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ABSTRACT

The Remote Analysis Computation for gene
Expression data (RACE) suite is a collection of bioin-
formatics web tools designed for the analysis of DNA
microarray data. RACE performs probe-level data pre-
processing, extensive quality checks, data visualiza-
tion and data normalization for Affymetrix GeneChips.
In addition, it offers differential expression analysis
on normalized expression levels from any array
platform. RACE estimates the false discovery rates
of lists of potentially regulated genes and provides
a Gene Ontology-term analysis tool for GeneChip
data to support the biological interpretation and
annotation of results. The analysis is fully automated
but can be customized by flexible parameter settings.
To offer a convenient starting point for subsequent
analyses, and to provide maximum transparency,
the R scripts used to generate the results can be
downloaded along with the output files. RACE is
freely available for use at http://race.unil.ch.

INTRODUCTION

DNA microarrays are standard tools in biology and medicine.
An increasingly long list of applications includes the identi-
fication of gene expression changes associated with changes in
cell state (1,2), classifying clinical samples based on the under-
lying pathological characteristics (3,4), drug development (5)
and the functional annotation of genes (6). A typical micro-
array experiment might measure expression levels of tens of
thousands of genes, and systematic variations introduced into
the datasets (e.g. variations in labeling efficiencies or scanner
settings) can often obscure the biological variation that is of
real interest. Furthermore, once differentially expressed genes
have been identified, inferring function based simply on their
expression pattern can be both arduous and ineffective. Hence,

bioinformatics tools that facilitate rigorous data analysis and
interpretation are of the highest importance. Presented here
is Remote Analysis Computation for gene Expression data
(RACE), a web server which provides some solutions to these
problems.

Microarray data analysis typically begins with data quality
checks and data normalization (7). Once normalized expres-
sion levels are determined, expression ratios can be calculated
and differentially expressed genes identified. At this stage of
data analysis, the magnitude and significance of gene expres-
sion changes as well as the false discovery rate are important
measures. Once a list of differentially expressed genes is iden-
tified, the task often turns to describing and interpreting the
biological significance of the results. An often useful approach
is to compile a list of the Gene Ontology (GO) terms associ-
ated with the differentially expressed genes (8). This provides
an overview of the biological, physiological and cellular pro-
cesses potentially involved in the biological phenomena and
suggests directions for further studies.

A number of very useful web tools for microarray data
analysis exist (e.g. 9-13). RACE contributes to the field by
providing access to a wide range of quality checks, probe-level
methods and state-of-the-art normalization techniques for
Affymetrix raw data. To the best of our knowledge, these
are not provided by any other publicly available server. Addi-
tionally, RACE provides tools to identify lists of different-
ially expressed genes and to determine and investigate the
associated GO-term composition of those genes. To facilitate
subsequent analyses and guarantee maximal transparency and
reproducibility, the R script used to generate the results is
provided.

SYSTEM AND MODULE DESIGN

RACE is divided into two components: the user interface and
the analysis part. RACE uses basic authentication provided
by Apache. HTTP communication is exclusively via port 80,
making the system easily accessible through a firewall.
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Submitted jobs are queued and a customized analysis script
is generated by a set of Perl scripts. The analysis script is
executed in a subprocess.

All statistical analysis is performed using the free high-level
interpreted statistical language R (R Core, 2004, http://www.
R-project.org) and various Bioconductor packages (http://
www.Bioconductor.org). The design of the software is modu-
lar to facilitate the addition of further analysis tools.

User accounts

RACE can be used with an anonymous guest account but
personal password-protected access is recommended. Regis-
tered users can store data in a personal account on the server,
making it possible to run multiple tasks without the need to
re-upload input files. Moreover, waiting times are avoided as
the user is automatically emailed at the completion of a job.
RACE creates for each job a directory for storing the input
files, the selected parameters, the utilized R script and the
results.

File handling

The upload files module allows users to upload and store files,
decompress ZIP files and organize the data in different sub-
directories. After setting the parameters in the analysis tools,
the user is given the option of providing the input data either by
anew upload or by copying or splitting previously uploaded or
generated data.

The download files module allows users to access their
password-protected directories, to browse their data and to
download or delete files. Every file is deleted automatically
by the system 1 week after its creation.

RACE ANALYSIS TOOLS

RACE currently offers three analysis tools accessible via the
web interface, namely Data Quality Checks & Normalization,
Statistical Tests and GO-term Analysis. Each tool is structured
into three sections. The first section contains links to three
help pages describing the purpose and implemented methods,
the required input data format and the output files generated.
Parameters which are required for the analysis are set in the
second section. Parameters which can be optionally changed to
customize the output files generated are set in the third section.
At the bottom of the second section the user can provide the
data to be analyzed.

After the submission of an analysis request, a confirmation
message, including a link to the output page, is displayed.
When the job is completed, authenticated users will receive
the link to the output page by email. The output page contains
the user data, the customized R script used for the analysis, all
result files, ZIP archives and a log file which tracks job start
and completion as well as problems that may have occurred
during the run.

Data Quality Checks & Normalization tool

Purpose and required data input format. The Data Quality
Checks & Normalization tool is dedicated to the visualization,
quality checking and normalization of Affymetrix GeneChip
data. Data should be provided as Affymetrix CEL files in
ASCII format, optionally zipped.
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Description. The Data Quality Checks & Normalization tool
uses primarily methods implemented in the Bioconductor
packages ‘affy’ (14) and ‘affyPLM’. Toquality check the perfect
match (PM), probe levels are summarized in spatial and dens-
ity plots. Individual probes in each probe set are numbered
starting from the 5’ end of the transcript, and the mean 5’ to 3’
probe intensity bias for each array is determined. The probe-
level intensities for probe sets are summarized to define a
measure of the individual gene expression. To make data
from different arrays comparable, RACE provides several
normalization methods. The first of these is MAS 5.0, the
current Affymetrix default algorithm. However, several
studies (15,16) suggest that measures based only on the PM
probes outperform the MAS 5.0 algorithm. For this reason
RACE also provides access to two of the most prominent
PM-based algorithms: RMA (Robust Multichip Average; 17)
and gcRMA (see the Bioconductor website: http://www.
Bioconductor.org). RMA includes quantile normalization
and a robust multi-array probe-level fit, and gcRMA addi-
tionally exploits sequence information for the background
adjustment. Based on the normalized expression values the
Pearson correlation and the standard deviation of gene-wise
expression differences between two arrays are calculated to
evaluate similarities of the gene expression profile for each
pair of samples. Moreover, a hierarchical sample cluster is
built using Ward’s minimum variance method.

Output. The principle output of this tool is a file containing
normalized gene expression levels. In addition, multiple data
visualizations are provided to assist in judging the quality of
the data and the success of the normalization.

Figure 1 shows two examples of the output type
‘PLM pseudo images’ (see Table 1) displaying the spatial
distribution of the residuals obtained from a probe-level fit
over multiple arrays. High-quality data have characteristics
similar to Figure la, which shows only a few small defects.
In general, small defects do not seriously bias the expression
levels, since probes representing one gene are distributed
across the array and robust summary methods are used.
However, extensive regions with large residuals—the dark
regions seen in Figure 1b—are a clear indication of an experi-
mental artifact (e.g in array production, hybridization or
processing) and the array should be considered for exclusion
from the analysis.
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Figure 1. ‘PLM pseudo image’ tool output. The spatial distribution of residuals
obtained from probe-level fitting over multiple arrays is shown. (a) High-
quality data showing almost no defects; (b) low-quality data showing large
artifacts.
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Table 1. Graphical outputs and their functions for the RACE Quality Checks & Normalization tool

Output

Function

CEL intensity images

Boxplots of raw PM probe intensities

Density distribution of the raw PM probe intensities
Boxplots of the normalized PM intensities

5’ to 3’ feature intensity plot (‘RNA digestion plot’)
PLM pseudo images

NUSE boxplots

RLE boxplots
Pair-wise scatter plots
Correlation matrix plot
Sample cluster

Detect spatial intensity artifacts

Display PM probe intensity distribution for selected array; compare overall brightness of selected array

Check the intensity density for selected arrays; compare the densities of selected arrays

Assess the success of the normalization

Detect a bias in probe intensities; identify outlier arrays with deviating biases

Assess spatial distribution of weights derived during robust linear model probe-level fit; detect obscure/
dark array regions with low weights; assess the spatial distribution of residuals; detect obscure/dark
array regions with high positive or negative residuals

Identify arrays where the standard errors for gene expression estimates from PLM fit are overall larger
relative to other arrays

Identify arrays where relative log expression compared with a median array are larger than other arrays

Assess similarities and differences in expression values measured on two arrays; identify outliers arrays

Detect homogeneous groups of arrays; identify outlier arrays

Find subgroups of similar samples

Mean Intensity: shifted and scaled
20
1

sample slope
RNA-1 451
RNA-2  3.31
= RNA-3 358
v RNA-4  3.66
RNA-5  3.98
RNA-6  3.97
o
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Figure 2. ‘Bias 5’ to 3’ end plot’ tool output. Each line represents the overall
5" to 3’ intensity bias of a different chip.

An example of the output type ‘Bias 5’ to 3’end plot’ is
shown in Figure 2. Here, each line corresponds to an individual
array. The graph is generated by calculating and plotting the
array-wide mean intensities of ordered PM probe sets, where
position 0 corresponds to the most 5" probe and position 10 the
most 3’ probe (the data are from an Affymetrix HGU133A
array, whose probe sets each contain 11 PM probes). The slope
and shape of each line is characteristic of each target sample
and is dependent on the RNA sample source and the array type.
When comparing expression data from a group of hybridiza-
tions, a sample whose slope and shape deviate significantly
from the rest will often have anomalous ‘outlier’ results.

Owing to space limitations, the content and purpose of all
other output graphs can be only briefly summarized in Table 1.

Statistical Tests tool

Purpose and required data input format. The Statistical Tests
tool identifies genes which are differently expressed between
two groups. The input files for this tool are two expression

matrices provided as tab-delimited ASCII files. The first col-
umn of both files must contain unique gene identifiers and all
other columns contain normalized expression values of the
samples corresponding to the different groups. The input
files can be generated on the server by splitting the output
file ‘NormExprLevels.txt’ from the first tool into two groups.

Description. The design of gene expression experiments can
be represented in terms of a linear model (18). At the moment
RACE supports designs where two groups are compared to
identify genes changing expression across the groups. RACE
uses the Bioconductor package ‘limma’ (http://bioinf.wehi.
edu.au/limma/usersguide.pdf), which makes use of an empir-
ical Bayesian approach, to fit the linear model. This approach
outperforms a conventional #-test under conditions typical for
microarray experiments (18-20). Owing to the large number
of genes analyzed in a typical microarray experiment,
an assessment of the effect of multiple testing is necessary.
Therefore, we estimate from the distribution of raw p-values
the fraction of the non-changing genes among all tested genes,
as well as the false discovery rate (FDR) for each p-value
threshold using the Bioconductor package ‘qvalue’ (21,22).

Output. The principle output are lists of potentially differen-
tially expressed genes chosen according to user-specified
fold-change and p-value thresholds. A separate overview
list containing all genes, complemented by statistical measures
and additional gene annotations (e.g. GeneSymbol and
LocusID), is also provided. RACE determines for each gene
the fold-change, the logarithm of the fold-change (M), the
mean expression level (A), the uncorrected p-value, the estim-
ated FDR, the regularized #-value, the log odds ratio (B) and
the standard deviations of the expression levels in each group.
RACE provides multiple ways of visualizing these values.
See Table 2 for an overview of the output graphs.

Figure 3 shows an example of the output type ‘p-Value
histogram’ with an inset displaying the dependency between
the FDR and the p-value. The p-value distribution is expected
to be uniform if there are no differentially expressed genes. As
the number of differentially expressed genes increases, the
p-value distribution will show a more and more pronounced
peak at small values. Figure 3 shows the output from a com-
parison of human testis and placenta RNA. A sharp, very
high peak at small p-values is seen, indicating many highly
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Table 2. Graphical outputs and their functions for the RACE Statistical Tests tool

Output Function

Correlation matrix plot
Sample cluster

StdDev plots

p-Value histogram
Volcano plots

FDR versus p-value plot

Check whether intra-group correlations are higher than correlations between groups; identify outlier samples

Check whether uploaded groups yield separated clusters; identify sample subgroups

Compare distributions of expression standard deviations in the different groups; assess variability in different groups

Obtain a visual impression of the amount of differentially expressed genes by the height of a potential peak at small p-values
Check for genes with high significance and large expression changes across groups

Find the appropriate p-value threshold to limit the estimated FDR of the resulting gene list below a fixed value

MvVA plot Visualize mean expression and log changes of all genes; label genes which were selected according to user’s defined p-value and
fold-change cutoffs
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o Figure 4. ‘MVA plots’ output. The expression ratio (log base 2) of genes is

Figure 3. ‘p-Value histogram’ output. The number of genes (‘Frequency’)
which fall into each p-value bin is presented. In the insert, the False Discovery
Rate versus the p-value threshold is plotted.

significant expression differences between these two RNAs.
By specifying a p-value and fold-change threshold, the user
defines a candidate list of regulated genes. The inset shows the
estimated FDR as a function of the p-value threshold.

Figure 4 shows the output type ‘MvA plot’ for the experi-
ment in which human placenta and testis RNA were compared.
Each point represents one gene. M is the log (base 2) of the
fold-change in expression between testis and placenta, and A
is the log average of the expression level. Very large expres-
sion differences over a wide range of expression intensities are
seen. Genes which meet user-defined p-value and fold-change
criteria are labeled in the output graph. Additionally, the selec-
tion criteria and the file name of the list which contains the
labeled genes accompanied by annotations and statistical mea-
sures are presented in the output graph. In this example, the
100 most significant genes with fold-changes >2 (p < 0.01)
have been selected.

GO-term Analysis tool

Purpose and required data input format. The aim of the
GO-term Analysis tool is to assist in the biological inter-
pretation of gene lists by identifying functional annotations
(GO terms) which are enriched among the user-provided
input genes. Users can choose among the different ontology

plotted against their average expression intensity. Circles identify genes that
pass user-defined p-value and fold-change value thresholds.

categories and GO-term levels and can select threshold
combinations for list coverage (minimum number of genes
corresponding to each GO term) and statistical significance
(p-value) for the overrepresentation of each GO term. GO
terms which meet these criteria are reported together with
the corresponding genes. A tab-delimited file containing
Affymetrix identifiers in one column is required as input.
Optionally, another column may contain log ratios, which
can then be used to analyze the GO terms according to the
under- or overexpression of the genes being analyzed. Gene
lists generated by the Statistical Tests tool can be used directly
as input files.

Description. GO (23) provides three structured, controlled
vocabularies (ontologies) that describe gene products
species-independently in terms of their associated biological
processes, cellular components and molecular functions. GO
terms are organized in directed acyclic graphs, representing
networks where each term may be a ‘child’ (more specialized
term) of one or more ‘parents’ (less specialized terms). The
networks define the ‘is a’ or ‘part of” relationships between
terms and allow the grouping of all GO terms into different
levels. As the GO term level increases, the informational
specificity increases and the genome coverage decreases (24;
also see http://www.geneontology.org/ for a more detailed
description).

RACE uses the Bioconductor meta-data packages for the
mappings of Affymetrix identifiers to LocusLink identifiers
and of LocusLink identifiers to GO terms. GO-term levels
are derived from the ‘gene_ontology.obo’ text file provided
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Figure 5. ‘GO-term chart’ output. Biological function GO terms calculated to be statistically overrepresented in a user-specified gene list are reported along with the

number of genes from the list associated with each term.

by the Gene Ontology Consortium. Based on the GO-term
composition of all genes on the array used, a p-value is deter-
mined using a hypergeometric distribution for the overrepres-
entation of each GO term among the specified gene list. The
‘Gostats’ Bioconductor package was used to implement this
method. For more information, see http://Bioconductor.org/
Docs/Papers/2003/Compendium/GOstats.pdf.

Output. According to the user-specified parameters (GO-term
type, GO-term specificity level, minimum number of genes
annotated with a certain GO term, p-value threshold), a list of
enriched GO terms is generated for the genes provided. For
each enriched GO term, the numbers of supporting genes from
the list as well as from the entire chip are reported and visu-
alized. The counts of annotated and unannotated genes are
reported as well. If the gene list corresponds to differentially
expressed genes which are supplied with log ratios, the num-
bers of over- and underexpressed genes among the regulated
genes are presented. To generate a ranking based on statistical
significance, a p-value is calculated for the overrepresentation
of GO-terms based on the hypergeometric distribution. The
results are summarized in bar graphs and tables

Figure 5 shows such a GO-term bar chart for the experiment
comparing human placenta and testis gene expression patterns.
Different colors are assigned to up- and downregulated genes.
The number of GO terms in the ‘biological function’ category
significantly enriched in the group of differentially expressed
genes is presented. Not surprisingly considering the source of
the RNAs, the biological function GO terms ‘spermatogenesis’
(overexpressed in testis) and ‘pregnancy’ (underexpressed in
testis) dominate the list.

SUMMARY

RACE offers an easy to use collection of bioinformatics web
tools to analyze DNA microarray data, without requiring any
installation or maintenance on the user side. By using various
R subroutines and Bioconductor packages, RACE provides
users with access to powerful statistical analysis tools without
the need for specific expertise in their use. It offers different
users or laboratories the possibility of performing data QC,
normalization and analysis in a standardized way, which is
likely to lead to more consistent and reproducible results.
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