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Abstract

Motivation: The explosive increase of biomedical literature has made information extraction an in-

creasingly important tool for biomedical research. A fundamental task is the recognition of biomed-

ical named entities in text (BNER) such as genes/proteins, diseases and species. Recently, a domain-

independent method based on deep learning and statistical word embeddings, called long short-

term memory network-conditional random field (LSTM-CRF), has been shown to outperform state-

of-the-art entity-specific BNER tools. However, this method is dependent on gold-standard corpora

(GSCs) consisting of hand-labeled entities, which tend to be small but highly reliable. An alternative

to GSCs are silver-standard corpora (SSCs), which are generated by harmonizing the annotations

made by several automatic annotation systems. SSCs typically contain more noise than GSCs but

have the advantage of containing many more training examples. Ideally, these corpora could be

combined to achieve the benefits of both, which is an opportunity for transfer learning. In this work,

we analyze to what extent transfer learning improves upon state-of-the-art results for BNER.

Results: We demonstrate that transferring a deep neural network (DNN) trained on a large, noisy

SSC to a smaller, but more reliable GSC significantly improves upon state-of-the-art results for

BNER. Compared to a state-of-the-art baseline evaluated on 23 GSCs covering four different entity

classes, transfer learning results in an average reduction in error of approximately 11%. We found

transfer learning to be especially beneficial for target datasets with a small number of labels (ap-

proximately 6000 or less).

Availability and implementation: Source code for the LSTM-CRF is available at https://github.com/

Franck-Dernoncourt/NeuroNER/ and links to the corpora are available at https://github.com/

BaderLab/Transfer-Learning-BNER-Bioinformatics-2018/.

Contact: john.giorgi@utoronto.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The large quantity of biological information deposited in literature

every day leads to information overload for biomedical researchers.

In 2016 alone, there were 869 666 citations indexed in MEDLINE

(https://www.nlm.nih.gov/bsd/index_stats_comp.html), which is

greater than one paper per minute. Ideally, efficient, accurate text-

mining and information extraction tools and methods could be used

to help unlock structured information from this growing amount of

raw text for use in computational data analysis. Text-mining has al-

ready proven useful for many types of large-scale biomedical data

analysis, such as network biology (Al-Aamri et al., 2017; Zhou

et al., 2014), gene prioritization (Aerts et al., 2006), drug reposition-

ing (Rastegar-Mojarad et al., 2015; Wang and Zhang, 2013) and

the creation of curated databases (Li et al., 2015). A fundamental
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task in biomedical information extraction is the recognition of bio-

medical named entities in text (biomedical named entity recognition,

BNER) such as genes and gene products, diseases and species.

Biomedical named entities have several characteristics that make

their recognition in text particularly challenging (Campos et al.,

2012), including the sharing of head nouns (e.g. ‘91 and 84 kDa

proteins’ refers to ‘91 kDa protein’ and ‘84 kDa protein’), several

spelling forms per entity (e.g. ‘N-acetylcysteine’, ‘N-acetyl-cysteine’

and ‘NAcetylCysteine’) and ambiguous abbreviations (e.g. ‘TCF’

may refer to ‘T cell factor’ or to ‘Tissue Culture Fluid’). Until recent-

ly, state-of-the-art BNER tools have relied on hand-crafted features

to capture the characteristics of different entity classes. This process

of feature engineering, i.e. finding the set of features that best helps

discern entities of a specific type from other tokens (or other entity

classes), incurs extensive trial-and-error experiments. On top of this

costly process, high-quality BNER tools typically employ entity-

specific modules, such as whitelist and blacklist dictionaries, which

are difficult to build and maintain. Defining these steps currently

takes the majority of time and cost when developing BNER tools

(Leser and Hakenberg, 2005) and leads to highly specialized solu-

tions that cannot be ported to domains (or even entity types) other

than the ones they were designed for. Very recently, however, a

domain-independent method based on deep learning and statistical

word embeddings, called long short-term memory network-

conditional random field (LSTM-CRF), has been shown to outper-

form state-of-the-art entity-specific BNER tools (Habibi et al.,

2017). However, supervised, deep neural network (DNN) based

approaches to BNER depend on large amounts of high quality,

manually annotated data in the form of gold standard corpora

(GSCs). The creation of a GSC is laborious: annotation guidelines

must be established, domain experts must be trained, the annotation

process is time-consuming and annotation disagreements must be

resolved. As a consequence, GSCs in the biomedical domain tend to

be small and focus on specific subdomains.

Silver-standard corpora (SSCs) represent an alternative that tend

to be much larger, but of lower quality. SSCs are generated by using

multiple, existing named entity taggers to annotate a large, un-

labeled corpus. The heterogeneous results are automatically inte-

grated, yielding a consensus-based, machine-generated ground

truth. Compared to the generation of GSCs, this procedure is inex-

pensive, fast and results in very large training datasets. The

Collaborative Annotation of a Large Biomedical Corpus (CALBC)

project sought to replace GSCs with SSCs, which would be much

larger, more broadly scoped and more diversely annotated

(Rebholz-Schuhmann et al., 2010). However, Chowdhury and

Lavelli (2011) found that a gene name recognition system trained on

an initial version of the CALBC SSC performed worse than when

trained on a BioCreative GSC. While SSCs have not proven to be vi-

able replacements for GSCs, at least for the task of BNER, they do

have the advantage of containing many more training examples

(often in excess of 100 times more). This presents a unique transfer

learning opportunity.

Transfer learning aims to perform a task on a ‘target’ dataset

using knowledge learned from a ‘source’ dataset (Li, 2012; Pan and

Yang, 2010; Weiss et al., 2016). For DNNs, transfer learning is typ-

ically implemented by using some or all of the learned parameters of

a DNN pre-trained on a source dataset to initialize training for a se-

cond DNN to be trained on a target dataset. Ideally, transfer learn-

ing improves generalization of the model, reduces training times on

the target dataset, and reduces the amount of labeled data needed to

obtain high performance. The idea has been successfully applied to

many fields, such as speech recognition (Wang and Zheng, 2015),

finance (Stamate et al., 2015) and computer vision (Oquab et al.,

2014; Yosinski et al., 2014; Zeiler and Fergus, 2013). Despite its

popularity, few studies have been performed on transfer learning for

DNN-based models in the field of natural language processing

(NLP). For example, Mou et al. (2016) focused on transfer learning

with convolutional neural networks (CNN) for sentence classifica-

tion. To the best of our knowledge, there exists only one study

which has analyzed transfer learning for DNN-based models in the

context of NER (Lee et al., 2017), and no study which has analyzed

transfer learning for DNN-based approaches to BNER.

In this work, we analyze to what extent transfer learning on a

source SSC to a target GSC improves performance on GSCs covering

four different biomedical entity classes: chemicals, diseases, species

and genes/proteins. We also identify the nature of these improve-

ments and the scenarios where transfer learning offers the biggest

advantages. The primary motivation for transfer learning from a

SSC to a GSC is that we are able to expose the DNN to a large num-

ber of training examples (from the SSC) while minimizing the im-

pact of noise in the SSC on model performance by also training on

the GSC.

2 Materials and methods

The following sections present a technical explanation of the DNN

architecture used in this study and in prior work (Habibi et al.,

2017). We first briefly describe LSTM, a specific kind of DNN, and

then discuss the architecture of the hybrid LSTM-CRF model. We

also describe the corpora used for evaluation and details regarding

text pre-processing and evaluation metrics.

2.1 LSTM-CRF
Recurrent neural networks (RNNs) are popular for sequence label-

ing tasks, due to their ability to use previous information in a se-

quence for processing of current input. Although RNNs can, in

theory, learn long-range dependencies, they fail to do so in practice

and tend to be biased towards their most recent inputs in the se-

quence (Bengio et al., 1994). An LSTM is a specific RNN architec-

ture which mitigates this issue by keeping a memory cell that serves

as a summary of the preceding elements of an input sequence and is

able to model dependencies between sequence elements even if they

are far apart (Hochreiter and Schmidhuber, 1997). The input to an

LSTM unit is a sequence of vectors x1;x2; :::;xT of length T, for

which it produces an output sequence of vectors h1;h2; :::hT of equal

length by applying a non-linear transformation learned during the

training phase. Each ht is called the activation of the LSTM at token

t, where a token is an instance of a sequence of characters in a docu-

ment that are grouped together as a useful semantic unit for process-

ing. The formula to compute one activation of an LSTM unit in the

LSTM-CRF model is provided below (Lample et al., 2016):

it ¼ rðWxixt þWhiht�1 þWcict�1 þ biÞ

ct ¼ ð1� itÞ � ct�1 þ it � tanhðWxcxt þWhcht�1 þ bcÞ

ot ¼ rðWxoxt þWhoht�1 þWcoct þ boÞ

ht ¼ ot � tanhðctÞ

where all Ws and bs are trainable parameters, rð�Þ and tanhð�Þ de-

note the element-wise sigmoid and hyperbolic tangent activation

functions, and � is the element-wise product. Such an LSTM-layer

processes the input in one direction and thus can only encode

dependencies on elements that came earlier in the sequence. As a

remedy for this problem, another LSTM-layer which processes input
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in the reverse direction is commonly used, which allows detecting

dependencies on elements later in the text. The resulting DNN is

called a bi-directional LSTM (Graves and Schmidhuber, 2005). The

representation of a word using this model is obtained by concatenat-

ing its left and right context representations, ht ¼ ½~ht ; ht

~

�. These rep-

resentations effectively encode a representation of a word in

context. Finally, a sequential conditional random field (Lafferty

et al., 2001) receives as input the scores output by the bi-directional

LSTM to jointly model tagging decisions. LSTM-CRF (Lample

et al., 2016) is a domain-independent NER method which does not

rely on any language-specific knowledge or resources, such as dic-

tionaries. In this study, we used NeuroNER (Dernoncourt et al.,

2017b), a named entity recognizer based on a bi-directional LSTM-

CRF architecture. The major components of the LSTM-CRF model

for sequence tagging are described below:

1. Token embedding layer maps each token in the input sequence

to a token embedding.

2. Character embedding layer maps each character in the input se-

quence to a character embedding.

3. Character Bi-LSTM layer takes as input character embeddings

and outputs a single, character-level representation vector that

summarizes the information from the sequence of characters in

the corresponding token.

4. Token Bi-LSTM layer takes as input a sequence of character-

enhanced token vectors, which are formed by concatenating the

outputs of the token embedding layer and the character Bi-

LSTM layer.

5. Label prediction layer using a fully-connected neural network,

maps the output from the token Bi-LSTM layer to a sequence of

vectors containing the probability of each label for each corre-

sponding token.

6. Label sequence optimization layer using a CRF, outputs the

most likely sequence of predicted labels based on the sequence of

probability vectors from the previous layer.

Figure 1 illustrates the DNN architecture. All layers of the network

are learned jointly. A detailed description of the architecture is

explained in Dernoncourt et al. (2017a).

2.1.1 Training

The network was trained using the back-propagation algorithm to

update the parameters on every training example, one at a time,

using stochastic gradient descent. For regularization, dropout was

applied before the token Bi-LSTM layer, and early stopping was

used on the validation set with a patience of 10 epochs, i.e. the

model stopped training if performance did not improve on the valid-

ation set for 10 consecutive epochs. While training on the source

datasets, the learning rate was set to 0.0005, gradient clipping to 5.0

and the dropout rate to 0.8. These hyperparameters were chosen to

discourage convergence of the network on the source dataset, such

that further learning could occur on the target dataset. While train-

ing on the target datasets, the learning rate was increased to 0.005,

and the dropout rate lowered to 0.5. These are the default hyper-

parameters of NeuroNER and give good performance on most NER

tasks. Additionally, Lample et al. (2016) showed a dropout rate of

0.5 to be optimal for the task of NER.

2.2 Gold standard corpora
We performed our evaluations on four entity types: chemicals, dis-

eases, species and genes/proteins. We used 23 datasets (i.e. GSCs),

each containing hand-labeled annotations for one of these entity

types, such as the ‘CDR’ corpus for chemicals (Li et al., 2016),

‘NCBI Disease’ for disease names (Do�gan et al., 2014), ‘S800’ for

species (Pafilis et al., 2013) and ‘DECA’ for genes/proteins

(Wang et al., 2010). Table 1 lists all corpora and their characteris-

tics, like the number of sentences, tokens and annotated entities per

entity class (measured after text pre-processing as described in

Section 2.6).

2.3 Silver standard corpora
We collected 50 000 abstracts (from a total of 174 999) at random

from the CALBC-SSC-III-Small corpus (Kafkas et al., 2012) for each

of the four entity types it annotates: chemicals and drugs (CHED),

diseases (DISO), living beings (LIVB) and genes/proteins (PRGE).

These SSCs served as the source datasets for each transfer learning

experiment we performed. For each SSC, any document that

appeared in at least one of the GSCs annotated for the same entity

type was excluded to avoid possible circularity in performance test-

ing (e.g. if a document with PubMed ID 130845 was found in a

GSC annotated for genes/proteins, it was excluded from the PRGE

SSC). In an effort to reduce noise in the SSCs, a selection of entities

present but not annotated in any of the GSCs of the same entity type

were removed from the SSCs. For example, certain text spans such

as ‘genes’, ‘proteins’ and ‘animals’ are annotated in the SSCs but not

Fig. 1. Architecture of the hybrid long short-term memory network-conditional

random field (LSTM-CRF) model for named entity recognition (NER). Here, xi is

the i-th token in the input sequence, xij is the j-th character of the i-th token, ‘ðiÞ
is the number of characters in the i-th token and ei is the character-enhanced

token embedding of the i-th token. For transfer learning experiments, we train

the parameters of the model on a source dataset, and transfer all of the parame-

ters to initialize the model for training on a target dataset
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annotated in any of the GSCs of the same entity type, and so were

removed from the SSCs (see Supplementary Material).

2.4 Word embeddings
We utilized statistical word embedding techniques to capture func-

tional (i.e. semantic and syntactic) similarity of words based on their

surrounding words. Word embeddings are pre-trained using large

unlabeled datasets typically based on token co-occurrences

(Collobert et al., 2011; Mikolov et al., 2013; Pennington et al.,

2014). The learned vectors, or word embeddings, encode many lin-

guistic regularities and patterns, some of which can be represented

as linear translations. In the canonical example, the resulting vector

for vec(‘king’) – vec(‘man’) þ vec(‘woman’) is closest to the vector

associated with ‘queen’, i.e. vec(‘queen’). We used the Wiki-

PubMed-PMC model, trained on a combination of PubMed

abstracts (nearly 23 million abstracts) and PubMedCentral (PMC)

articles (nearly 700 000 full-text articles) plus approximately four

million English Wikipedia articles, and therefore mixes domain-

specific texts with domain-independent ones. The model was created

by Pyysalo et al. (2013) using Google’s word2vec (Mikolov et al.,

2013). We chose this model to be consistent with Habibi et al.

(2017), who showed it to be optimal for the task of BNER and who

we compare to.

2.5 Character embeddings
The token-based word embeddings introduced above effectively cap-

ture distributional similarities of words (where does the word tend

to occur in a corpus?) but are less effective at capturing orthographic

similarities (what does the word look like?). In addition, token-

based word embeddings cannot account for out-of-vocabulary

tokens and misspellings. Character-based word representation mod-

els (Ling et al., 2015) offer a solution to these problems by using

each individual character of a token to generate the token vector

representation. Character-based word embeddings encode sub-

token patterns such as morphemes (e.g. suffixes and prefixes), mor-

phological inflections (e.g. number and tense) and other information

not contained in the token-based word embeddings. The LSTM-

CRF architecture used in this study combines character-based word

representations with token-based word representations, allowing

the model to learn distributional and orthographic features of

words. Character embeddings are initialized randomly and learned

jointly with the other parameters of the DNN.

2.6 Text pre-processing
All corpora were first converted to the Brat standoff format (http://

brat.nlplab.org/standoff.html). In this format, annotations are

stored separately from the annotated document text. Thus, for each

text document in the corpus, there is a corresponding annotation

file. The two files are associated by the file naming convention that

their base name (file name without suffix) is the same. All annota-

tions follow the same basic structure: each line contains one annota-

tion, and each annotation has an identifier that appears first on the

line, separated from the rest of the annotation by a single tab

character.

2.7 Evaluation metrics
We randomly divided each GSC into three disjoint subsets. 60% of

the samples were used for training, 10% as the development set for

the training of methods and 30% for the final evaluation. We com-

pared all methods in terms of precision, recall and F1-score on the

test sets. Precision is computed as the percentage of predicted labels

that are gold labels (i.e. labels that appear in the GSC), recall as the

percentage of gold labels that are correctly predicted, and F1-score

as the harmonic mean of precision and recall. A predicted label is

considered correct if and only if it exactly matches a gold label.

NeuroNER uses the conlleval script from the CoNLL-2000 shared

Table 1. Gold standard corpora (GSCs) used in this work

Entity type Corpus Text genre Text type No.

sentences

No. tokens No. unique

tokens

No.

annotations

No. unique

annotations

Chemicals BioSemantics (Akhondi et al., 2014) Patent Full-text 163219 6608020 173193 386110 72782

CDR (Li et al., 2016) Scientific Article Abstract 14166 326506 22083 15915 2623

CHEMDNER patent (Krallinger et al.,

2015a,b)

Patent Abstract 35679 1495524 60850 65685 20630

Diseases Arizona Disease (Leaman et al., 2009) Scientific Article Abstract 2804 74346 8133 3425 1266

CDR Scientific Article Abstract 14166 326506 22083 12617 3113

miRNA (Bagewadi et al., 2014) Scientific Article Abstract 2676 66419 7638 2159 606

NCBI Disease (Do�gan et al., 2014) Scientific Article Abstract 7645 173283 12534 6881 2136

Variome (Verspoor et al., 2013) Scientific Article Full-text 6274 177119 12307 5904 451

Species CellFinder (Neves et al., 2012) Scientific Article Full-text 2234 66519 7584 479 42

Linneaus (Gerner et al., 2010) Scientific Article Full-text 19048 491253 33132 4259 419

LocText (Goldberg et al., 2015) Scientific Article Abstract 956 22756 4335 276 37

miRNA Scientific Article Abstract 2676 66419 7638 722 41

S800 (Pafilis et al., 2013) Scientific Article Abstract 8356 198091 19992 3708 1503

Variome Scientific Article Full-text 6274 177119 12307 182 8

Genes/proteins BioCreative II GM (Smith et al., 2008) Scientific Article Abstract 20384 514146 49365 24596 15841

BioInfer (Pyysalo et al., 2007) Scientific Article Abstract 1147 34187 5200 4378 1041

CellFinder Scientific Article Full-text 2234 66519 7584 1750 734

DECA (Wang et al., 2010) Scientific Article Abstract 5492 139771 14053 6324 2127

FSU-PRGE (Hahn et al., 2010) Scientific Article Abstract 35361 914717 453634 59489 27363

IEPA (Ding et al., 2001) Scientific Article Abstract 241 15365 2871 1110 130

LocText Scientific Article Abstract 956 22756 4335 1395 549

miRNA Scientific Article Abstract 2676 66419 7638 1058 370

Variome Scientific Article Full-text 6274 177119 12307 4617 458
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task to compute all performance metrics (https://www.clips.uant

werpen.be/conll2000/chunking/output.html).

For a single performance metric across all corpora, we compute

the average percent reduction in error, which in our case is the aver-

age reduction in F1-score error due to transfer learning (TL) relative

to the baseline:

F1TL � F1baseline

100� F1baseline
� 100

3 Results

We assessed the effect of transfer learning on the performance of a

state-of-the-art method for BNER (LSTM-CRF) on 23 different

datasets covering four different types of biomedical entity classes.

We applied transfer learning by training all parameters of the DNN

on a source dataset (CALBC-SSC-III) for a particular entity type

(e.g. genes/proteins) and used the same DNN to retrain on a target

dataset (i.e. a GSC) of the same entity type. Results were compared

to training the model only on the target dataset using the same word

embeddings (baseline).

3.1 Quantifying the impact of transfer learning
In this experiment, we determine whether transfer learning improves

on state-of-the-art results for BNER. Table 2 compares the macro-

averaged performance metrics of the model trained only on the tar-

get dataset (i.e. the baseline) against the model trained on the source

dataset followed by the target dataset for 23 evaluation sets; exact

precision, recall and F1-scores are given in Appendix A. Transfer

learning improves the average F1-scores over the baseline for each

of the four entity classes, leading to an average reduction in error of

11.28% across the GSCs. On corpora annotated for diseases, species

and genes/proteins, transfer learning (on average) improved both

precision and recall, leading to sizable improvements in F1-score.

For corpora annotated for chemicals, transfer learning (on average)

slightly increased recall at the cost of precision for a small increase

in F1-score. More generally, transfer learning appears to be especial-

ly effective on corpora with a small number of labels. For example,

transfer learning led to a 9.69% improvement in F1-score on the test

set of the CellFinder corpus annotated for genes/proteins—the

eighth smallest corpus overall by number of labels. Conversely, the

only GSC for which transfer learning worsened the performance

compared to the baseline was the BioSemantics corpora, the largest

GSC used in this study.

3.2 Learning curve for select evaluation sets
Figure 2 compares learning curves for the baseline model against the

model trained with transfer learning on select GSCs, one for each

entity class. The number of training examples used as the target

training set is reported as a percent of the overall GSC size (e.g. for a

GSC of 100 documents, a target train set size of 60% corresponds

to 60 documents). The performance improvement due to transfer

learning is especially pronounced when a small number of labels are

used as the target training set. For example, on the miRNA corpus

annotated for diseases, performing transfer learning and using 10%

of examples as the train set leads to similar performance as using ap-

proximately 28% of examples as the train set when not using trans-

fer learning. The performance gains from transfer learning diminish

as the number of training examples used for the target training set

increases. These results suggest that transfer learning is especially

beneficial for datasets with a small number of labels. Figure 3 more

precisely captures this trend. Large improvements in F1-score are

observed for corpora with up to approximately 6000 total annota-

tions, with improvement quickly tailing off afterward. Indeed, all

corpora for which transfer learning led to a statistically significant

(p�0:05) improvement in F1-score have 6000 annotations or less

(see Appendix A). Therefore, it appears that the expected perform-

ance improvements derived from transfer learning are largest when

the number of annotations in the target dataset is approximately

6000 or less.

3.3 Error analysis
We compared the errors made by the baseline and transfer learning

classifiers by computing intersections of true-positives (TPs), false-

negatives (FNs) and false-positives (FPs) per entity type (Fig. 4). In

general, there is broad agreement for baseline and transfer learning

classifiers, especially for TPs, with different strengths per entity

type. For diseases, transfer learning has a negligible impact on the

number of TPs and FNs but leads to a sizable decrease in the number

of FPs, thereby increasing precision. For species and genes/proteins,

transfer learning decreases the number of FNs but increases the

number of FPs and TPs—trading precision for recall. Interestingly,

the pattern of TPs, FPs and FNs for chemical entities appears to dis-

agree with the pattern in performance metrics observed at the

macro-level (Table 2). However, because the decrease in FPs and

TPs is roughly equal in magnitude to the increase in FNs, the net ef-

fect is the nearly identical performance metrics of the baseline and

transfer learning method for chemical entities that we observe at the

macro-level.

4 Discussion

In this study, we demonstrated that transfer learning from large

SSCs (source) to smaller GSCs (target) improves performance over

training solely on the GSCs for BNER. This is the first study of the

effect of transfer learning for BNER. On average, transfer learning

leads to improvements in F1-score over a state-of-the-art baseline,

especially for smaller GSCs, though the nature and degree of these

improvements vary per entity type (Table 2).

The effect of transfer learning is most pronounced when the tar-

get train set size is small, with improvements diminishing as the

training set size grows (Fig. 2). Significant improvements in perform-

ance were observed only for corpora with 6000 total annotations or

less (Fig. 3). We conclude that the representations learned from the

source dataset are effectively transferred and exploited for the target

dataset; when transfer learning is adopted, fewer annotations are

Table 2. Macro-averaged performance values in terms of precision,

recall and F1-score for baseline (B) and transfer learning (TL) over

the corpora per each entity type

Precision (%) Recall (%) F1-score (%)

B TL B TL B TL

Chemicals 87.10 87.05 89.19 89.47 88.08 88.21

Diseases 80.41 81.41 81.13 82.46 80.73 82.09

Species 84.18 84.52 84.44 90.12 84.20 87.01

Genes/proteins 82.09 83.38 80.85 83.08 81.20 83.09

Note: Baseline values are derived from training on the target dataset only,

while transfer learning values are derived by training on the source dataset

followed by training on the target dataset. The macro average is computed by

averaging the performance scores obtained by the classifiers for each corpus

of a given entity class. Bold: best scores.
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needed to achieve the same level of performance as when the source

dataset is not used. Thus, our results suggest that researchers and

text-mining practitioners can make use of transfer learning to reduce

the number of hand-labeled annotations necessary to obtain high
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performance for BNER. We also suggest that transfer learning is

likely to be a valuable tool for existing GSCs with a small number of

labels.

Transfer learning had little impact on performance for chemical

GSCs. This is likely explained by the much larger size of these cor-

pora, which have a median number of annotations ten times that of

the next largest set of corpora (diseases). We suspect that relatively

large corpora contain enough training examples for the model to

generalize well, in which case we would not expect transfer learning

to improve model performance. Indeed, the largest corpora in our

study, the BioSemantics corpora (annotated for chemical entities),

was the only corpora for which transfer learning worsened perform-

ance over the baseline. With 386 110 total annotations (almost dou-

ble the sum total of annotations in the remaining 22 GSCs) the

BioSemantics corpus is an extreme outlier. To create such a large

GSC, documents were first pre-annotated and made available to

four independent annotator groups each consisting of two to ten

annotators (Akhondi et al., 2014). This is a much larger annotation

effort than usual and is not realistic for the creation of typical GSCs

in most contexts. Another possibility is that chemical entities are

easier to identify in text.

BNER has recently made substantial advances in performance

with the application of deep learning (Habibi et al., 2017). We show

that transfer learning is a valuable addition to this method.

However, there are opportunities to further optimize this approach,

for instance, by determining the optimal size of the source dataset,

developing robust methods of filtering noise from the source dataset,

and extensive hyperparameter tuning (Reimers and Gurevych, 2017;

Young et al., 2015).

4.1 Related work
Lee et al. (2017) performed a similar set of experiments, transferring

an LSTM-CRF based NER model from a large labeled dataset to a

smaller dataset for the task of de-identification of protected health

information (PHI) from electronic health records (EHR). It was

demonstrated that transfer learning improves the performance over

state-of-the-art results, and may be especially beneficial for a target

dataset with a small number of labels. Our results confirm these

findings in the context of BNER. The study also explored the im-

portance of each layer of the DNN in transfer learning. They found

that transferring a few lower layers is almost as efficient as transfer-

ring all layers, which supports the common hypothesis that higher

layers of DNN architectures contain the parameters that are more

specific to the task and dataset used for training. We performed a

similar experiment (see Supplementary Fig. S1) with similar results.

A recent study has sought to adopt multi-task learning for the

task of BNER (Crichton et al., 2017). While transfer learning and

multi-task learning are different, they are both forms of inductive

transfer that are often employed for similar reasons. At a high-level,

multi-task learning (Caruana, 1993) is a machine learning method

in which multiple learning tasks are solved at the same time. This is

in contrast to transfer learning, where we typically transfer some

knowledge learned from one task or domain to another. In the clas-

sification context, multi-task learning is used to improve the per-

formance of multiple classification tasks by learning them jointly.

The idea is that by sharing representations between tasks, we can ex-

ploit commonalities, leading to improved learning efficiency and

prediction accuracy for the task-specific models, when compared to

training the models separately (Baxter et al., 2000; Caruana, 1998;

Thrun, 1996). Crichton et al. (2017) demonstrated that a neural net-

work multi-task model outperforms a comparable single-task

model, on average, for the task of BNER. Perhaps most interesting-

ly, it was found that the performance improvements due to multi-

task learning diminish as the size of the datasets grows—something

we found to be true of transfer learning as well. Together, our

results suggest that there is promise in the idea of sharing informa-

tion between tasks and between datasets for biomedical text-mining,

and may help overcome the limitations of training DNNs on small

biomedical GSCs. Future work could evaluate the combination of

multi-task and transfer learning to see if they are complementary

and can further improve performance.

5 Conclusion

In this work, we have studied transfer learning with DNNs for

BNER (specifically LSTM-CRF) by transferring parameters learned

on large, noisy SSC for fine-tuning on smaller, but more reliable

GSC. We demonstrated that compared to a state-of-the-art baseline

evaluated on 23 GSCs, transfer learning results in an average reduc-

tion in error of approximately 11%. The largest performance

improvements were observed for GSCs with a small number of

labels (on the order of 6000 or less). Our results suggest that

researchers and text-mining practitioners can make use of transfer

learning to reduce the number of hand-labeled annotations neces-

sary to obtain high performance for BNER. We also suggest that

transfer learning is likely to be a valuable tool for existing GSC with

a small number of labels. We hope this study will increase interest in

the development of large, broadly-scoped SSCs for the training of

supervised biomedical information extraction methods.
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