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Tumor necrosis factor (TNF) superfamily consists of 19 ligands and 29 receptors and

is related to multiple cellular events from proliferation and differentiation to apoptosis

and tumor reduction. In this review, we overview the whole system, and we focus

on A proliferation-inducing ligand (APRIL, TNFSF13) and B cell-activating factor (BAFF,

TNFSF13B) and their receptors transmembrane activator and Ca2+ modulator (CAML)

interactor (TACI, TNFRSF13B), B cell maturation antigen (BCMA, TNFRSF17), and BAFF

receptor (BAFFR, TNFRSF13C). We explore their role in cancer and novel biological

therapies introduced for multiple myeloma and further focus on breast cancer, in which

the modulation of this system seems to be of potential interest, as a novel therapeutic

target. Finally, we discuss some precautions which should be taken into consideration,

while targeting the APRIL–BAFF system.
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INTRODUCTION

The cytokine tumor necrosis factor (TNF) has been reported in 1968 as a cytotoxic factor,
inducing tumor necrosis (1–3), while its sequence was described in 1984 (4) and its gene in
humans was cloned in 1985 (5). The protein is produced as a 233-amino acid-long type II
transmembrane protein (6–8), which is liberated in the extracellular space as a soluble homotrimer
via proteolytic cleavage by the metalloprotease TNF-α converting enzyme (TACE/ADAM17) (9).
TNF-α (TNFSF1B) and TNF-β (TNFSF1A) bind to two specific receptors (TNFR1 and TNFR2),
which have been biochemically characterized in the late 80s (10–14) and were cloned in 1990
(15–17). In 1993, Banner et al. (18) reported the first ligand–receptor complex (PDB code 1TNR). In
this structure, it is possible to identify a complex of a trimeric ligand with three receptor molecules,
in which the cysteine-rich domains 2 and 3 of each receptor participate in ligand binding. In the
same year, a characteristic structure in TNFR1 intracytoplasmic sequence, the death domain, was
reported (19), which later was found to be responsible for the downstream signal transduction
and the mediation of its cytotoxic effects (20). In the 90s, based on the structure of the TNF and
the TNFR1/2, a number of other cytokines and receptor molecules, bearing functional moieties of
the lead structures, were discovered. The TNF superfamily (TNFSF) includes now 19 molecules,
while the TNF receptor superfamily (TNFRSF) comprises 29 distinct protein-members (21, 22).
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Apart from one-to-one selectivity between specific ligands and
receptors, cross-reactivity has also been reported, suggesting a
differential signaling and a plurality of putative cellular and
molecular actions [see Figure 1 of Plitz et al. (20)].

TNF is considered a major pro-inflammatory and
proapoptotic mediator; however, TNF expresses a functional
duality, being involved in both tissue regeneration and
destruction, indicative of an extreme diversity in signaling and
phenotypic actions [reviewed in Wajant et al. (23)]. Classically,
TNFR1 signaling proceeds: (1) through the association of TNFR1
with TRADD–TRAF–RIP initiating pathways leading to the
nuclear factor (NF)-κB (canonical action) or c-Jun N-terminal
kinase (JNK) or mitogen-activated protein kinase (MAPK)-p38
cascade activation; (2) through Fas-associated death domain
(FADD) and pro-caspases-8 and -10.

Apart from the death domain (DD)-containing TNFSF
receptors, there is a group with receptors that contain TRAF-
interacting motifs (TIMs) in their cytoplasmic part, which
also includes B cell maturation antigen (BCMA, TNFRSF17),
B cell-activating factor receptor (BAFFR, TNFRSF13C), and
TNFR homolog transmembrane activator and Ca2+ modulator
(CAML) interactor (TACI, TNFRSF13B) and another group with
receptors which does not contain functional intracellular motifs
and lack a direct ability for intracellular signaling. However, the
later group competes with the other two receptor groups, either
by tethering for ligand binding and functions by impeding signal
transduction by other TNFRSF members (24). TNFSF receptors
in each of the three categories and their schematic mode of
action are presented in Figure 1. This plurality of structure–
function has, therefore, a significant role in cell signaling
and TNFSF actions, including cell survival and differentiation,
cellular communication and cellular responses to inflammation
and the identified multitude of actions in different tissues, from
the regulation of immune cell activation and death to tissue
homeostasis and cancer cell modulation.

FIGURE 1 | List (A) and signaling (B) of the three categories of TNF receptor superfamily (TNFRSF) members.

In the present review, we will concentrate on the role
of a proliferation-inducing ligand (APRIL, TNFSF13), BAFF
(TNFSF13B), and their receptors in cancer, the novel biological
therapies targeting this system, their role in breast cancer, and
their potential use as therapeutic targets.

APRIL, BAFF, AND THEIR RECEPTOR
SYSTEM: IDENTIFICATION, SIGNALING,
AND CELLULAR ACTIONS

A proliferation-inducing ligand (APRIL or CD256, TNFSF13)
(25–27) and B lymphocyte stimulator (BLyS), also known
as BAFF (or TALL-1, CD257, TNFSF13B) (26, 28, 29), are
relatively new additions to the TNFSF family. Both ligands
bind to two TNFRSF members, TACI (TNFRSF13B) and BCMA
(TNFRSF17) (30, 31), reviewed in Dillon et al. (32). However,
reported affinities of ligands for each receptor differ significantly,
with the affinity of BAFF for BCMA being 1,000 times lower than
that of APRIL and APRIL affinity for TACI being one-third that
of BAFF (33). BAFF also binds specifically to another TNFRSF
member, BAFFR (TNFRSF13C). Apart from B cells, BAFF is
expressed by monocytes, macrophages, dendritic cells, T cells
(34–37), and neutrophils (38). As an addition to the complexity
of the system, quite recently it was reported that membrane TACI
and BCMA can be cleaved from themembrane, leading to soluble
forms, which may act as decoy receptors, able to capture soluble
BAFF and APRIL, and to decreased TACI and BCMA levels at the
membrane (39, 40).

APRIL and BAFF play a differential role during B cell
maturation and differentiation (41–43). They both promote B
cell survival, maturation (28, 44), and differentiation through
BCMA, which is increased during plasma cell differentiation,
while BAFFR is decreased and is absent in plasma cells (45).
BAFFR is important for B cell maturation (46, 47) as shown in
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FIGURE 2 | (Left) Expression of B cell maturation antigen (BCMA), TNFR homolog transmembrane activator and Ca2+ modulator (CAML) interactor (TACI), and B

cell-activating factor receptor (BAFFR) in circulating human mononuclear cells. The different cell populations were isolated from peripheral blood mononuclear cells

(PBMCs) using Ficoll-Hypaque gradient centrifugation. Whole mononuclear cell population was stained with specific antibodies, and populations were identified in flow

cytometry with specific gating (CD3 for T lymphocytes and CD14 for monocytes). At least 5,000 events were collected and analyzed for each cell population. Results

of flow cytometry in one human donor sample, repeated five times, with similar results. (Right) Expression of BCMA, TACI, and BAFFR in CD34+ hemopoietic blood

cells. In both panels, negative isotype control is denoted by the black curve.

knockout animals for BAFFR (48) and individuals with defective
BAFFR, who do not have mature B cells (49, 50). Additionally,
BAFF and APRIL, acting via TACI, have a regulatory effect
on antibody production. Taci−/− mice have reduced antibody
titers, increased numbers of peripheral B cells, and hyperplasia of
lymphoid organs (51). Indeed, TACI inhibits B cell proliferation,
promotes their differentiation into plasma cells, and inhibits
plasma cell apoptosis (52). Additionally, it plays a role on somatic
hypermutation and immunoglobulin affinity maturation, as well
as in T cell-dependent and T cell-independent antibody class
switch recombination (53, 54).

In addition to the expression of all three receptors in
circulating B lymphocytes, as described above, BCMA and
TACI are highly expressed on T lymphocytes (CD3+) and
circulating monocytes (CD14+). Moreover, BCMA expression
is the highest on CD34+ bone marrow hemopoietic progenitor
cells (Figure 2). These data suggest an additional role of
the BAFF–APRIL system in different normal circulating cell
populations, beyond B lymphocytes. These data are in partial
contradiction with other, previously published, observations.
Indeed, in one of the scarce papers of APRIL–BAFF receptors
in freshly prepared human monocytes, the authors report a
negative membrane staining for either TACI or BCMA, while
intracellular TACI translocated to the membrane, after BAFF
or IL-10 incubation (55). A notable difference between the two
studies is that in data presented here, no further purification of
monocytes was performed, buffy-coat cells being directly stained,
in contrast to an additional step of positive selection, performed
in the study by Chang et al. (55), which could lead to an activation
of this cell population. Whether this difference is the source of
the observed discrepancy remains to be proved by additional

studies. Interestingly, corroborating with our findings, a recent
work, using also direct staining of peripheral blood mononuclear
cells (PBMCs), reports that 2% of CD3+ T lymphocytes (2% of
CD4+ and 6% of CD8+ cells) express BCMA. Additionally, 7%
of circulatingmonocytes (CD14+) and 49% of NK cells (CD54+)
also express BCMA, while TACI was undetectable from the
surface of all assayed cell populations (56). The authors further
report an increase in BCMA expression, on all PBMC categories
in systemic lupus erythematosus (SLE) patients.

TACI is also expressed in macrophages (57, 58), being the
main receptor mediating BAFF and APRIL actions, and is related
to M1 polarization and the expression of a pro-inflammatory
phenotype, protection from parasite infections, insulin signaling,
and glucose dysregulation. Interestingly, the majority of TACI
protein remains intracellular, at the perinuclear space, and is
translocated to the membrane after BAFF incubation. However,
the authors note an additional M1-related interleukin (IL)6
secretion by APRIL (but not BAFF) in TACI-knockout (KO)
mice, attributed to a possible implication of BCMA, which,
albeit absent in flow cytometry, was found at the mRNA level
in mouse peritoneal macrophages (57). Interestingly, a recent
work reports that circulating human plasmacytoid dendritic
cells (pDCs), which represent ∼0.5% of PBMCs (CD304+),
transcribe selectively BCMA at levels far higher than any other
circulating cell and express it on their membranes after Toll-
like receptor (TLR)7 and TLR9 stimulation (59). These cells
are key players in maintaining the balance between an efficient
defense and preventing autoimmune responses, they have been
implicated in immune tolerance and inflammation and are part
of the microenvironment of tumors (60–63), as reviewed by
Swiecki and Colonna (64). By expressing BCMA, these cells may
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therefore be, together with macrophage-expressing TACI, major
players in the regulation of tumor microenvironment and might
be responsible, at least in part, for an effect in tumor-induced
inflammation and metastasis.

BAFF and APRIL have been reported to be trophic factors
in lymphocyte malignancies and immune-related disorders (65),
while they have been identified in bronchial tissue (66) and a
number of immune-related and immune-independent normal
and cancer tissues (spleen, liver, lung, heart, intestine, kidney,
thymus, breast) (67), although the exact cellular population
contributing to their expression was not clearly identified.
Indeed, in tumors, BAFF and APRIL could be synthesized and
secreted by B or T tumor-infiltrating lymphocytes, dendritic cells,
or other components of the tumor microenvironment (68) or the
tumor cells (see following chapters).

Binding of APRIL or BAFF to their respective receptors
triggers diverse signaling pathways, including the activation
of caspases, the translocation of NF-κB, or the activation of
mitogen-activated kinases JNK or extracellular signal-regulated
kinase (ERK) [see Hatzoglou et al. (69) for a specific effect
in different cell lines and Mackay et al. (36) and Bossen and
Schneider (33) for reviews]. However, the signaling cascades,
initiated by these two ligands, seem to be tissue-specific. Indeed,
in HEK293 cells, transiently or stably transfected with BCMA,
we have reported that APRIL induces the canonical NF-κB
pathway, together with JNK, p38, and ERK kinases (69), while,
in hepatocellular carcinoma cell lines (HepG2 and Hep3B),
activation of BCMA leads to the activation of a novel pathway,
involving JNK2-FOXO3A-GADD45, leading to cell cycle arrest
and a modest decrease of proliferation (70). In B lymphocytes,
BAFF, acting through the whole spectrum of receptors, induces
canonical and non-canonical NF-κB activation (71), leading to
B-cell maturation (72). Similarly, TACI leads to the activation
of the canonical NF-κB pathway (73) and a sustained Blimp-1
expression (53) in B cells, enhancing differentiation to long-lived
antibody-secreting cells. All three receptors (BAFFR, BCMA,
and TACI) can prevent apoptosis, decreasing the proapoptotic
protein Bim, through a pathway implicating MAPK kinase
(MEK)-ERK kinases (74). Additionally, BAFFR through the
phosphoinositide 3-kinase (PI3K)-AKT/mammalian target of
rapamycin (mTOR) axis activates protein synthesis, as a result
of small ribosomal subunit protein S6 and the translation
inhibitor 4EBP1 phosphorylation, and enhances mitochondrial
function due to MLC-1 stabilization, leading to an increased
cell life span (75–78). The activation of TACI and BCMA in
Hodgkin lymphoma cells, through NF-κB, enhanced Bcl-2, Bcl-
xL, and c-Myc and induced Bax downregulation, promoting the
proliferation and survival of these cells (79).

APRIL–BAFF AND THEIR RECEPTORS IN
HEMATOLOGIC MALIGNANCIES:
THERAPEUTIC IMPLICATIONS

As discussed in the previous paragraph, BAFF and APRIL
primarily promote cell proliferation and survival by inducing
the expression of antiapoptotic molecules, regulating protein

synthesis and energy metabolism. Moreover, a large number of
studies revealed a significant role of BAFF–APRIL system in
hematologic malignancies.

Early studies from our group identified BCMA on the
membrane and the perinuclear region of lymphoid B and
myeloma cells (30, 44, 69, 80). Others have also verified
these results, reporting the expression of BCMA (42, 81–85),
TACI (86–89), and BAFFR (42, 90) in multiple myeloma.
These observations led investigators to study elements of the
BAFF–APRIL system as potential therapeutics in hematologic
malignancies: Anti-APRIL antibodies have been tested in vitro
and in experimental animals in B cell lymphomas (91, 92) and
multiple myeloma cells and xenografts (93–95); anti-BAFFR
antibodies have been studied in multiple myeloma (96–98) with
moderate results, alone or in combination with proteasome
inhibitors. In contrast, anti-BAFFR antibodies was proven
effective in acute (99) or chronic lymphocytic leukemia (100).
Finally, targeting of TACI with either antibodies or chimeric
antigen receptor (CAR) T cells was found beneficial in multiple
myeloma (95, 101, 102).

The expression of BCMA preferentially in maturating cells
of B- origin (85, 103), together with its reported low expression
in different normal human tissues, positions the APRIL/BCMA
as a prominent target for multiple myeloma treatment. Indeed,
anti-APRIL antibodies or BCMA downregulation significantly
decreases myeloma cell viability and colony formation (94). This
element positions APRIL, autocrinally produced by these cells
or paracrinally provided by stromal cells or neutrophils (104),
as a primary factor in myeloma control. However, it is BCMA
control which has been retained as a compelling therapeutic
target in myeloma, with a limited risk of off-tissue toxicity (105).
In 2013, the first report of an anti-BCMA CAR-expressing T
(CAR-T) cell was published (85), promoting BCMA as a target
for multiple myeloma treatment. This report was followed by an
enhanced interest, propelling anti-BCMA antibodies or CAR-T
cell production in the third place of therapeutics development
in 2019 (106), with 16 running clinical trials, ranging from
Phases I to III [reviewed in Mullard (107)], and involving CAR-
T cells, monoclonal antibodies, and antibody–drug conjugates.
The first reported trials with CAR-T cells (108, 109) and
monoclonal antibodies (110) showed promising results. In two
very recent reviews (111, 112), the authors report a good
success rate of anti-BCMA CAR-T therapies. However, a high
relapse rate, hematological toxicity, cytokine release syndrome,
and neurological toxicity are the most prominent side effects
in CAR-T treatment, while hematological toxicity and corneal
events were reported in the monoclonal trial, and the duration
of remission has not been resolved until now. Nevertheless,
although it is early to conclude, BCMA seems to be a prominent
target against multiple myeloma (113–115).

APRIL–BAFF AND THEIR RECEPTORS IN
SOLID TUMORS

Since its discovery, APRIL was found to be expressed, in addition
to cells of the immune system, in other tissues, including the

Frontiers in Oncology | www.frontiersin.org 4 June 2020 | Volume 10 | Article 827

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Kampa et al. APRIL-BAFF in Breast Cancer

prostate, colon, spleen, and pancreas (25). It was reported
that APRIL and BAFF were also detected in bone marrow
stromal cells and osteoclasts (116), while BAFF was also found
in the placenta, heart, lung, fetal Iiver, thymus, and pancreas
(28). BAFF was also expressed in adipocytes (117) where, in
addition to its effects in adipogenesis (117), it exerts a negative
modulation of the insulin receptor sensitivity (58, 118). Such
actions has positioned BAFF as an adipokine, with a possible
role in diabetes and obesity [reviewed in Rihacek et al. (119) and
references herein].

During tumor development, inflammation in the tumor
microenvironment (TME) can be a potent promoter of
tumor initiation, promotion, and progression (120). During
inflammation, different mediators, produced by either tumor
cells or supplied by TME-infiltrating cells, account for complex
interactions, influencing differentiation, activation, function, and
survival/apoptosis. Targeting tumor inflammation is therefore
a possible way in combatting cancer. However, all established
immune-related therapies target immune cells (resident or
infiltrating the tumor stroma) (121), leading to an immune
checkpoint blockade (122), while the cancer cell immune-related
properties and their regulation are less well-defined (123, 124).
Several molecules involved in immune interactions, including the
TNF superfamily members TNF, Fas, and TNF-related apoptosis-
inducing ligand (TRAIL) and their receptors, have been actively
investigated and targeted in a number of malignancies (121, 125).
Equally, since BAFF, APRIL, and their receptors were also found
in several tumor cells, their expression could represent a possible
therapeutic target. Indeed, some initial efforts were done either
with soluble mutant APRIL (126, 127) or with soluble BCMA
molecules (128), with promising results.

APRIL transcripts were reportedly elevated in the colorectal
adenocarcinoma SW480, the Burkitt’s lymphoma Raji, and the
melanoma G361 cell lines (25), while we have reported that
about half of the most commonly used glioblastoma cell lines
overexpress APRIL and BCMA (129). In addition, APRIL mRNA
was found elevated in thyroid carcinoma and in lymphoma
(25), as well as in colorectal tumors, as compared to non-
tumoral tissue (25). Although APRIL was found to enhance
the proliferation of different cancer cell lines (25), BAFF was
reported to either enhance cell proliferation (28, 29) or increase
apoptosis (130). Additionally, our group has reported APRIL
and BAFF expression in human epithelial breast cancer cells
(see below). However, although BAFF and APRIL have been
advanced as possible targets in non-hematologic malignancies
[reviewed in Ryan and Grewal (131) and Rihacek et al. (119)],
no systematic detection of APRIL–BAFF and their receptors has
been performed in different cell lines and human tumors.

An initial report by Mhawech-Fauceglia et al. (132) suggested
that APRIL and BAFF were produced by the tumor stroma
and more specifically by infiltrating neutrophils. However, an
alternative source of these molecules might be the tumor
cells themselves. In addition, the expression of BAFF–APRIL
receptors by the tumor itself was not investigated in depth.
Our group has undertaken the exploration of the BAFF–APRIL
system in solid human malignancies (70, 117, 133–136). Our
collective results are presented in Figure 3B; they show that,

in the majority of pathologies we have examined, tumor cells
express members of this family of ligands and receptors, whose
expression is mainly enhanced in the tumor as compared to
adjacent non-tumoral cells.

In order to further explore the possible role of APRIL–
BAFF and their receptors in solid tumors, we have investigated
The Cancer Genome Atlas (TCGA) collection using the
Oncomine resource (137) and compared tumor vs. normal
mRNA expression (Figure 3A), in the whole spectrum of the
samples’ collection. Interestingly, specimens of all locations
express members of the BAFF–APRIL system of ligands and
receptors. However, with the exception of BCMA, which
is usually upregulated in tumor samples as compared to
their non-tumoral counterparts, all other members are usually
downregulated in tumors as compared to normal specimens.
However, this result should be interpreted with caution, as the
TCGA collection comprises stromal immune cell infiltrates at
different proportions, ranging from 5 to >60% (138). Moreover,
using the cBioPortal web resource (139, 140), we analyzed the
expression of APRIL, BAFF, BAFFR, TACI, and BCMA in the
Cancer Cell Line Encyclopedia (141), reporting the RNAseq data
of 1,156 human cancer cell lines. We found that the expression of
these proteins is restricted in very few cell lines (<5%), mainly
in cell lines deriving from hemopoietic and lymphoid tissues
(Figure 4). Curiously, when we examined the co-occurrence
of these molecules on the same cell line, we did not find
a hard evidence of a co-expression of ligands and receptors,
suggesting perhaps that the mode of action of this system might
not occur through an autocrine manner. However, APRIL and
BCMA expression was further found in cells of other origins,
including the breast. Finally, it is to note that, until now, no
trial implicating the APRIL–BAFF system has been initiated for
solid tumors.

APRIL–BAFF SYSTEM IN THE BREAST

As in every solid tumor pathology, the breast tumor
microenvironment plays a prominent role in tumor initiation,
promotion, and progression (120). Local inflammation is,
indeed, a common element in the initiation and progression
of breast cancer, and a number of innate (macrophages) or
infiltrating lymphocytes have been reported (142), which are
modified by chemotherapy or personalized immune therapy
(143). In an analysis of the TCGA data, with an immune score
for different infiltrating cell types (144), it was found that
macrophages and neutrophil infiltrates [which express TACI and
APRIL, respectively (57, 58, 104)] are related to poor prognosis in
breast cancer. Interestingly, stromal macrophages, a population
implicated in breast cancer evolution (145–147) are significantly
decreased by therapy (148). Macrophages express TACI (57, 58),
which is related to M1 pro-inflammatory polarization. In
addition, as shown in Figure 2, circulating monocytes, which
could migrate in sites of inflammation, express, in addition
to TACI, BCMA, together with plasmatocytoid dendritic
cells, expressing BCMA (59). It might therefore be interesting
to investigate the possible phenotypic changes of monocyte
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FIGURE 3 | Exploration of The Cancer Genome Atlas (TCGA) collection for the expression of a proliferation-inducing ligand (APRIL), B cell-activating factor (BAFF),

and their receptors (A). The normalized p-value of the comparison of tumor vs. normal mRNA expression in all TCGA sample collection is presented, stratified by

tissue of origin and disease pathology. Upregulation of mRNA expression in tumors is shown in red, while downregulation is shown in blue. Non-significant results are

not shown. The Oncomine online resource (137) was used for the identification and calculation of significance. (B) Immunohistochemical detection of APRIL–BAFF

and their receptors in human malignancies according to our work (relevant publications are shown in parentheses). Arrows denote the increased (red, up-pointing

arrow), decreased (blue, down-pointing arrow), or no change (green, double-headed arrow) of proteins in immunohistochemically stained slides or tissue microarrays,

with specific antibodies. NA, not detected. Please refer to the corresponding publications for further details.

FIGURE 4 | Expression of a proliferation-inducing ligand (APRIL), B cell-activating factor (BAFF), BAFF receptor (BAFFR), TNFR homolog transmembrane activator

and Ca2+ modulator (CAML) interactor (TACI), and B cell maturation antigen (BCMA) in the Cancer Cell Line Encyclopedia (141), reporting the RNAseq data of 1,156

human cancer cell lines (A) using the cBioPortal web resource (139, 140). A pink bar denotes the presence of the corresponding ligand mRNA, while a gray one

denotes the absence of mRNA for the corresponding ligand/receptor. Note that a co-occurrence of ligands and receptors is not always evidenced, as also shown in

the Table presented in (B).
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to macrophage switch and its possible implication in the
pro-inflammatory role of macrophages’ APRIL–BAFF system, in
the breast stroma.

In 2008, we presented the first evidence for the expression
of APRIL and BAFF in specimens of breast cancer patients and
reported the expression of these molecules in human epithelial
breast cancer cells (133), repositioning the established notion
that the major source of APRIL was either stroma cells (68)
or infiltrating neutrophils (132). Our data showed that BAFF
was ubiquitously expressed by non-cancerous and cancerous
breast epithelia, while its expression was not modified by tumor
evolution. In addition, BAFF was expressed also by stromal
cells and breast adipocytes. It is to note that further research
of our group confirmed this finding, by identifying APRIL and
BAFF and their receptors in normal and neoplastic adipose
tissue (117). However, APRIL expression is decreased during
adipocyte differentiation, while the ligand reappears during
tumorigenesis. In the breast, APRIL was preferentially expressed
by the non-cancerous breast epithelial tissue, while its expression
was decreased in breast tumoral cells. APRIL expression was
antiparallel with the tumor grade, while it was preferentially
expressed by node-positive as compared to node-negative tumors
(133). Neither BAFF nor APRIL was related to patients’ outcome
[disease-free survival (DFS) or overall survival (OS)].

The role of APRIL in breast cancer was further analyzed by
Garcia-Castro et al. (149). The authors confirmed the expression
of APRIL, as well as its receptors BCMA and TACI, in breast
cancer cell lines MCF7, T47D, MDA-MB-231, and MDA-MB-
468. Interestingly, BCMA and TACI, although present in all
four cell lines were highly expressed in the mesenchymal-like
MDA-MB-231 and MDA-MB-468 cells, suggesting a possible
role in tumor aggressiveness. This was further supported by
the preferential expression of APRIL and its receptors in a
small series of triple-negative human tumors as compared to
luminal-type carcinomas (149). Finally, the authors reported
a direct effect of APRIL on cell proliferation [reported also
by other groups (150, 151)] and the induction of tumor
xenografts in an APRIL-rich environment. Interestingly, in a
recent work (151), we have reported that APRIL is upregulated by
membrane-acting androgen, and that induces breast cancer cell
migration and epithelial-to-mesenchymal transition, together
with mammosphere formation and induction of stemness. This
action was mediated by BCMA, positioning this receptor as
a possible therapeutic candidate in breast cancer (see the
following paragraph). The effects of APRIL in the breast seem
to be exclusively mediated through the JNK pathway (149,
151).

In a recent work, Abo-Elfadl et al. (152) explored the silencing
of TACI in breast cancer cell lines. The authors reported a
significant inhibition of cell viability and induction of apoptosis,
mediated through an inhibition of the Bcl-2 protein. They
suggested that, similarly to BCMA, TACI may also have a
potential role in breast cancer treatment.

In an attempt to further investigate the role of the APRIL–
BAFF system in breast cancer, we have concentrated on the role
of APRIL and its receptors BCMA and TACI, as APRIL is the
ligand found to be differentially expressed in breast cancer (133),

and BCMA and TACI were found also in breast cancer cells
(149, 151, 152). We have investigated the METABRIC dataset
(153, 154). Using the cBioportal for cancer genomics (139, 140),
we confirm that the modification of either APRIL or its receptors
do not have an effect on survival (Figure 5A). This is further
corroborated by the analysis of dataset GSE114403, investigating
the effect of treatment on breast cancer inflammatory genes
(148) and found that treatment induces a slight decrease in
APRIL and a slight increase in BCMA (Figure 5B). We have
further extracted the co-regulated genes with APRIL, TACI, and
BCMA, in the METABRIC study, in cBioportal, and retained the
1,758 significantly co-modified gene signatures (p-value cutoff
0.001). Significant Gene Ontology (GO) terms were extracted
with g:Profiler (155), and significant terms were plotted with
REVIGO (156). Biological processes terms (Figure 5C) show that
APRIL and its receptor changes modified terms related to T cells,
cellular response to cytokines and TNFR, and processes related
to apoptosis. Interestingly, in Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis (Figure 5D), significant
interactions were found also with the programmed cell death
ligand (PDL)-1 and programmed cell death (PD)-1 checkpoint
in cancer. This was further verified by the significant positive
correlation between BCMA and PDL-1 (CD278; Figure 5E).

POSSIBLE NOVEL THERAPEUTIC
MODALITIES INVOLVING BCMA AND TACI
IN BREAST CANCER

As discussed above, only scarce data exist about the role of
APRIL and its receptors in breast cancer. However, breast cancer
is one of the few tumors characterized by a differential role
of BAFF and APRIL, with BAFF being constantly present in
both normal and tumor tissue, and APRIL being expressed in
a completely different manner in normal and tumorous breast
tissue. There is a concordance regarding the role of APRIL in this
malignancy, suggesting that this cytokine can actually promote
the survival, proliferation, and migration of breast cancer cells
(149–152) in accordance with the pro-proliferative action of
APRIL in epithelial tumors and hematological malignancies (79).
It is to note that the only tissue in which APRIL, through
BCMA, was reported to inhibit cell proliferation is the liver
(70). Concerning involved receptors, BCMA seems the most
prominent candidate. Indeed, BCMA has been reported to
mediate APRIL effects either alone (151) or in combination
with TACI (149). However, the role of TACI in breast cancer is
not very clear so far. The analysis of the TCGA data shows a
decrease of TACI in tumors as compared to non-tumoral tissue
in contrast to BCMA which is upregulated in both lobular and
ductal carcinomas (Figure 3A), although two groups suggest
that TACI might be an interesting target in breast cancer
(149, 152).

Recently, in addition to anti-BCMA biological therapies in
hematologic malignancies (discussed above), antibodies against
TACI (157) or BAFF (158) have been tested in immunological
diseases, with variable results. Therefore, BCMA-targeting
treatments might be a more advanced target in breast cancer,
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FIGURE 5 | (A) Survival curves of a proliferation-inducing ligand (APRIL)-, B cell maturation antigen (BCMA)-, and TNFR homolog transmembrane activator and Ca2+

modulator (CAML) interactor (TACI)-positive breast tumor patients from the METABRIC study (153, 154) analyzed by the cBioportal for cancer genomics (139, 140).

(B) Expression of APRIL and BCMA before (0) and after treatment (1) of breast tumors in the dataset GSE114403 (148). Mean ± SE is presented. (C)

BCMA-co-regulated genes in the METABRIC study were extracted, and Gene Ontology (GO) terms (MF) were analyzed with g:Profiler (155). Significant terms were

plotted with REVIGO (156). (D) Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis of BCMA-co-regulated genes from the METABRIC study,

analyzed with g:Profiler. (E) Correlation of BCMA with programmed cell death ligand (PDL)-1 (CD274) expression in the METABRIC study.

especially as BCMA seems to correlate with an established
checkpoint molecule, PDL-1 (see the previous paragraph and
Figure 5E). Indeed, as shown in Figures 3A,B, BCMA is
upregulated in a large number of tumors, outside of lymphomas
and leukemias, including breast cancer. However, there are
significant issues that need to be clarified before the introduction
of such a therapy in solid tumors:

First, the role of APRIL and its receptors is far from
being elucidated. For example, APRIL seems to be upregulated
by androgen (151), TLR3-induced inflammation (149), or
modulation of its receptors (152), inducing either enhancement
or reduction of cell proliferation, migration, and stemness,
mediated by BCMA (70, 149, 151).

Second, the presence of both APRIL and its receptors
in an array of normal tissues (Figure 3) suggests a possible
important physiological effect of this system, which should be
further investigated before the application of any biological
therapy. For example, unpublished data from our group
indicate that BCMA is differentially expressed in normal
testis in relation to sperm production and maturation, while
we have reported a direct inhibitory effect of APRIL in
adipogenesis (117) and a pro-inflammatory action in the
skin (135).

These and other, not yet identified, effects of APRIL/BCMA,
together with the reported toxicity, cytokine release syndrome

and neurological toxicity, after the application of anti-BCMA
therapies in hematologic malignancies, discussed above, suggest
that extreme caution should be exercised before initiating
relevant clinical studies in breast cancer.
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