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Abstract

HIV-associated/epidemic Kaposi’s sarcoma (EpKS) is an AIDS-defining angio-proliferative

malignancy. It can be treated with antiretroviral therapy (ART) alone or with ART plus cyto-

toxic chemotherapy. ART-treated EpKS can either respond or worsen upon treatment. This

study aimed at identifying immunological markers of ART-treatment response. We com-

pared responders (those with clinical EpKS tumor regression) versus poor responders

(those with progressive or non-responsive EpKS). We measured plasma cytokine and che-

mokine levels using cytometric bead assays. Kaposi’s sarcoma herpesvirus (KSHV) neu-

tralizing antibody (nAb) responses were also quantified to test associations with treatment

outcome. Interleukin (IL)-5 levels were significantly elevated in responders versus poor-

responders at baseline (0.76pg/ml vs. 0.37pg/ml; p<0.01) and follow-up (0.56pg/ml vs.

0.37pg/ml; p<0.01); IL-6 was lower in responders than poor-responders at follow-up (600fg/

ml vs. 4272fg/ml; p<0.05). IP-10/CxCL-10 was significantly lower at follow-up in responders

versus poor-responders (187pg/ml vs. 528pg/ml; p<0.01). KSHV nAb were not significantly

differential between responders and poor-responders. In conclusion, high plasma IL-5 at

baseline could be a marker for ART-treated KS tumor regression, whereas increased pro-

inflammatory cytokine IL-6, and the chemokine IP-10, associate with KS tumor progression.

1. Introduction

Kaposi’s sarcoma (KS) is a vascular malignancy highly prevalent in sub-Saharan Africa (SSA)

[1–3]. Human herpesvirus type 8 (HHV-8), which is also known as Kaposi’s sarcoma-associ-

ated herpesvirus (KSHV), has been implicated as the etiological agent of all four types of KS

[4]. These are: i) Classic KS—occurs in elderly men of Mediterranean origin; ii) Iatrogenic KS

—a result of immunosuppressive therapy; iii) Endemic KS—seen among the HIV-negative

population in SSA; and iv) Epidemic or AIDS-associated KS (EpKS)–associated with HIV-
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induced immunosuppression. EpKS is the most common type of KS in SSA countries, and is

an HIV stage 4 disease according to the World Health Organization. Despite the introduction

of ART, the incidence, prevalence, and mortality attributed to EpKS remain high in SSA

despite more substantial reductions in higher income settings like North America and Europe

[2, 5].

It is clear from the epidemiological association of KS with HIV-induced immunosuppres-

sion, immunosuppressive therapy, and aging [6–8] that immune dysregulation plays a key role

in the pathogenesis of KS. However, the fundamental mechanisms underlying KS development

are largely unknown. Prior to the introduction of ART, EpKS was considered an AIDS-defin-

ing malignancy because it commonly developed when HIV viral loads were high and CD4

counts were very low. However, EpKS incidence levels have remained steady despite effective

roll-out and uptake of ART throughout SSA. The majority of EpKS cases are now presenting

after HIV viral suppression and at least partial immune reconstitution [9]. In addition, the

recurrence rates after KS treatment are high [10].

Management of EpKS can be challenging due to difficulties in disease staging, adverse

effects of available treatments, and poor outcomes. Early-diagnosed skin-limited EpKS is usu-

ally treated with ART alone, whereas advanced EpKS requires ART plus cytotoxic chemother-

apy. Treatment of EpKS with ART results in variable outcomes including remission, stable

disease, or progression requiring addition of cytotoxic cancer chemotherapy. Furthermore,

EpKS patients initiating ART have increased risk of mortality when compared with non-KS

HIV-infected individuals initiating ART [11]. Cytotoxic cancer chemotherapeutics can lead to

bone marrow suppression resulting in anemia and leukocytopenia, and may also cause other

adverse effects such as peripheral neuropathy, lung fibrosis, and cardiotoxicity in individuals

who are already immunocompromised [12]. Factors associated with disease progression or

remission as a result of ART are unknown. It is important to identify these factors so that che-

motherapy can be avoided when possible, and individuals with early EpKS who will require

both ART and chemotherapy can be identified early and treated appropriately.

Cytokines have been observed to be dysregulated in KS patients [13–15]. Anti-KSHV neu-

tralizing antibodies (nAb) are known to be more readily detected in KS patients than in

asymptomatic KSHV-infected controls [16], but it is not known how or whether nAb levels

change in association with ART or any other KS treatment. Here, we quantified plasma cyto-

kines and nAb in chemotherapy-naïve, early-diagnosed ART-treated KS patients to investigate

their potential as prognostic biomarkers of disease progression or remission.

2. Materials and methods

2.1 Patients and samples

This study was conducted on adult KS patients presenting at the University Teaching Hospital

(UTH) in Lusaka, Zambia. We recruited histologically-confirmed, early-stage (AIDS Clinical

Trials Group Stage T0/S0) HIV-associated KS patients who were antiretroviral therapy (ART)-

naïve or on ART for less than 2 weeks. Recruitment was done after obtaining informed con-

sent. All recruited patients were 18 years and older, had a limited number of early KS lesions

(patches, plaques, or nodules), lacked lymphedema, and had no evident visceral involvement.

At baseline, sociodemographic information was collected, a physical assessment was con-

ducted, and blood samples were collected. ART was initiated in those who were ART-naïve.

All recruited patients were followed up monthly for at least 6 months for either remission

(responders) or progression of KS (poor responders). Responders all had a follow up period of

at least 6 months while poor responders had variable follow up ranging from 1 to 6 months

depending on when they experienced disease progression. None of our study participants had
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co-infections such as malaria or hepatitis, or HIV-associated comorbidities such as tuberculo-

sis or cryptococcal meningitis at baseline or during follow up. Venous whole blood was col-

lected at baseline and at the time of progression or after 6 months for those who responded to

ART. All blood samples were collected in EDTA vacutainers. Plasma was separated and then

stored at -80˚C until analysis. The study was approved by the University of Zambia Biomedical

Research Ethics Committee, the Zambian National Health Research Authority, and the Insti-

tutional Review Board at the University of Nebraska-Lincoln.

2.2 HIV testing and viral load

HIV-1 status for all patients was determined as recommended by the Zambian Ministry of

Health. The Alere Determine HIV-1/2 kit (Alere Medical Co. Ltd) was used for screening,

while the SD Bioline HIV-1/2 kit (Standard Diagnostics Inc) was used for confirmation. HIV-

1 plasma viral load was measured on the Hologic Panther (Hologic) using the Aptima HIV-1

Quant Dx Assay kit (Hologic) according to the manufacturer’s protocol.

2.3 CD4 T cell quantification

CD4 counts were determined with BD FACSCalibur (BD Biosciences) using the BD TriTest

kit (BD Biosciences), according to the manufacturer’s protocol.

2.4 Measurement of plasma cytokines and chemokines

Plasma cytokines and chemokines were quantified using the Beckton-Dickinson Cytometric

Bead Array (CBA) Flex Set kits according to the manufacturer’s protocol. The following cyto-

kines and chemokines were quantified: Transforming growth factor-β (TGF-β), Interleukin 5

(IL-5), Interferon-inducible protein 10 (IP-10), Vascular endothelial growth factor (VEGF),

Interleukin 6 (IL-6), Tumor Necrosis Factor (TNF), and Interleukin 10 (IL-10). Data was

quantified on a BD Accuri C6 Plus cytometer at 448nM and 640nM excitation wave lengths

(BD Biosciences, San Jose, CA) and analyzed with FlowJo version 10 software (TreeStar, Ash-

land, OR).

2.5 KSHV neutralizing antibodies

The challenge virus, KSHV (rKSHV.219) encoding the green fluorescent protein (GFP) gene

under control of the cellular EF1α promoter, was generated by stimulating latently infected

Vero.219 cells, as previously described [13, 16, 17]. Flow cytometry was used to titrate the

rKSHV.219 stock to determine the amount required to achieve 50% infectivity on the human

embryonic kidney cell line (293T cells). A 1:50 dilution of heat-inactivated plasma was incu-

bated with rKSHV.219 virus, then the virus-plasma mixture was used to infect 293T cells. All

assays were carried out in triplicate and infection was quantified by flow cytometry for the

number of cells expressing GFP. A sample was considered to be neutralizing antibody positive

if it inhibited at least 50% of the infectivity.

2.6 Statistical analysis

Baseline characteristics were analyzed using descriptive statistics. The Kruskal-Wallis test was

used to compare cytokine/chemokine differences between groups. Comparison of paired data

within groups was done using the Wilcoxon matched-pairs signed-rank test. Testing for corre-

lation of continuous variables was done using the Spearman rank correlation. All statistical

tests were two-sided, p values <0.05 were considered significant. Stata version 15 (StataCorp

LLC, USA) was used for all statistical analyses.
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3. Results

3.1 Baseline characteristics of study participants

We successfully recruited 27 eligible study participants. 5 of the recruited participants were

lost to follow up after the baseline assessment, 1 participant was commenced on cytotoxic che-

motherapy at another health facility and hence was no longer eligible for follow up, 13 partici-

pants had worsening KS within 6 months of ART initiation, and 4 participants had stable

disease or regression of KS lesions after at least 6 months of follow up. Among the participants

that worsened on ART, only those that were on ART for at least 2 months before worsening of

KS were analyzed. We therefore analyzed 11 EpKS patients who had early-stage KS disease

and recently initiated ART, 7 of these had EpKS disease progression within 6 months of initia-

tion of ART and follow up while 4 had stable disease or KS tumor regression for at least 6

months. Table 1 highlights the baseline characteristics of the analyzed study participants by

treatment outcome.

3.2 HIV disease parameters

Among the poor responders, the median HIV plasma viral load at baseline was 45,610 copies/

ml [IQR = 6,477–691,296] while at determination of ART response (DAR) the median HIV

viral load had dropped to 82 copies/ml [IQR = 0–2664]. Responders had a baseline median

HIV viral load of 577,016 copies/ml [IQR = 401,840–1,092,995] which dropped to 353 copies/

ml [IQR = 15–1679] at DAR. There was no statistically significant difference in HIV viral load

at baseline or at DAR between the responders and poor responders. There was a statistically

significant decrease in HIV viral load from baseline levels at DAR among the poor responders

(p = 0.018), whereas the drop in HIV viral load among the responders was not statistically sig-

nificant (p = 0.11).

The median CD4 count for the poor responders was 166 cells/μl [IQR = 127–295] at base-

line, and increased to 195 cells/μl [IQR = 131–339] at DAR. The median CD4 count for

responders was 135 cells/μl [IQR = 68–211] at baseline and was 135 cells/μl [IQR = 101–206]

at DAR. There was no statistically significant difference in CD4 counts at baseline and at DAR

between responders and poor responders. In addition, CD4 count comparisons between base-

line and DAR in both responders and poor responders were not statistically significant.

3.3 Comparison of plasma cytokines between responders and poor

responders

We quantified the plasma levels of TGF-β, IL-5, IP-10, VEGF, IL-6, TNF, and IL-10 in

responders and poor-responders at baseline and at DAR. These cytokines and chemokines

have previously been associated with regulation of cell growth and survival, humoral immune

Table 1. Baseline characteristics.

Poor Responders N = 7 Responders N = 4

Median Age in Years [IQR] 43 [31–55] 38.5 [31–45.5]

Percentage of Males 43 50

Median Time Since HIV Diagnosis in Days [IQR] 7 [2–21] 22 [9–106]

Median Duration on ART in Days [IQR] 2 [1–7] 0 [0–0]

Median Time Since First KS Lesion Noticed in Months [IQR] 3 [3–6] 5 [3–7]

IQR, Interquartile range.

https://doi.org/10.1371/journal.pone.0235865.t001
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response, chemotaxis, tumor proliferation, and enhancing and/or suppressing cancer-associ-

ated inflammation [18–22]. There was no statistically significant difference between the two

groups at baseline or at DAR in the plasma levels of VEGF, TGF-β, TNF, and IL-10. However,

median IL-5 levels were significantly higher in responders than poor responders at baseline

(0.76pg/ml vs. 0.37pg/ml; p<0.01) [Fig 1A], and remained higher at DAR (0.56pg/ml vs

0.37pg/ml; p<0.01) [Fig 1B]. There was no significant difference in median IL-6 levels between

responders and poor responders at baseline (3688fg/ml vs. 2390fg/ml; p = 0.57) [Fig 1C]; how-

ever, at the time of DAR, median IL-6 levels were 7-fold lower in the responders than in the

poor responders (600fg/ml vs. 4272fg/ml; p<0.05) [Fig 1D].

The median plasma level of the chemokine CXCL10 (IP-10) was not significantly differen-

tial at baseline between responders and poor responders (724pg/ml vs. 726pg/ml; p = 0.85)

Fig 1. Cytokine levels in responders and poor responders. Bars represent median values.

https://doi.org/10.1371/journal.pone.0235865.g001
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[Fig 1E]. However, at DAR, the level of IP-10 was significantly lower in responders than poor

responders (187pg/ml vs. 528pg/ml; p<0.01) [Fig 1F].

3.4 Comparison of KSHV neutralizing antibodies between responders and

poor responders

KS patients have much higher neutralizing antibody (nAb) responses than KSHV-infected,

but asymptomatic individuals with HIV-1 co-infection [13, 16]. However, whether such

responses increase, decrease, or remain unchanged, over the course of ART treatment of early

KS is unknown. Moreover, whether the magnitude of the baseline nAb response correlates

with eventual ART treatment outcome has not been explored. At baseline, both responders

and poor responders were able to neutralize >50% of the challenge virus. Neutralization

trended higher in responders than in poor responders; however, this difference was not statis-

tically significant (85% vs. 67%; p = 0.20). At DAR, the magnitude of the KSHV nAb response

in responders was also indistinguishable from that in poor responders (66% vs. 70%; p = 1.0).

There was a non-significant decline in KSHV nAb responses from baseline to DAR among

responders, whereas the nAb responses trended upward over treatment among the poor

responders. Neither differential was statistically significant (p = 0.29 and p = 0.75 respectively).

No correlation was detected between the levels of antibody-associated cytokine IL-5, and nAb

levels at baseline in responders (⍴ = -0.5; p = 0.67) or poor responders (⍴ = 0.46; p = 0.35). At

DAR, there was no correlation between IL-5 levels and nAb levels among the poor responders

(⍴ = -0.54; p = 0.27), whereas the correlation could not be determined among the responders.

Table 2 highlights a compilation of HIV viral loads, CD4 counts, cytokines/chemokines, and

KSHV nAb results.

4. Discussion

HIV-induced immune suppression and dysregulation are major predisposing factors for the

development of EpKS. However, it is not entirely clear what HIV does and to what extent.

Therefore, treatment with ART is essential in the management and long-term control of KS.

ART-induced immune reconstitution reverses KS progression [23]. However, in a significant

proportion of individuals, ART seems to exacerbate the disease [24]. Changes in immunologi-

cal and/or HIV and KSHV virological factors likely increase or decrease the likelihood of

ART-treated KS regression or progression. In this study, we quantified several immunological

Table 2. HIV viral loads, CD4 counts, cytokines/chemokines, and KSHV nAb results.

Poor responders Responders

Baseline DAR p value# Baseline DAR p value# p value� p value��

HIV viral load (copies/ml) 45,610 82 0.02 577,016 353 0.11 0.21 1.00

CD4 Count (cells/μl) 166 195 0.17 135 135 0.72 0.39 0.29

IL-5 (pg/ml) 0.37 0.37 0.87 0.76 0.56 0.07 0.01 0.01

IL-6 (fg/ml) 2390 4272 0.18 3688 600 0.07 0.57 0.04

CXCL-10 (pg/ml) 726 528 0.02 724 187 0.07 0.85 0.01

KSHV nAb (%) 67 66 0.75 85 70 0.29 0.20 1.00

DAR, Determination of ART response;
#Comparison between baseline and DAR values;

�, Comparison between baseline values;

��, Comparison between DAR values.

https://doi.org/10.1371/journal.pone.0235865.t002
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and virological factors and their potential association with response to ART treatment of early-

diagnosed EpKS.

We observed a decrease in HIV viral loads in both responders and poor responders to viral

suppression levels of less than 1000copies/ml. Previous studies have reported that ART has no

direct anti-KSHV or anti-KS activity [25]. In addition, there is abundant evidence of KS

development in HIV patients on ART who have high CD4 counts and low viral loads [26, 27].

Consistent with the concept, in our study, HIV viral load was not differential between the

responders and poor responders at baseline or follow up. In addition, CD4 counts were also

not significantly different at baseline and follow up between responders and poor-responders.

This suggests that ART reduction of HIV replication is decoupled from KS control even

though uncontrolled HIV-1 replication clearly leads to enhanced risk for KS development.

Consistent with previous reports of KSHV nAb primarily in KS symptomatic subjects [13,

16], both responders and poor responders demonstrated high KSHV nAb. However, due to

the small sample size, the observation that nAb was higher among responders than poor

responders was not statistically significant. In concert with previous reports, the lack of corre-

lation of baseline nAb level, or changes in nAb, with treatment, suggests that KSHV nAb is not

a correlate of protection. The data further suggest that nAb is unlikely to be a marker for KS

disease progression or control in the context of ART.

We did, however, observe differences in IL-5, IL-6 and IP-10 between responders and poor

responders. IL-5 is a Th2 cytokine that induces eosinophilia and also promotes immunoglobu-

lin secretion by B cells [21]. IL-5 levels have been reported to increase following KSHV infec-

tion and in KSHV-associated conditions [28, 29]. We observed higher IL-5 levels at baseline

and follow up among the responders compared to the poor responders. It was therefore

anticipated that anti-KSHV nAb would be significantly higher among responders than poor

responders. Yet, IL-5 levels did not correlate with levels of anti-KSHV nAb, suggesting that IL-

5 expression may not be a good marker of humoral control of KSHV infection. The high IL-5

levels, may reflect the previously described effect of parasitic infestations on initiation and pro-

gression of KSHV pathogenesis [30, 31]. Nevertheless, our study findings suggest that high IL-

5 levels at baseline may be a good prognostic marker for ART-treated EpKS perhaps indicative

of a more favorable outcome of Th2 versus Th1 skewing of responses.

We also observed higher plasma IL-6 levels in individuals who were undergoing KS disease

progression compared to those who underwent response. IL-6 is a pleiotropic cytokine known

to stimulate the proliferation of KSHV-infected cells [18, 32], and also promotes humoral

responses by driving B cell maturation [33, 34]. Interestingly, KSHV also produces a viral

homolog of IL-6 (vIL-6) which upregulates expression of carcinoembryonic antigen-related

cell adhesion molecule 1 (CEACAM1), a protein that has been implicated in angiogenesis,

endothelial cell migration, and vascular remodeling [35]. Both IL-6 and vIL-6 have been asso-

ciated with the proliferation of KSHV-infected tumors [36, 37]. Furthermore, detectable

plasma KSHV viral load has been found to be associated with elevated plasma IL-6 levels in KS

patients [38]. Our findings are consistent with previous reports on the role of IL-6 in promot-

ing the proliferation of KSHV tumors. In turn, it is possible that elevated IL-6 also contributes

to the detection of nAb in KS disease, even though such Ab responses are non-protective.

IP-10 is a chemoattractant for recruiting leukocytes to involved tissues, and thereby intensi-

fies inflammation that results in tissue damage [39, 40]. It is also closely associated with HIV

infection, systemic inflammation, and cellular activation [19]. In cancer, IP-10 has been shown

to both inhibit and promote tumor formation and/or metastasis [20]. The effect of IP-10 on a

tumor largely depends on the type of CXCR3 receptor expressed by that tumor. IP-10 has been

found to inhibit CNS tumors and melanoma, whereas it has been observed to promote breast

cancer, some lymphomas, colon cancer, and basal cell carcinoma [41–46]. The effect of IP-10
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on KS tumors is largely unknown. We observed a significant decrease in plasma IP-10 levels

among the responders whereas the poor responders experienced no change from baseline, sug-

gesting a potential tumor promoting effect of IP-10 in KS. This is consistent with previous

reports on upregulation of IP-10 expression in KS tumors [47].

5. Study limitations

The major limitation of this study was the low number of complete responders. A larger sam-

ple size with increased numbers of both responders and poor responders, and a longer follow

up period would be required in future.

6. Conclusion

High plasma IL-5 is a potential marker of good prognosis in ART-treated EpKS, whereas high

plasma IL-6 and IP-10 levels are prognostic markers for potentially poor ART-treatment

outcomes.
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