneration of the grasslands threatens
beetle species and their habitat. Using Generalized Additive Models (GAMs), we aimed to pre-
dict and map beetle richness patterns within the temperate steppe of Ningxia (China). We tested
19 environmental predictors including climate, topography, soil moisture and space as well as vege-
tation. Climatic variables (temperature, precipitation, soil temperature) consistently appeared among
the most important predictors for beetle groups modeled. GAM generated predictive cartography
for the study area. Our models explained a significant percentage of the variation in carabid beetle
richness (79.8%), carabid beetle richness distribution seems to be mainly influenced by tempera-
ture and precipitation. The results have important implications for management and conservation
strategies and also provides evidence for assessing and making predictions of beetle diversity across
the steppe.

Keywords: conservation; indicators; species distribution modeling; species richness; generalized
additive models; steppe; China

1. Introduction

The relationship between species and environment has always been a central topic in
ecological research, the spatial distribution of species is closely related to environment [1].
Climate and human activity as a main threat to global biodiversity is increasing, the Global
Assessment Report on Biodiversity and Ecosystem Services of IPBES [2] recorded that one
million animal and plant species are facing extinction at present, destroying ecosystem
functions and services. Therefore, efficient management tools are urgently needed to
protect biodiversity and maintain global ecosystem functioning and services [3–5].
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One management tool is to improve the predictive ability of biodiversity distribution
models, such as niche models, species distribution and habitat suitability [6,7]. Studies
have shown that a diverse ecosystem characteristic have been predicted from the main
environmental drivers, including species distribution, richness, biodiversity value and
soil characteristics and also proved models was very valuable to biodiversity research and
mostly useful for policy makers [8,9]. Ideally, planning biodiversity conservation should in-
tegrate as many taxonomic groups as possible, including indicator insect groups such as the
carabid beetles. Carabid beetles are an essential component of global biodiversity and play
a vital role in global ecosystems (e.g., indicator, predators) [10,11]. Carabids are commonly
used to studies grassland management, as their ecology is well-known [12,13]. Beetles are
sensitive to environmental change and perceived good for agriculture, so ecologists and
taxonomists have turned to carabid beetles to test ecological research questions, thus beetle
currently faced numerous threats [14,15]. The main threats come from the land use and
grassland degradation, which leads to the loss and degradation of beetle habitats [16–18],
inducing changes in beetle community composition [19–21]. The relationships between
the environment and beetle communities are complex phenomena. Generalized Additive
Models (GAM) can best describe these linear or nonlinear relationships between beetle
and environment by using nonparametric smoothing terms [22]. Hence, based on the
advantage of GAM for accommodating nonlinear relationships between variables, GAM is
expected to efficiently model the relationship between environmental variables and beetle
diversity and provide reliable results.

Specifically, in China, grassland vegetation, which accounts for 80% of the steppe, is
degrading rapidly due to climate change and human activities that are changing productive
steppe into barren land and desert [23]. The degradation will have a huge impact on steppe
biodiversity and there is an urgent need to study the ecology of groups that may serve as an
indicator insect. Modelling procedures can be useful tools to provide robust and accurate
estimates of current and future distributions, abundance, and the population dynamics of
species, and these can be directly applied to conservation and management practices [24].

Carabid beetles (Coleoptera: Carabidae) represent an abundant and diverse insect
group [25,26] and account for an important fraction of total diversity [27–29]. The vital con-
tributions of this taxonomic group to ecosystem management have been largely recorded,
for example, they are used as an index of habitat restoration, land use, degree of urbaniza-
tion and an indicator of shrub erosion in the steppe [13,30,31]. In addition, these species
can prey on a large number of pest insects [32]. Despite beetles having proven ecological
benefits and service in grassland ecosystems, their distribution patterns have been poorly
recorded [33,34] which currently is endangering the maintenance of their ecological roles.
Therefore, it is essential to integrate information about beetle diversity and distribution
into grassland sustainable development strategies to improve or at least conserve their
biodiversity and ecosystem services in steppe regions.

However, field investigations are challenging because of remoteness, inaccessibility
of many steppe areas and shortage of staff. Species Distribution models (SDMs) provide
a cost-effective tool to overcome these limitations and remotely assess biodiversity over
large areas at regular intervals over time [35,36]. SDMs have been widely used to assess
distribution and diversity patterns of different organisms [37–39]. Increasing numbers
of studies use SDMs to assess, model, predict or map species’ distribution and analyze
biodiversity [40–42].

Here, we used Generalized Additive Models (GAM) to predict and map beetle richness
patterns [43]. In this study, we contribute to model the species richness in unmeasured
area to promote grassland management and develop a conservation policy strategy for
governments and also to determine the main driving factor of beetle’s distribution. Our
overall aim is to the conserve beetle biodiversity and maintain their ecosystem services in
the grassland regions which form the main ecology in northwestern China.
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2. Materials and Methods
2.1. Study Area

This study was undertaken in two regions of Ningxia Hui Autonomous Region which
represent a temperate steppe ecosystem in northwestern China and comprised between
36◦ north (N) and 38◦ N and between 105◦ east (E) and 108◦ E.

(1) Yanchi region, characterized by a cold, semi-arid continental monsoon-influenced
climate, with a mean annual temperature of 5.7 ◦C and mean annual precipitation of
200 mm [44]. The soil was of sierozem and the representative vegetation is Agropyron
mongolicum, Artemisia desertorum, Lespedez adavurica and Artemisia blepharolepis.

(2) Guanyuan region, characterized by a semi-arid continental monsoon-influenced
climate, with a mean annual temperature of 7 ◦C and mean annual precipitation of
400 mm [44]. The soil was of black thorn and brown and the representative vegetation
is Stipa bungeana, Artemisia frigida, Potentilla acaulis and Stipa grandis.

2.2. Beetle Data

The beetle data used in this study was from the steppe of northwestern of China which
was sampled in 2017, 2018 and 2019; we selected 124 sampling sites and at each sampling
site placed at random five pitfall traps (separated by at least five meters from each other),
all sampling site were separated by at least 150 m in order to avoid possible autocorrelation.
Samples were taken from May to September every year, which allowed us to obtain a good
representation of carabid richness. We accounted for number of beetle once a month and
take the average of five times for analysis. We divided each study area into 10 × 10 km2

grid squares in order to discriminate adequately-surveyed grid squares, the value of each
100 km2 grid, well surveyed were identified and recorded of all species observed (Figure 1).
Five pitfall traps (400 mL capacity, 7.5 cm diameter, filled with 40–60 mL of a 2:1:1:20
vinegar, sugar, alcohol and water solution and covered with a suspended opaque plastic
roof) were placed at each site and collected three days later. Trapped beetles were stored
in 75% ethanol and transported to the laboratory for identification to species level with
the aid of a taxonomist expert in carabid beetles (Prof. H. Liang, see Acknowledgments).
Analyses were conducted using the pooled data from the average values every year.
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2.3. Environmental, Spatial and Climatic Data

At each sampling site, we selected a 1 × 1 m quadrat frame (the habitat around
each site is very homogeneous) and measured plant dry biomass (PB), cover (PC, %),
density (PD), height (PHe), plant richness (PSD), litter dry mass (SL, g/m2), soil mois-
ture (SM, %), bulk density (SBD), and soil temperature (ST), soil organic matter (C), total
phosphorus (P), total nitrogen (N), pH value (pH). Above of vegetation and soil were
measured once a month. The soil moisture and temperature (underground 10 cm) were
measured by a portable soil water potential temperature tester (TRS-II, China). The cli-
mate data including the maximum and minimum monthly mean temperature (T, t), the
annual mean temperature (TM), and annual precipitation (p) were extracted climatic
dataset (www.worldclim.org, accessed on 1 December 2020). The spatial data (longitude
(Lon) and latitude (Lat)) and the geographical data (altitude (Alt)) were measured by GPS
(G128BD, China). The information of variables saw Table A1.

2.4. Data Processing and Statistical Analyses

Species activity density was calculated as the number of individuals per square meter;
Margalef index was calculated using the formula: (S − 1)/lnN , S is the number of species,
where n is the number of collected individuals per square, species richness was expressed as
the number of beetle species in a given grid cell. All analyses were performed in R v.4.0.3.

2.5. Model Building

A total of 19 potential predictors were preselected. First, the method of variance
inflation factor was used to select the most important environmental predictors for each
response variable and the largest variable was deleted in turn, that is, the collinear environ-
mental factors were deleted, until all variables were less than 10 from the ‘car’ package in
R (v.4.0.3). This package (vif function) can help us to identify and keep important relevant
predictors in our models. Second, the predictor factors were further refined by using the
Pearson correlation coefficient to identify highly correlated variables (|r|) > 0.7) and avoid
the inclusion of redundant variables in our models. The goodness-factor for the competing
functions was measured by an F-ratio with a 5% significance level and the non-significant
factors were removed (Table A2). Third, a backward stepwise procedure was used to enter
the variables into the model [45]. The step model was used to detect the lowest AIC value,
and the optimal environmental factor was automatically selected. When “none” is at the
top, it means the end of model selection. The number of beetle richness as dependent
variable in order to remove the non-significant spatial terms. The significant spatial terms
(p < 0.05) were retained.

The sampling is stratified random sampling. The soil and environmental factors of
the unsampled grids were interpolated based on the statistical relationship among the
surrounding measured site in each year. To compare different result for GAMs and GLM,
an independent dataset was used. The data from 2017 to 2018 for training set and data
from 2019 as test set were randomly chosen to evaluate offset between predicted values of
the model and the original values. For model validation, we used a correlation coefficient
between predictive and real species richness values. The higher the value of the correlation
coefficient, the higher the predictive power of the model.

2.6. Model Fitting and Selection

Species distributions were modelled with generalized linear model (GLM) and Gener-
alized Additive Models (GAM) in order to seek the best model. GLMs are defined by the
response distribution and a link function. The structure is as follows:

g(µi) = xi
T β (1)

where g is the differentiable and monotonic link function, µi = E(Yi), xi is the explanatory
variable for the ith response variable, β is a vector of the parameters. The log-transformation

www.worldclim.org
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has been found to be fit for many situations and data sources, despite its great generality, the
GLM has serious limitations. Generally, AIC is usually used criterion for model selection
when GLMs/GAMs are used to estimate species richness [46].

GAM is an extension of the Generalized Linear Modelling (GLM; [47]) which uses a
link function to establish a relationship between the mean of the response variable and a
‘smoothed’ function of the explanatory variable [48,49]. GAMs can model highly non-linear
and non-monotonic relationships between the response and the set of explanatory variables.
GAM has been widely applied in ecological research, as shown by the growing number
of published papers incorporating modern regression [50–53]. GAM implemented in the
mgcv package in R (4.0.3). The most optimum model was selected with the lowest Akaike
Information Criterion (AIC) and residual deviance [54]. The general form is as follows:

g(µ(Y)) = β0 + f1(x1) + · · ·+ fm(xm) (2)

where g(.) is the connection function; µ(Y) is the expected value of the response variable
Y; β0 is a constant; and fm(.) is a smooth function of the explanatory variable xm.

Poisson distribution for species richness was used. To avoid data overfitting, the
basic dimension was defined as k = 4. In order to improve model performance, the values
of the parameters of the GAM algorithm were optimized independently for each model,
selecting those that minimized the AIC; this step has been considered as providing an
estimate of model reliability. For model assessment, the evidence ratio, AIC and minimized
generalized cross validation (GCV) score were applied. The smaller the values of GCV, the
better the models fit [55].

3. Results
3.1. Population Size

The mean number of the carabid beetle (number of beetles in each grid cell) was 39.88 ±
79.4 individuals/km2, the mean number of beetle species was 8.92 ± 1.11 individuals/km2.
On the other hand, species activity density was 0.897 individuals/m2 and the Margalef
index was 8.54.

3.2. Fitted Model

Compare to GLM, results for comparing performances are shown in Table 1. According
the AIC criterion results showed that GAMs has a lower score compared to GLM (AIC-
GLM = 609.54, AIC-GAM = 598.04). In addition, R2 (0.774), p-value (<0.001) and correlation
coefficient (0.923) also indicated that GAM has a high quality for model performance,
GAMs fitted the observed data as much as possible by enabling the smooth effects of the
continuous predictors as well as the spatial structure of the data (Table 1).

Table 1. Summary of stepwise of the GAM and GLM of variables.

Model GLM GAM

Variables Deviance
Residual

Df. Residual
Deviance F p df F p

Latitude 11.53 148.67 5.872 0.635 1 1.436 0.23360
Maximum mean

temperature 3.35 144.17 6.725 0.005 *** 3.734 5.336 0.00060 ***

Mean annual
precipitation 11.2 137.47 0.094 0.925 6.071 9.013 <0.05 *

Plant density 9.67 138.05 −2.406 0.016 * 5.861 0.773 0.49420
Soil bulk density 6.45 117.9 0.465 0.465 6.428 4.333 0.03988
Soil temperature 29.42 137.87 1.967 0.049 * 1 3.285 0.00499 ***

PH value 18.43 106.27 5.660 <0.001 *** 1 1.486 0.22563
AIC 609.54 598.04
R2 0.682 0.774

p-value <0.001 <0.001
correlation coefficient 0.907 0.923

*** p < 0.001; * p < 0.05.
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The stepwise algorithm parameters used to develop the models, as well as F value
and P estimates are listed in Table 1. Seven environmental variables: maximum mean
temperature, mean annual precipitation, latitude, longitude, plant density, soil bulk density,
soil temperature, and PH value were statistically significant after the collinearity analysis
of all environmental factors (Table A3). Among the seven environmental variables, the
maximum mean temperature (F = 5.336, p < 0.00046), mean annual precipitation (F = 9.031,
p < 0.05) and soil temperature (F = 5.336, p < 0.001) had statistically significant effects
on species, whereas soil and climatic variables consistently appeared among the most
important predictors for the richness of beetle groups modeled (Table 2). General trends
seem to be very well identified by the GAM. The GAM parameters used to develop the
models, as well as adjust the fit factor (R2), generalized cross validation (GCV) and deviance
explained are listed in Table 2. By comparing the different explanation variable of function
of GAM results, selection of model variance explained the largest volume, minimum
generalized cross validation, F test (p) model of the highest accuracy rate value as the
optimal model, in general, when the rate of F test value (p < 0.05), indicating that explain
the response variables affect significantly, if adjust the fitting coefficient (R2) is greater
than 0.5, that model has good stability and effectively explains the response variables and
explains the relationship between the variables. Among the seven predictor variables, the
full model was the best adjusted explaining 79.8% of the variation, the GCV was 0.062
and the adjust the fitting coefficient (R2) was 0.774, our model showed a good predictive
performance for beetle richness and the best model was log (species richness) = s(T) +
s(p) + s(ST). Plots of the relationship of predicted richness distribution and environment
variables are shown in Figure 2; the distribution of beetle richness mainly depends on
the maximum mean temperature, mean annual precipitation and soil temperature. The
relationship between maximum mean temperatures, mean annual precipitation and spatial
distribution of beetle were complex, but it was positively correlated with soil temperature
change (Figure 2).

Table 2. The result of GAM of variables to build the models for the beetle richness. Variable codes as
in Table A1.

Environmental
Factor df F

Adjust the
Fit Factor

(R2)

Generalized Cross
Validation (GCV)

Deviance
Explained

(%)

p 8.991 <0.001 0.727 0.073 74.7%
T 8.999 <0.001 0.694 0.08 71.6%

ST 8.626 <0.001 0.455 0.1449 49%
p+T 8.856 <0.001 0.729 0.0737 75.2%

p+ST 8.991 <0.001 0.753 0.066 77.3%
T+ST 8.981 <0.001 0.758 0.068 78.5%

p+T+ST 8.689 <0.001 0.774 0.062 79.8%

3.3. Predictive Mapping

The results from the predictive mapping of the beetle richness at the spatial level are
shown in Figure 3. Predicted values of beetle richness ranged from 3 to 12. Three diversity
hotspots are located in the southwest, south and southeast of the study area. The statistics
of the coefficient of variation showed that, overall, predictions from individual GAMs of
beetle richness at the spatial level were stable.
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4. Discussion

SDMs are important ecological tools for conservation planning and management [56].
The present study demonstrates the efficacy of SDMs to assess the species richness of
beetle in grassland. GAM analysis suggested that the three most important factors, which
showed the largest effect of the beetle richness, were mean maximum temperature, annual
precipitation and soil temperature. The soil temperature changed with the temperature, the
result supported the factors determining beetle life cycles include variation in temperature
and rainfall [57]. Our model explained a significant fraction (0.77) of the variation in
beetle richness. Our study also provides a potential methodology for conservation of the
species groups.

The model of distribution of beetle richness helps understanding the relationships
between beetles and their environment, and thus is useful for protection and management
purposes. GAM used smooth functions to deal with nonlinear relationships between the
response variable and explanatory variables, increasing evidence that GAM is likely to be
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more suitable to estimate the distribution of species richness [43,58]. GAMs showed good
performance for species richness estimation in the present study (79.8%), and robustly
explain the relationship between the variables and species richness. Our study demon-
strated that climatic factors, especially temperature and precipitation are the important
environmental factors generating richness patterns of the beetle group. Both tempera-
ture and precipitation show a curvilinear relationship with species richness and had a
significant effect on beetle species, this result agrees with those obtained in earlier stud-
ies of carabid beetles [19]. Although, the suitable maximum annual temperature value
is around 20 ◦C, the effect may be reflecting the effect of temperatures of the warmest
months which can limit the activity of beetles according to their tolerance to desiccation.
Because most carabids are active on the ground, their body temperature depends directly
on the ambient temperature and it is known that species activity can be stimulated by
temperature [59]. The importance of precipitation can be explained by the free ranging life
style of immature larval stages. The amount of precipitation enhances the aboveground
vegetation biomass [60], and vegetation provides food and shelter (from the environment
and predators) for the herbivorous species. However, precipitation hinders the survival
of some of these species when it exceeds the threshold value. The soil temperature has
a significant correlation with carabid beetle richness. Because some species lay eggs in
burrows, and others overwinter as larvae or as adults in the soil, the soil temperature can
stimulate or hinder species activity. We suggest that lower observed beetle richness may be
due to the higher temperature, precipitation, and correlated soil temperature in those areas.

Carabid beetles also respond to microhabitat conditions. Carabids perceived microhab-
itat variation and selected niches accordingly [61], increasing evidence that management of
microhabitats is a key tool for conserving ecosystem function. The Carabid beetle fauna
in the steppe ecosystem in Ningxia Hui Autonomous Region has been recorded over
ten years, but the beetle information only shows where the entomologist sampled and
the composition of beetle [62,63]. In this study, we have shown that with a reasonable
sampling distribution, predictive variables for species richness can be derived efficiently
from GIS-based data for areas in which species inventories have not yet been conducted,
and a reliable forecasted map of species richness may be obtained. The forecasted map can
be used to plan and carry out new, targeted studies and regional surveys thus saving on
the resources needed for large-scale surveys. It is very expensive and may be impractical
to sample all poorly surveyed areas. The forecasted map also can provide an opportunity
to manage these habitats and conserved carabid taxa.

Carabid beetles live in moist habitats and are excellent model species on research of
ecological and conservation theory [64–66]. The 3rd International Carabidologists’ Meeting
emphasized that it is needed to concern on the effects of habitat loss and fragmentation
on dynamics of beetle population if wise decisions are to be made regarding conservation
and land-use [67]. These beetles readily respond to disturbances and management. Our
results show that it is quick and inexpensive to employ forecasting models using simple
environmental variables and adequately sampled areas to produce an estimate of the
spatial distribution of species richness and obtain reasonable biogeographic patterns.
Relating biological data to environmental variables without adding geographic position as
a model predictor sometimes overestimates the actual species richness [68,69]. Our results
demonstrate that elaborating predictive models using simple environmental variables
is quicker and less expensive when based on the concept of adequately sampled areas.
Consequently, our model for the species richness of carabid beetle distribution provides
a good substitute for information that could not be provided otherwise in the coming
years. This information will focus sampling efforts, and also inform management and
conservation strategies.

5. Conclusions

Our models explained a significant fraction of the variation in beetle richness (79.8%),
and predictive mapping of carabid beetle richness at the spatial level helped us to identify
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important variables determining the richness of beetle species. For the carabid group
of beetles, species richness variation was influenced primarily by the climatic factors of
maximum temperature and precipitation. If the survival of carabid species is constrained by
temperature and precipitation (few species can tolerate high temperature and precipitation),
we argue that species richness variation in the steppe of northwestern China is due mainly
to the failure of many species to go beyond determined temperature and precipitation range
limits. Thus, the regions richest in species are those with a temperature and precipitation
compatible with the maintenance of populations.
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Appendix A

Table A1. Species and individuals of Carabidae in different region (2017–2019).

Genera Species Abbreviation

2017 2018 2019

TotalYanchi
Region

Guyuan
Region Total Yanchi

Region
Guyuan
Region Total Yanchi

Region
Guyuan
Region Total

Amara

Amara helva AmarHel 9 0 9 40 0 40 4 0 4 53
Amara dux AmarDux 6 61 67 4 13 17 7 8 15 99
Amara sp Amarsp 0 15 15 13 3 16 0 0 0 31

Amara harpaloides AmarHar 7 4 11 1 4 5 5 7 12 28

Broscus Broscus kozlovi BrosKoz 0 8 8 0 3 3 4 0 4 15

Carabus

Carabus ladimirskyi CaraVla 3 2036 2039 0 316 316 4 466 470 2825
Carabus glyptoterus CaraGly 252 634 886 85 92 177 55 75 130 1193

Carabus
assesculptus CaraCra 0 339 339 0 198 198 0 88 88 625

Carabus
culptipennis CaraScu 0 404 404 0 73 73 1 61 62 539

Carabu
anchocephalus CaraAnc 0 85 85 0 21 21 0 0 0 106

Carabus modestulus CaraMod 0 84 84 0 88 88 0 192 192 364
Carabus gigoloides CaraGig 0 267 267 0 329 329 0 7 7 603

Calosoma
Calosoma lugens CaloLug 0 11 11 0 0 0 2 1 3 14
Calosoma anthrax CaloAnt 0 41 41 0 7 7 0 11 11 59
Calosoma chinense CaloChi 1 2 3 0 0 0 0 0 0 3

Cymindis Cymindis binotata CymiBin 19 0 19 8 1 9 9 3 12 3
Cymindis daimio CymiDai 0 0 0 0 2 2 1 0 1 10

Corsyra Corsyra fusula CorsFus 3 0 3 4 0 4 3 0 3 3

Dolichus Dolichus halensis DoliHal 0 3 3 0 0 0 0 0 0 15

Harpalus Harpalus lumbaris HarpLum 11 0 11 2 1 3 1 0 1 1329

Poecillus
Poecillus gebleri PoecGeb 0 1145 1145 0 158 158 5 21 26 687
Poecillus fortipes PoecFor 0 552 552 0 53 53 3 79 82 411

Pseudotaphoxenus

Pseudotaphoxenus
rugipennis PesuRug 3 307 310 0 62 62 3 36 39 123

Pseudotaphoxenus
mongolicus PesuMon 23 54 77 13 1 14 25 7 32 466

Reflexisphodrus Reflexisphodrus
reflexipennis ReflRef 0 368 368 0 78 78 0 20 20 133

Zabrus Zabrus potanini ZabrPot 1 115 116 0 8 8 4 5 9 30

Total 338 6535 6873 170 1511 1681 136 1087 1223 9767
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Table A2. Summary of variables data collected in the study area.

Variables Code Unit Maximum Value Minimum Value Remark

Spatial data:
Latitude LAT ◦ 38.03 36.2 Converted to WGS 1984

Longitude LON ◦ 107.08 105.6 Converted to WGS 1984

Geographical data:
Altitude range Alt km 2804 1411 GPS

Climatic data:
Annual mean
temperature TM ◦C 17.08 11.3 www.worldclim.org (accessed on

1 December 2020)
Maximum mean

temperature T ◦C 25.24 17.08 www.worldclim.org (accessed on
1 December 2020)

Minimum mean
temperature t ◦C 24.99 12.23 www.worldclim.org (accessed on

1 December 2020)
Mean annual
precipitation pp mm 81.9 52.6 www.worldclim.org (accessed on

1 December 2020)

Vegetation data:
Plant biomass PB g/m2 143.79 17.08 At sample site surface (1 × 1 m)
Plant height PHe cm 71 11.4 At sample site surface (1 × 1 m)
Plant density PD individuals/m2 125.8 25.31 At sample site surface (1 × 1 m)

Plant coverage PC % 87.75 21.13 At sample site surface (1 × 1 m)
Plant richness PR individuals 8.6 4.3 At sample site surface (1 × 1 m)

Aboveground litter Lit g 189.68 21.76 At sample site surface (1 × 1 m)

Soil data:
Soil moisture SM % 31.67 2.6 underground 10 cm

Soil bulk density SBD g/cm3 1.45 1.23 underground 10 cm
Soil temperature ST ◦C 25.5 9.2 underground 10 cm

Soil organic matter C g/kg 40.82 0.17 At sample site, random sample
Total phosphorus p g/kg 35.01 0 At sample site, random sample

Total nitrogen N g/kg 5.62 0.005 At sample site, random sample
PH value PH - 8.9 7.7 At sample site, random sample

Table A3. The species richness of beetles and environmental factors estimated by variance inflation factor (VIF).

Variables Code F p sig

Full model −5.405 <0.0001 ***
Latitude LAT 5.084 0.00884 **

Longitude LON 2.198 0.02995
Altitude range Alt 1.149 0.21610 -
Climatic data:

Annual mean temperature TM −0.577 0.56492 -
Maximum mean temperature T 6.106 <0.001 ***
Minimum mean temperature t −0.967 0.33581 -

Mean annual precipitation p 2.565 0.01163 *
Plant biomass PB −1.111 0.26935 -
Plant height PHe −0.150 0.88118 -
Plant density PD −4.449 0.00118 **

Plant coverage PC 0.338 0.73574 -
Plant richness PR 0.902 0.36897 -

Aboveground litter Lit 0.636 0.52639 -
Soil moisture SM 0.850 0.39747 -

Soil bulk density SBD 2.840 0.00534 **
Soil temperature ST 6.163 <0.001 ***

Soil organic matter C 1.567 0.12008 -
Total phosphorus P 0.997 0.32098 -

Total nitrogen N 0.741 0.46016 -
PH value PH 4.963 <0.001 ***

*** p < 0.001; ** p < 0.01; * p < 0.05.

www.worldclim.org
www.worldclim.org
www.worldclim.org
www.worldclim.org
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